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ANALYSIS OF TOTAL VARIATION FLOW AND ITS FINITE ELEMENT
APPROXIMATIONS

Xiaobing Feng
1

and Andreas Prohl
2

Abstract. We study the gradient flow for the total variation functional, which arises in image pro-
cessing and geometric applications. We propose a variational inequality weak formulation for the
gradient flow, and establish well-posedness of the problem by the energy method. The main idea of
our approach is to exploit the relationship between the regularized gradient flow (characterized by
a small positive parameter ε, see (1.7)) and the minimal surface flow [21] and the prescribed mean
curvature flow [16]. Since our approach is constructive and variational, finite element methods can be
naturally applied to approximate weak solutions of the limiting gradient flow problem. We propose a
fully discrete finite element method and establish convergence to the regularized gradient flow problem
as h, k → 0, and to the total variation gradient flow problem as h, k, ε → 0 in general cases. Provided
that the regularized gradient flow problem possesses strong solutions, which is proved possible if the
datum functions are regular enough, we establish practical a priori error estimates for the fully dis-
crete finite element solution, in particular, by focusing on the dependence of the error bounds on the
regularization parameter ε. Optimal order error bounds are derived for the numerical solution under
the mesh relation k = O(h2). In particular, it is shown that all error bounds depend on 1

ε
only in some

lower polynomial order for small ε.
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1. Introduction and summary

One of the best known and most successful noise removal and image restoration model in image processing
is the total variation (TV) model due to Rudin, Osher and Fatemi [24]. Let u : Ω ⊂ R2 → R denote the gray
level of an image describing a real scene, and g be the observed image of the same scene, which usually is a
degradation of u. The total variation model recovers the image u by minimizing the total variation functional

J(u) :=
∫

Ω

| ∇u | dx (1.1)

Keywords and phrases. Bounded variation, gradient flow, variational inequality, equations of prescribed mean curvature and
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on BV (Ω), the space of functions of bounded variation (see Sect. 2 for the precise definition), subject to the
constraint

Au + η = g . (1.2)
Here, A is a (known) linear operator representing the blur and η denotes an additive white Gaussian noise. For
the sake of clarity of the presentation, in this paper we set A = I, the identity operator.

To avoid solving the constrained minimization problem, one strategy is to enforce the constraint weakly and
reformulate the problem as an unconstrained minimization problem which minimizes the following penalized
functional

Jλ(u) :=
∫

Ω

| ∇u | dx +
λ

2

∫
Ω

|u − g|2 dx , (1.3)

where λ ≥ 0 is the penalization parameter which controls the trade-off between goodness of fit-to-the-data and
variability in u.

A well-known method for solving the above minimization problem is the steepest descent method, which
motivates to consider its gradient flow:

∂u

∂t
= div

(
∇u

| ∇u |

)
− λ(u − g) in ΩT ≡ Ω × (0, T ), (1.4)

∂u

∂n
= 0 on ∂ΩT ≡ ∂Ω × (0, T ), (1.5)

u(·, 0) = u0(·) in Ω, (1.6)

for a positive number T and an initial guess u0. The above gradient flow will be referred to as TV flow in the
rest of this paper. We remark that the above initial-boundary value problem with λ = 0 also arises in geometric
measure theory for studying the evolution of a set with finite perimeter without distortion of the boundary [5].

Although the above TV flow has been addressed and approximated numerically by many authors
(see [9–11,14] and references therein), its rigorous mathematical analysis has appeared in the literature very
recently. The first such work was done by Hardt and Zhou in [19], which studied the gradient flow for a class
of linear growth functionals with L∞ initial values using a variational inequality approach. The comprehensive
study for the TV flow was done lately by Andreu et al. in [3], in which (1.4)–(1.6) (for λ = 0, and u0 ∈ L1(Ω))
was defined on the space L1 ((0, T ); BV (Ω)) as a variational inequality problem. Besides several other results,
existence and uniqueness of weak solutions was proved by using Crandall–Liggett’s semigroup generation the-
ory [13]. On the other hand, numerical simulations were done by computing the solution of the following
regularized problem

∂uε

∂t
= div

(
∇uε√

| ∇uε |2 + ε2

)
− λ(uε − g) in ΩT , (1.7)

∂uε

∂n
= 0 on ∂ΩT , (1.8)

uε(·, 0) = u0(·) in Ω, (1.9)

for small ε > 0. Later, the results of [3] were extended to the TV flow with Dirichlet boundary conditions in [2],
and further qualitative properties of the flow were addressed in [4].

It is easy to see that the equation (1.7) corresponds to the gradient flow for the energy functional

Jλ,ε(u) :=
∫

Ω

√
| ∇u |2 + ε2 dx +

λ

2

∫
Ω

|u − g|2 dx , (1.10)

which is a (strictly) convex regularization to the total variation functional (1.1). In fact, this is the mostly
used regularization technique to approximate and compute the minimizer of the total variation energy and its
variants (cf. [8, 10, 14]).
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The goal of this paper is to present an L2-variational theory for the TV flow, based on the regularized
gradient flow (1.7)–(1.9). In comparison with the approach of [2, 3, 19], we give a simpler and more natural
notion of weak solution for the TV flow, and establish well-posedness and regularities for the problem using the
energy method, which is surprisingly “easy and short”. Since this approach is based on analyzing the regularized
gradient flow (1.7)–(1.9) and establishing the connection between regularized and limiting gradient flows, as
a result, this paper also provides a qualitative analysis for the most widely used regularization technique for
approximating and computing the solutions of the TV flow. through approximation of the regularized flow In
addition, our analytical results lay down the theoretical basis for analyzing convergence and error estimates for
finite element and other numerical approximations of both gradient flows. The crux of our approach is to exploit
the fact that equation (1.7) resembles the minimal surface flow [21] if λ = 0 and the prescribed mean curvature
flow [16] if λ �= 0. Both problems correspond to the case ε = 1. For other values of ε > 0, we introduce the
scaling

τ = ε t, y = ε x, T ε = ε T, Ωε = ε Ω, (1.11)

and define vε(y, τ) = uε(x, t), gε(y) = g(x) and v0(y) = u0(x). It is then easy to check that the function vε

satisfies

∂vε

∂τ
= div

(
∇vε√

| ∇vε |2 + 1

)
− λ

ε
(vε − gε) in Ωε

T ε ≡ Ωε × (0, T ε), (1.12)

∂vε

∂ny
= 0 on ∂Ωε

T ε ≡ ∂Ωε × (0, T ε), (1.13)

vε(·, 0) = v0(·) in Ωε. (1.14)

The above simple observation states that for each fixed ε > 0, the function uε = vε evolves as a minimal surface
flow if λ = 0, and a prescribed mean curvature flow if λ �= 0 in the scaled coordinates (y, τ). We remark that
since ε � 1, hence τ = ε t represents a slow time.

The minimal surface flow and the prescribed mean curvature flow on a fixed domain have been understood
for both Dirichlet and Neumann boundary conditions. We refer to [16, 21] for detailed discussions. For the
corresponding stationary problems, extensive research has been carried out in the past forty years, we refer
to [17, 18] and the references therein for detailed expositions. In order to analyze the gradient flow (1.7)–
(1.9) and its limiting flow (1.4)–(1.6) as ε → 0, it is crucial for us to keep track of the dependence of the
solution uε on the regularization parameter ε. Also, it is worth noting that both stationary and evolutionary
surface of prescribed mean curvature problems do not have “regular” solutions unless the mean curvature of the
boundary ∂Ω of the domain Ω is everywhere non-negative (cf. Chap. 16 of [17]), and solutions u(t) ∈ BV (Ω) for
a.e. t ≥ 0 are what one can only get in general (cf. [16, 18]). Knowledge of these facts is helpful for developing
an appropriate analytical setting for the gradient flow (1.7)–(1.9) and particularly its limiting flow (1.4)–(1.6),
as ε → 0.

In the rest of this section, we shall summarize the main results of this paper. Our first theorem addresses
existence and uniqueness for the gradient flow (1.7)–(1.9). The statement is in the spirit of [16,21] for minimal
surface and prescribed mean curvature flow, respectively. The main difference in this paper is that we deal with
less regular data u0 and g, and we also trace dependence of a priori estimates on the parameter ε.

Theorem 1.1. Let Ω ⊂ RN (N ≥ 2) be a bounded open domain with Lipschitz boundary ∂Ω. Suppose that
u0, g ∈ L2(Ω). Then, there exists a unique function uε ∈ L1((0, T ); BV (Ω)) ∩ C0([0, T ]; L2(Ω)) such that

uε(0) = u0, uε
t ∈ L2

(
(0, T ); H−1(Ω)

)
, (1.15)
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and for any s ∈ [0, T ]

∫ s

0

∫
Ω

vt(v − uε) dxdt +
∫ s

0

[Jλ,ε(v) − Jλ,ε(uε)] dt ≥ 1
2

[
‖ v(s) − uε(s) ‖2

L2 − ‖ v(0) − u0 ‖2
L2

]
∀ v ∈ L1 ((0, T ); BV (Ω)) ∩ L2(ΩT ) such that vt ∈ L2(ΩT ). (1.16)

Moreover, suppose uε
i (i = 1, 2) are two functions which satisfy (1.16) with respective datum functions uε

i (0),
gε

i (i = 1, 2). Then, there holds

‖uε
1(s) − uε

2(s) ‖L2 ≤ ‖uε
1(0) − uε

2(0) ‖L2 +
√

λ ‖ gε
1 − gε

2 ‖L2 ∀s ∈ [0, T ]. (1.17)

Remark 1.1. Borrowing the idea of [16, 21], we shall define a weak solution of the gradient flow (1.7)–(1.9)
as a function uε ∈ L1((0, T ); BV (Ω)) ∩ C0([0, T ]; L2(Ω)) which satisfies (1.15, 1.16). The motivation for such a
definition is nicely explained in [21].

Remark 1.2. Following [16, 21], the results of Theorem 1.1 can be easily generalized to the cases of non-
homogeneous Neumann and Dirichlet boundary conditions, under some appropriate assumptions on the bound-
ary data. We particularly mention that in the case of the non-homogeneous Dirichlet boundary condition

uε = φ on ∂Ω × (0, T ),

the only modification that needs to be done is to replace the energy functional Jλ,ε(·) by the energy functional

Φλ,ε(u) := Jλ,ε(u) +
∫

∂Ω

|u − φ|dx , (1.18)

where the Dirichlet datum is enforced weakly (see [16, 18, 21] for more discussions). Then, all results of The-
orem 1.1 can be extended to this case under some suitable assumptions on φ, and particularly the analysis
remains same.

Our second theorem states some regularity results and a priori estimates (with emphasis on their dependence
on ε) for the solution of the gradient flow (1.7)–(1.9).

Theorem 1.2. Let Ω ⊂ RN (N ≥ 2) be a bounded open domain with Lipschitz boundary ∂Ω and uε is the
function whose existence is given by Theorem 1.1 above.

(i) If u0 ∈ BV (Ω) and g ∈ L2(Ω), then

uε ∈ L∞ ((0, T ); BV (Ω)) , uε
t ∈ L2(ΩT ), (1.19)

and for any s ∈ [0, T ]

∫ s

0

∫
Ω

uε
t (v − uε) dxdt +

∫ s

0

[Jλ,ε(v) − Jλ,ε(uε)] dt ≥ 0 ∀v ∈ L1 ((0, T ); BV (Ω)) ∩ L2(ΩT ). (1.20)

(ii) If ∂Ω satisfies an internal sphere condition (ISC) of radius R (cf. Def. 2.4 of [16]), u0 ∈ BV (Ω) ∩ L∞(Ω)
and g ∈ L∞(Ω), then

sup
(x,t)∈ΩT

|uε(x, t)| ≤ sup
x∈Ω

|u0(x)| + Rε + T

(
N

R
+ λ ‖ g ‖L∞(Ω)

)
. (1.21)
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(iii) If u0 ∈ H1
loc(Ω) ∩ W 1,1(Ω), g ∈ L2(Ω) ∩ H1

loc(Ω) and ∂Ω ∈ C2, then, in addition to (1.19, 1.20), uε ∈
L∞ ((0, T ); W 1,1(Ω)

)
∩L∞ ((0, T ); H1

loc(Ω)
)
, and the equations (1.7)–(1.9) hold in ΩT and on ∂ΩT , respectively

in the distributional sense. Moreover, uε satisfies the following dissipative energy law:

d
dt

Jλ,ε(uε) = −‖uε
t ‖

2
L2 for a.e. t ∈ [0, T ]. (1.22)

(iv) If u0 ∈ C2(Ω), g ∈ W 1,∞(Ω) and ∂Ω ∈ C3, then uε ∈ W 1,∞(ΩT ) ∩ L2((0, T ); H2(Ω)). Moreover, the
following high order dissipative energy law is valid:

d
dt

‖uε
t ‖

2
L2 = −2

∥∥∥∇uε
t (|∇uε|2 + ε2)−

1
4

∥∥∥2

L2
− 2

∥∥∥∇uε · ∇uε
t (|∇uε|2 + ε2)−

3
4

∥∥∥2

L2
− 2λ ‖uε

t ‖
2
L2 ,

for a.e. t ∈ [0, T ], (1.23)

as well as the following estimates:

‖∇uε ‖L∞(ΩT ) ≤ Ĉ0(ε−1), (1.24)

‖uε ‖L2(H2) ≤ Ĉ1(ε−1), (1.25)

‖uε
tt ‖L2(H−1) ≤ Ĉ2(ε−1), (1.26)

where Ĉj(ε−1) (j = 0, 1, 2) are some positive, low order polynomial functions in ε−1.

Remark 1.3.
(a) Remarks 1.1 and 1.2 remain valid for Theorem 1.2.
(b) In the context of image processing, ∂Ω is usually piecewise smooth and the observed image g ∈ L∞(Ω),

although the initial value is less restrictive. Hence, only weak solutions are expected for the gradient
flow (1.7)–(1.9) in general.

(c) It is possible to obtain the regularity results of Theorem 1.2 under weaker assumptions (still too strong
for image processing applications) on the function g and on the boundary ∂Ω. However, no attempt is
made to address this issue in the present paper.

Our third main theorem establishes existence and uniqueness of solutions for the TV flow; it also proves that
the TV flow is indeed the limiting problem of the gradient flow (1.7)–(1.9) as the parameter ε → 0. To the best
of our knowledge, this latter fact has been assumed and used in the literature for numerical simulations without
rigorous justification.

Theorem 1.3. Let Ω ⊂ RN (N ≥ 2) be a bounded open domain with Lipschitz boundary ∂Ω and u0, g ∈ L2(Ω).
(i) There exists a unique function u ∈ L1 ((0, T ); BV (Ω)) ∩ C0

(
[0, T ]; L2(Ω)

)
such that

u(0) = u0, ut ∈ L2
(
(0, T ); H−1(Ω)

)
, (1.27)

and for any s ∈ [0, T ]

∫ s

0

∫
Ω

vt(v − u) dxdt +
∫ s

0

[Jλ(v) − Jλ(u)] dt ≥ 1
2

[
‖ v(s) − u(s) ‖2

L2 − ‖ v(0) − u0 ‖2
L2

]
∀ v ∈ L1 ((0, T ); BV (Ω)) ∩ L2(ΩT ) such that vt ∈ L2(ΩT ). (1.28)

(ii) Suppose ui (i = 1, 2) are two functions which satisfy (1.28) with respect to given data ui(0), gi (i = 1, 2).
Then

‖u1(s) − u2(s) ‖L2 ≤ ‖ u1(0) − u2(0) ‖L2 +
√

λ ‖ g1 − g2 ‖L2 ∀s ∈ [0, T ]. (1.29)
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(iii) Let uε be the weak solution of the gradient flow (1.7)–(1.9) as stated in Theorem 1.1, then there holds

lim
ε→0

‖uε(t) − u(t) ‖Lp(Ω) = 0 for a.e. t ∈ (0, T ), ∀ p ∈
[
1,

N

N − 1

)
, (1.30)

uε
t −→ ut weakly in L2

(
(0, T ); H−1(Ω)

)
. (1.31)

Remark 1.4. For the same reason as stated in Remark 1.1, a weak solution of the TV flow (1.4)–(1.6) will be
defined as a function u ∈ L1 ((0, T ); BV (Ω)) which satisfies (1.27, 1.28). Clearly, this definition comes naturally
in view of Theorem 1.1 and the convergence result (1.30).

The following result is related to Theorem 1.3 like Theorem 1.2 to Theorem 1.1.

Theorem 1.4. Let Ω ⊂ RN (N ≥ 2) be a bounded open domain with Lipschitz boundary ∂Ω. Let u be the
function whose existence is given by Theorem 1.3 above.

(i) If u0 ∈ BV (Ω) and g ∈ L2(Ω), then

u ∈ L∞ ((0, T ); BV (Ω)) , ut ∈ L2(ΩT ), (1.32)

and for any s ∈ [0, T ]
∫ s

0

∫
Ω

ut(v − u) dxdt +
∫ s

0

[Jλ(v) − Jλ(u)] dt ≥ 0 ∀ v ∈ L1 ((0, T ); BV (Ω)) ∩ L2(ΩT ). (1.33)

(ii) Let uε be the weak solution of the gradient flow (1.7)–(1.9) as stated in Theorem 1.2. Under the assumptions
of (i) above, we have

lim
ε→0

(
‖uε − u ‖L∞((0,T );Lp(Ω)) + ‖uε

t − ut ‖L2((0,T );H−1(Ω))

)
= 0, (1.34)

uε
t −→ ut weakly in L2

(
(0, T ); L2(Ω)

)
, (1.35)

for any p ∈ [1, N
N−1 ).

(iii) If ∂Ω satisfies an internal sphere condition (ISC) of radius R, g ∈ L∞(Ω) and u0 ∈ L∞(Ω)∩BV (Ω), then,

sup
(x,t)∈ΩT

|u(x, t)| ≤ sup
x∈Ω

|u0(x)| + T

(
N

R
+ λ ‖ g ‖L∞(Ω)

)
. (1.36)

(iv) If u0 ∈ H1
loc(Ω) ∩ W 1,1(Ω), g ∈ L2(Ω) ∩ H1

loc(Ω) and ∂Ω ∈ C2, then, in addition to the conclusion of (i),
we also have u ∈ L∞ ((0, T ); W 1,1(Ω)

)
∩ L∞ ((0, T ); H1

loc(Ω)
)
, and

∂u

∂t
= div (Sgn(∇u)) − λ(u − g) in ΩT , (1.37)

∂u

∂n
= 0 on ∂ΩT , (1.38)

in the distributional sense. Moreover, u satisfies the following dissipative energy law:

d
dt

Jλ(u) = −‖ut ‖2
L2 for a.e. t ∈ [0, T ]. (1.39)

Remark 1.5. The remarks concerning non-homogeneous Dirichlet and Neumann boundary conditions given
in Remarks 1.2 and 1.3 remain valid for the TV flow.
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Our last group of main results concerns quality of the finite element method for approximating the gradient
flow (1.7)–(1.9) and the TV flow (1.4)–(1.6) in view of Theorems 1.3 and 1.4. To state the theorems, we need
some preparations.

Let Th be a quasi-uniform triangulation of Ω (K ∈ Th are tetrahedrons when N = 3) with mesh size h ∈ (0, 1).
Let V h denote the finite element space of continuous, piecewise linear functions associated with Th, that is,

V h :=
{

vh ∈ C0(Ω); vh|K ∈ P1(K), ∀K ∈ Th

}
·

Let {tm}M
m=0 be an equidistant partition of [0, T ] of mesh size k ∈ (0, 1) and introduce the notation dtu

m :=
(um − um−1)/k. Then our fully discrete finite element discretization for the gradient flow (1.7)–(1.9) is defined
as follows: find Um ∈ V h for m = 1, 2, . . . , M such that∫

Ω

[
dtU

m vh +
f ′

ε(|∇Um|)
|∇Um| ∇Um · ∇vh + λ(Um − g) vh

]
dx = 0 ∀ vh ∈ V h , (1.40)

with some starting value U0 ∈ V h that approximates u0. Here

fε(z) =
√

z2 + ε2 ∀ z ∈ R. (1.41)

Remark 1.6.
(a) Since f ′

ε(z) = z√
z2+ε2 , the second term in (1.40) is well-defined for all values of |∇Um|.

(b) Since fε(z) is strictly convex, it easy to check that (1.40) has a unique solution {Um} for a given starting
value U0. In fact, it is not hard to show that the finite element scheme (1.40) satisfies the following
stability estimate:

‖Um
1 − Um

2 ‖L2 ≤
∥∥U0

1 − U0
2

∥∥
L2 +

√
λ ‖ g1 − g1 ‖L2 0 ≤ m ≤ M, (1.42)

where {Um
i }, (i = 1, 2) is the solution of (1.40) for initial data U0

i , gi (i = 1, 2), respectively. Clearly, (1.42)
is the discrete counterpart of (1.17).

(c) The fully discrete finite element scheme is based on a weak formulation of (1.7)–(1.9); for the purpose
of error analysis this requires some regularity of the solution uε, which in turn asks for some regularity
of u0 and g. One way to get around this technical issue is first to smooth the datum functions u0

and g, denote the mollified functions by û0 and ĝ, respectively, then to work with the same differential
equation with the new data û0 and ĝ. This approach is possible because of the stability estimate (1.17).
On the other hand, if one prefers not using this smoothing approach when u0, g ∈ L2(Ω), it is necessary
to formulate a space-time finite element discretization which is based on the variational inequality
weak formulation (1.16), which results in analyzing and solving a nonlinear algebraic inequality. We
will report on the numerical analysis and simulation results for that discretization based on a slicing
strategy later elsewhere.

For the fully discrete finite element solution {Um}, we define its constant and linear interpolations in t as
follows:

U
ε,h,k

(·, t) := Um−1(·) ∀ t ∈ [tm−1, tm), 1 ≤ m ≤ M, (1.43)

U
ε,h,k

(·, t) :=
t − tm−1

k
Um(·) +

tm − t

k
Um−1(·) ∀ t ∈ [tm−1, tm], 1 ≤ m ≤ M. (1.44)

Clearly, U
ε,h,k

is continuous in x but discontinuous in t. On the other hand, U
ε,h,k

is continuous in both x
and t.

We are now ready to state our last three main theorems of the paper, which give an error analysis for the
above fully discrete finite element solution.
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Theorem 1.5. Suppose that u0, g and ∂Ω are sufficiently regular such that the solution uε of the gradient
flow (1.7)–(1.9) belongs to L∞ ((0, T ); W 1,1(Ω)

)
∩ L∞ ((0, T ); H1

loc(Ω)
)

(cf. Th. 1.2). Then, for each fixed
ε > 0, {Um} satisfies

k

�∑
m=1

[
‖ dtU

m ‖2
L2 +

λk

2
‖ dt(Um − g) ‖2

L2

]
+ J0,ε(U �) ≤ J0,ε(U0), 1 ≤ � ≤ M. (1.45)

Moreover, under the following starting value constraint:

lim
h→0

∥∥u0 − U0
∥∥

L2 = 0,

there also hold

lim
h,k→0

∥∥∥uε − U
ε,h,k

∥∥∥
L∞((0,T );Lp(Ω))

= 0, (1.46)

lim
h,k→0

∥∥∥∥uε − U
ε,h,k

∥∥∥∥
L∞((0,T );Lp(Ω))

= 0, (1.47)

uniformly in ε for any p ∈ [1, N
N−1 ).

An immediate consequence of (1.34) and (1.46, 1.47) is the following convergence theorem.

Theorem 1.6. Let u stand for the weak solution of the TV flow (1.4)–(1.6). Under the assumptions of
Theorem 1.5 there hold

lim
ε→0

lim
h,k→0

∥∥∥u − U
ε,h,k

∥∥∥
L∞((0,T );Lp(Ω))

= 0, (1.48)

lim
ε→0

lim
h,k→0

∥∥∥∥u − U
ε,h,k

∥∥∥∥
L∞((0,T );Lp(Ω))

= 0 (1.49)

for any p ∈ [1, N
N−1 ).

Our last theorem gives a priori error estimates for the finite element solution {Um}, provided that uε is
regular enough (cf. Th. 1.2).

Theorem 1.7. Suppose that u0, g and ∂Ω are sufficiently regular such that the solution uε of the gradient
flow (1.7)–(1.9) belongs to L2((0, T ); H2(Ω))∩H2((0, T ); H−1(Ω))∩W 1,∞(ΩT ) (cf. Th. 1.2). Then, under the
following starting value constraint: ∥∥u0 − U0

∥∥
L2 ≤ C h2, (1.50)

and the parabolic mesh relation k = O(h2), the finite element solution {Um} also satisfies

max
0≤m≤M

‖ uε(tm) − Um ‖L2 +

{
k

M∑
m=1

k ‖ dt(uε(tm) − Um) ‖2
L2

} 1
2

≤ Ĉ3(ε)
(
h2 + k

)
, (1.51)

(
k

M∑
m=1

‖∇(uε(tm) − Um) ‖2
L2

)
≤ Ĉ4(ε) (h + k) . (1.52)

Here, Ĉ3 and Ĉ4 are some positive constants which are (low order) polynomial functions of the constants
Ĉj (j = 0, 1, 2) given in (1.24)–(1.26).
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Remark 1.7. The a priori estimates of (1.50)-(1.52) are optimal in both h and k, that means, they are the
best rates one can expect for the linear finite finite element method with the implicit Euler time stepping.

The rest of the paper is organized as follows: in Section 2, we introduce some notation and then provide
proofs for Theorems 1.1 and 1.2. Section 3 devotes to proving Theorem 1.3 and Theorem 1.4. Section 4, we
first recall some approximation properties of the continuous piecewise linear finite element space, and then
present proofs for Theorems 1.5–1.7. Finally, in Section 5 we present some numerical experiments to validate
our theoretical results, in particular, the relations between different scales of ε, h and k.

2. Proofs of Theorems 1.1 and 1.2

Recall that a function u ∈ L1(Ω) is called a function of bounded variation if all of its first order partial
derivatives (in the distributional sense) are measures with finite total variations in Ω. Hence, the gradient of
such a function u, still denoted by ∇u, is a bounded vector-valued measure, with the finite total variation∫

Ω

| ∇u | dx ≡ ‖∇u ‖ := sup
{∫

Ω

−u divv dx ; v ∈ [C1
0 (Ω)]N , ‖v ‖L∞ ≤ 1

}
· (2.1)

The space of functions of bounded variation is denoted by BV (Ω), it is a Banach space which is endowed with
norm

‖ u ‖BV := ‖u ‖L1 + ‖∇u ‖ . (2.2)
We also recall that (cf. [1]) for any u ∈ BV (Ω)

∫
Ω

√
| ∇u |2 + ε2 dx := sup

{∫
Ω

[
−u divv + ε

√
1 − |v(x)|2

]
dx ; v ∈ [C1

0 (Ω)]N , ‖v ‖L∞ ≤ 1
}
·

We refer to [1,18] for detailed discussions about the space BV (Ω), and we also refer to [17,18,22] for definitions
of standard space notation which is used in this paper.

Proof of Theorem 1.1. For each δ > 0, we consider the regularized convex functional

Jλ,ε,δ(v) := Jλ,ε(v) +
δ

2
‖∇v ‖2

L2 , (2.3)

whose gradient flow is the following parabolic problem:

∂uε,δ

∂t
= δ∆uε,δ + div

(
∇uε,δ√

| ∇uε,δ |2 + ε2

)
− λ(uε,δ − g) in ΩT , (2.4)

∂uε,δ

∂n
= 0 on ∂ΩT , (2.5)

uε,δ(·, 0) = u0(·) in Ω. (2.6)

The general theory of monotone nonlinear equations (cf. [7, 22]) provides existence and uniqueness of solutions
uε,δ ∈ L∞ ((0, T ); L2(Ω)

)
∩ H1

(
(0, T ); L2(Ω)

)
∩ L2

(
(0, T ); H1(Ω)

)
for the above parabolic problem.

Next, we are going to derive some δ-independent and ε-independent a priori estimates for uε,δ. We remark
that ε is fixed throughout this section, and the ε-independent a priori estimates will be utilized in the next
section for proving Theorems 1.3 and 1.4.

Test (2.4) by uε,δ we get

1
2

d
dt

∥∥uε,δ
∥∥2

L2 + δ
∥∥∇uε,δ

∥∥2

L2 +
∫

Ω

| ∇uε,δ |2√
| ∇uε,δ |2 + ε2

dx +
λ

2

∥∥uε,δ
∥∥2

L2 ≤ λ

2
‖ g ‖2

L2 ,



542 X. FENG AND A. PROHL

which implies

∥∥uε,δ
∥∥

L∞(L2)
+
√

δ
∥∥∇uε,δ

∥∥
L2(L2)

+
∥∥uε,δ

∥∥
L1(W 1,1)

≤ C0 ≡
√

λT ‖ g ‖L2 + ‖u0 ‖L2 . (2.7)

Test (2.4) by any function φ ∈ H1
0 (Ω) and use the uniform estimate (2.7) gives

∥∥∥uε,δ
t

∥∥∥
L2(H−1)

≤ C1, (2.8)

where C1 depends on C0 linearly.
Then, we test (2.4) by t uε,δ

t . After some manipulations of the nonlinear term we get

t

2

∥∥∥uε,δ
t

∥∥∥2

L2
+

δ

2
d
dt

(
t
∥∥∇uε,δ

∥∥2

L2

)
+

d
dt

(
t Jλ,ε(uε,δ)

)
+

λ

2
d
dt

(
t
∥∥uε,δ

∥∥2

L2

)
≤ δ

2

∥∥∇uε,δ
∥∥2

L2 + Jλ,ε(uε,δ) +
λ

2

∥∥uε,δ
∥∥2

L2 +
λ t

2
‖ g ‖2

L2 ,

which together with (2.7) implies

∥∥∥√t uε,δ
t

∥∥∥
L2(L2)

+
√

δ
∥∥∥√t∇uε,δ

∥∥∥
L∞(L2)

+
∥∥∥√t uε,δ

∥∥∥
L∞(W 1,1)

≤ C2 . (2.9)

The constant C2 depends on C0 linearly.
From [25] we know that the uniform estimates (2.7)–(2.9) imply there exists a function uε ∈ L1((0, T );

BV (Ω)) ∩ L2(ΩT ) and a subsequence of {uε,δ} (denoted by the same notation) such that as δ → 0

uε,δ −→ uε weakly	 in L∞ ((0, T ); L2(Ω)
)
, (2.10)

weakly in L2
(
(0, T ); L2(Ω)

)
strongly in L1 ((0, T ); Lp(Ω)) , 1 ≤ p <

N

N − 1
,

√
t uε,δ −→

√
t uε strongly in Lp(Ω), 1 ≤ p <

N

N − 1
, for a.e. t ∈ [0, T ], (2.11)

uε,δ
t −→ uε

t weakly in L2
(
(0, T ); H−1(Ω)

)
, (2.12)

weakly in L2
(
(t0, T ); L2(Ω)

)
, ∀ t0 ∈ (0, T ),

√
t uε,δ

t −→
√

t uε
t weakly in L2

(
(0, T ); L2(Ω)

)
. (2.13)

Here we have used the fact that BV (Ω) is compactly embedded in Lp(Ω) for 1 ≤ p < N
N−1 (cf. [1, 18]).

In order to show that uε satisfies (1.16), multiply (2.4) by v − uε,δ, integrate in x over Ω and in t from 0
to s(≤ T ), use the convexity of the function

√
z2 + ε2, and drop the positive term δ

∫ s

0

∫
Ω
|∇uε,δ|2 dxdt on the

right-hand side to get

∫ s

0

∫
Ω

vt(v − uε,δ) dxdt +
∫ s

0

[
Jλ,ε(v) − Jλ,ε(uε,δ)

]
dt + δ

∫ s

0

∫
Ω

∇uε,δ · ∇v dxdt

≥ 1
2

[ ∥∥ v(s) − uε,δ(s)
∥∥2

L2 − ‖ v(0) − u0 ‖2
L2

]
∀ v ∈ L1

(
(0, T ); C1(Ω)

)
∩ L2(ΩT ) such that vt ∈ L2(ΩT ). (2.14)
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Since Jλ,ε(v) is convex, it is lower semicontinuous in BV (Ω) with respect to convergence in L1(Ω) (cf. [1, 18]).
Hence, (2.10)3, (2.11) and Fatou’s Lemma imply

lim inf
δ→0

∫ s

0

Jλ,ε(uε,δ) dt ≥
∫ s

0

Jλ,ε(uε) dt ∀s ∈ [0, T ]. (2.15)

We also recall the fact that the L2-norm ‖ v ‖2
L2 is a lower semicontinuous functional with respect to weak

convergence in L2(Ω), that is,

lim inf
δ→0

∥∥uε,δ(s)
∥∥2

L2 ≥ ‖ uε(s) ‖2
L2 ∀s ∈ [0, T ]. (2.16)

Now, setting δ → 0 in (2.14) and using (2.10)2, (2.15), (2.16) and the boundedness of
√

δ
∥∥∇uε,δ

∥∥
L2 (cf. (2.7)),

we show that (1.16) holds for all v ∈ L1
(
(0, T ); C1(Ω)

)
∩ L2(ΩT ) with vt ∈ L2(ΩT ). Since C1(Ω) is dense

in BV (Ω) (cf. [1, 18]), hence, a standard density argument shows that (1.16) also holds for all v ∈ L1 ((0, T ) ;
BV (Ω)) ∩ L2(ΩT ) with vt ∈ L2(ΩT ). So the existence part of the proof is complete.

It is trivial to see that the stability inequality (1.17) immediately implies the uniqueness, so it remains to
show (1.17), this will be done by adapting a nice test function trick given in Section 2.5 of [21].

Let uε
i (i = 1, 2) be two functions which satisfy (1.16) for given data uε

i (0), gε
i (i = 1, 2). Set

û :=
uε

1 + uε
2

2
, û(0) :=

uε
1(0) + uε

2(0)
2

·

For any β > 0, define wβ to be the solution of the following initial value problem:

βwβ
t + wβ = û ∀ t ∈ (0, T ),

wβ(0) = û(0).

Now, take v = wβ in each inequality (1.16) with uε
i in place of uε, and add the two resulting inequalities. We

employ the definitions of û, û(0) and wβ to get

− 2β

∫ s

0

∥∥∥wβ
t

∥∥∥2

L2
dt +

∫ s

0

[
2J0,ε(wβ) − J0,ε(uε

1) − J0,ε(uε
2)
]

dt

+
λ

2

∫ s

0

[
(wβ − gε

1)
2 + (wβ − gε

2)
2 − (uε

1 − gε
1)

2 − (uε
2 − gε

2)
2
]

dt

≥ 1
2

[ ∥∥wβ(s) − uε
1(s)

∥∥2

L2 +
∥∥wβ(s) − uε

2(s)
∥∥2

L2

]
− 1

4
‖uε

1(0) − uε
2(0) ‖2

L2 . (2.17)

From [21] (see pages 352–353 of [21]), we have

wβ −→ û strongly in L2(ΩT ) as β → 0, (2.18)

wβ(s) −→ û(s) strongly in L2(Ω), ∀s ∈ (0, T ) as β → 0. (2.19)

Following the same proof we also can show that

wβ −→ û strictly in L1 ((0, T ); BV (Ω)) as β → 0. (2.20)

Taking β → 0 in (2.17) we get∫ s

0

[2J0,ε(û) − J0,ε(uε
1) − J0,ε(uε

2)] dt +
λ

4
‖ gε

1 − gε
2 ‖

2
L2 ≥ 1

4
‖uε

1(s) − uε
2(s) ‖

2
L2 −

1
4
‖uε

1(0) − uε
2(0) ‖2

L2 . (2.21)
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By the convexity of J0,ε(·) we have

2J0,ε

(
uε

1 + uε
2

2

)
≤ J0,ε(uε

1) + J0,ε(uε
2), (2.22)

which and (2.21) imply (1.17).
Finally, it remains to show uε ∈ C0([0, T ]; L2(Ω)) and uε(0) = u0. Again, this will be done using the test

function trick due to Lichnewsky and Temam [21].
For any β > 0, define uε

β to be the solution of the following initial value problem:

β
∂uε

β

∂t
+ uε

β = uε ∀ t ∈ (0, T ),

uε
β(0) = u0 .

Now, take v = uε
β in (1.16), by the boundedness of the function f ′

ε(z) (cf. (1.41)) and a direct calculation we
obtain for any s ∈ [0, T ]

1
2

∥∥uε
β(s) − uε(s)

∥∥2

L2 ≤
∫ s

0

∫
Ω

|uε
β − uε| dxdt +

λ

2

∫ s

0

∥∥uε
β − uε

∥∥
L2

∥∥uε
β + uε − 2g

∥∥2

L2 dt . (2.23)

It is not hard to check that the convergences given in (2.18)–(2.20) are still valid for the sequence {uε
β}. Hence,

taking β → 0 in (2.23) yields

lim
β→0

∥∥uε
β(s) − uε(s)

∥∥
L2 = 0 uniformly with respect to s ∈ [0, T ] .

Since for each β > 0, uε
β satisfies

uε
β ∈ C0

(
[0, T ]; L2(Ω)

)
and uε

β(0) = u0 ,

so does uε. The proof is complete. �
An immediate consequence of (2.7)–(2.9) is the following corollary, which will play a crucial role in the proof

of Theorem 1.3 in the next section.

Corollary 2.1. The function uε constructed in the proof of Theorem 1.1 satisfies the following (uniform in ε)
estimates:

‖uε ‖L∞(L2) + ‖ uε ‖L1(BV ) ≤ C0 ≡
√

λ ‖ g ‖L2 + ‖u0 ‖L2 , (2.24)

‖uε
t ‖L2(H−1) ≤ C1, (2.25)∥∥∥√t uε

t

∥∥∥
L2(L2)

+
∥∥∥√t uε

∥∥∥
L∞(BV )

≤ C2 , (2.26)

where C1 and C2 are positive constants depending on C0 linearly.

In the remainder of this section, we will give a proof for Theorem 1.2.

Proof of Theorem 1.2. The proof is based on studying (1.7)–(1.9) in the scaled coordinates defined in (1.11),
and making use of the results of [16, 21] for the minimal surface flow and the prescribed mean curvature flow,
whose proofs were carried out using the same approach as demonstrated in the proof of Theorem 1.1 above.

(i) As noted in Section 1, the initial-boundary value problem (1.12)–(1.14) corresponds to the prescribed
mean curvature flow problem studied in [16, 21], and the “mean curvature” function is given by

H(y, vε) =
λ

ε
[ vε − gε(y) ] . (2.27)
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Since H(x, vε) is linear in the second argument, hence, it is a monotone increasing function if λ ≥ 0. Therefore,
H(x, vε) satisfies the assumption on the “mean curvature” function required in [16].

From Theorem 2.5 of [16] we know there exists a unique function vε ∈ L∞ ((0, T ε); BV (Ωε)) ∩H1 ((0, T ε) ;
L2(Ωε)

)
and for any s ∈ [0, T ε]

∫ s

0

∫
Ωε

vε
τ (w − vε) dydτ +

∫ s

0

[Iλ,ε(w) − Iλ,ε(vε)] dτ ≥ 0 ∀w ∈ L1 ((0, T ε); BV (Ωε)) ∩ L2(Ωε
T ε), (2.28)

where

Iλ,ε(w) :=
∫

Ωε

√
|∇w|2 + 1 dy +

λ

2ε

∫
Ωε

(w − gε)2 dy. (2.29)

Now going back to the original (x, t) space-time domain using (1.11), it is easy to check that (2.28) exactly
gives (1.20), and vε ∈ L∞((0, T ε); BV (Ωε))∩H1((0, T ε); L2(Ωε)) implies (1.19). This completes the proof of (i).

(ii) From Theorem 2.3 of [16] we have

sup
(y,τ)∈Ωε

Tε

|vε(y, τ)| ≤ sup
y∈Ωε

|v0(y)| + Rε + T ε

(
N

Rε
+

λ

ε
‖ gε ‖L∞(Ωε)

)
, (2.30)

which is equivalent to (1.21) in (x, t) space-time domain. Hence, (ii) is proved.

(iii) It follows from Theorems 1.1 and 1.2 of [21] that vε(y, τ) also satisfies vε(y, τ) ∈ L∞((0, T ε); W 1,1(Ωε))∩
L∞ ((0, T ε); H1

loc(Ω
ε)
)

and the equations (1.12)–(1.14) hold a.e. in Ωε
T ε and on ∂Ωε

T ε , respectively. In (x, t) space-
time domain, this means that uε(x, t) ∈ L∞((0, T ); W 1,1(Ω))∩L∞((0, T ); H1

loc(Ω)) and the equations (1.7)–(1.9)
hold a.e. in ΩT and on ∂ΩT , respectively.

Now, since (1.7) holds a.e. in ΩT and uε
t ∈ L2(Ω), testing (1.7) by uε

t immediately gives the desired energy
law (1.22). Hence, the assertions of (iii) hold.

(iv) It turns out that for fixed ε > 0, the regularity uε ∈ L2
(
(0, T ); H2(Ω)

)
follows easily from Theorem 4.5

of [16], however, it is not easy to derive its a priori estimate which shows precise dependence on the parameter ε.
Applying Theorem 4.2 of [16] to the “prescribed mean curvature” flow (1.12)–(1.14), we have

‖∇vε ‖L∞(Ωε
T ε ) ≤ C̃(T ε, M0, M1), (2.31)

where C̃ is some positive constant which is a polynomial function in each of its arguments, and Mj (j = 0, 1)
are defined as (see (4.5, 4.6) of [16])

M0 := sup
y∈Ωε

{|v0(y)| + |∇v0(y)|} , (2.32)

M1 := sup
(y,τ)∈Ωε

Tε

{
|vε(y, τ)| + |vε

τ (y, τ)| + |H(y, vε)| +
∣∣∣∣ ∂

∂y
H(y, vε)

∣∣∣∣
}

, (2.33)

and H(y, vε) is given by (2.27).
It is not hard to check that

M0 = O

(
1
ε

)
, and M1 = O

(
1
ε2

)
·
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under the assumptions on u0 and g. Hence, the estimate (2.31) in (x, t) space-time domain becomes

‖∇uε ‖L∞(ΩT ) ≤ ε C̃(εT, M0, M1), (2.34)

which gives (1.24) with Ĉ0 = ε C̃(εT, M0, M1).
The proof of (1.25) is more technical, we skip the proof and refer the interested reader to Theorem 3.1 of [15]

to get the idea of the proof.
Finally, to show (1.23) and (1.26), first differentiate (1.7) with respect to t to get

uε
tt = div

(
∇uε

t√
| ∇uε |2 + ε2

)
+ div

(
(∇uε · ∇uε

t )∇uε√
(| ∇uε |2 + ε2)3

)
− λuε

t . (2.35)

Then, test the above equation by uε
t gives the high order dissipative energy law (1.23). In turn, this high energy

law immediately gives bounds for ‖uε
t ‖L∞(L2) and ‖∇uε

t ‖L2(L2) in terms of ‖∇uε ‖L∞(ΩT ) given by (2.34). As
a result, the desired estimate (1.26) can be obtained easily by testing (2.35) by an arbitrary function ϕ ∈ H1

0 (Ω).
The proof is complete. �

From the above proof, we have

Corollary 2.2. The weak solution uε of the gradient flow (1.7)–(1.9) satisfies the following (uniform in ε)
estimates:
(i) If u0 ∈ BV (Ω) and g ∈ L2(Ω), then

‖uε ‖L∞(BV ) + ‖uε
t ‖L2(L2) ≤ C3. (2.36)

(ii) If ∂Ω satisfies an internal sphere condition (ISC) of radius R, u0 ∈ BV (Ω) ∩ L∞(Ω) and g ∈ L∞(Ω), then

‖uε ‖L∞(L∞) ≤ C4. (2.37)

(iii) If u0 ∈ H1
loc(Ω) ∩ W 1,1(Ω), g ∈ L2(Ω) ∩ H1

loc(Ω) and ∂Ω ∈ C2, then

‖ uε ‖L∞(W 1,1) + ‖uε ‖L∞(H1
loc)

≤ C5 . (2.38)

Here, Cj (j = 3, 4, 5) are some positive constants independent of ε.

3. Proofs of Theorems 1.3 and 1.4

In this section, we present proofs for Theorems 1.3 and 1.4.

Proof of Theorem 1.3. The idea of the proof is straightforward: first extract convergent subsequence using the
ε-independent estimates (2.24)–(2.26), and then pass to the limit in (1.16). The only subtle point that needs to
be addressed is convergence of the whole sequence, which is done with the help of the uniqueness of the limiting
problem (1.27, 1.28).

Mentioning about the uniqueness of the problem (1.27, 1.28), it suffices to show the stability inequality (1.29).
Since the proof of (1.29) is exactly same as that of (1.17), which was given in the previous section using a test
function trick due to Lichnewsky and Temam [21], hence, we omit the proof. On the other hand, we remark that
now J(·) replaces J0,ε(·), and convexity of the total variation functional J(·) ensures that the same inequality
as (2.22) holds for it. Hence, the proof goes through.

Since BV (Ω) is compactly embedded in Lp(Ω) for 1 ≤ p < N
N−1 (cf. [1,18]), then it follows from (2.24)–(2.26)

that there exists u ∈ L1
(
(0, T ); BV (Ω)) ∩ C0((0, T ); L2(Ω)

)
with ut ∈ L2

(
(0, T ); H−1(Ω)

)
, and a subsequence
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of {uε} (denoted by the same notation) such that as ε → 0

uε −→ u weakly	 in L∞ ((0, T ); L2(Ω)
)
,

weakly in L2((0, T ); L2(Ω))

strongly in L1 ((0, T ); Lp(Ω)) , 1 ≤ p <
N

N − 1
, (3.1)

√
t uε −→

√
t u strongly in Lp(Ω), 1 ≤ p <

N

N − 1
, for a.e. t ∈ [0, T ], (3.2)

uε
t −→ ut weakly in L2

(
(0, T ); H−1(Ω)

)
, (3.3)

weakly in L2
(
(t0, T ); L2(Ω)

)
, ∀t0 ∈ (0, T ),

√
t uε

t −→
√

t ut weakly in L2((0, T ); L2(Ω)) . (3.4)

Clearly, (1.30) and (1.31) are contained in (3.1)–(3.4). To show (1.28), we write

Jλ,ε(uε) = Jλ(uε) +
∫

Ω

ε2√
|∇uε|2 + ε2 + |∇uε|

dx. (3.5)

Since the integrand of the second term on the right-hand side is bounded by ε, by Lebesgue Dominated Con-
vergence Theorem we know that the integral converges to zero. Hence,

lim inf
ε→0

Jλ,ε(uε) ≥ lim inf
ε→0

Jλ(uε) ≥ Jλ(u). (3.6)

We note that the above argumentation clearly applies to any convergent subsequence in W 1,1(Ω). Correspond-
ingly, this argumentation applies to any convergent subsequence in BV (Ω) by a density argument. Now, (1.28)
follows from taking ε → 0 in (1.16) (with subsequence in the place of uε) and applying (3.1)–(3.4) and (3.6).

Finally, since the solution of the problem (1.27, 1.28) is unique (see the beginning of this proof), then, every
convergent subsequence of {uε} converges to the same limit, which is the solution of problem (1.27, 1.28).
Hence, the whole sequence {uε} converges to the same limit, too. The proof is complete. �

Next, we give a proof for Theorem 1.4.

Proof of Theorem 1.4. The proof follows along the same lines as that of Theorem 1.3; the only difference is that
now we work with a function set {uε} whose members are bounded uniformly in ε in stronger norms due to the
stronger assumptions on the datum functions u0 and g, as well as the boundary ∂Ω. These new estimates are
given by (2.36)–(2.38). Because of the similarities, we only highlight the main steps of the proof.

(i) From the uniform estimate (2.36), we know that the limit u of any convergent subsequence of {uε}
now resides in L∞((0, T ); BV (Ω)) ∩ H1((0, T ); L2(Ω)). Hence, (1.32) holds, and u still satisfies (1.28). To
verify (1.33), integrating by parts in the first term on the left-hand side of (1.28) we get

∫ s

0

∫
Ω

vt(v − u) dxdt =
∫ s

0

[ ∫
Ω

ut(v − u) dx +
1
2

d
dt

‖ v − u ‖2
L2

]
dt. (3.7)

Substituting (3.7) into (1.28) gives (1.33).
(ii) The existence of such a convergent subsequence of {uε} is immediate from the uniform estimate (2.36) and

the compact embedding L2(Ω) ↪→ H−1(Ω). Repeating the same argumentation as in the proof of Theorem 1.3
to show (1.34) and (1.35) hold for the whole sequence {uε}.

(iii) (1.36) follows directly from the uniform estimates (2.37) and (1.21).
(iv) By (2.38) and a fundamental theorem of calculus variation (see Th. 1.6 of [26] and references therein) we

conclude that u ∈ L∞((0, T ); W 1,1(Ω)) ∩ L∞((0, T ); H1
loc(Ω)). To show (1.37), for all w ∈ C∞

0 (ΩT ) and η > 0,
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setting v = u ± ηw in (1.33) we get

±
∫ s

0

∫
Ω

vtw dxdt +
∫ s

0

Jλ(u ± ηw) − Jλ(u)
η

dt ≥ 0. (3.8)

Using the definition of Jλ(·) in (1.3) we can rewrite the second term in (3.8) as

∫ s

0

Jλ(u ± ηw) − Jλ(u)
η

dt =
∫ s

0

∫
Ω

|∇u ± η∇w| − |∇u|
η

dxdt ± λ

∫ s

0

∫
Ω

(u − g)w dxdt.

Since (cf. [7])

lim
η→0

∫ s

0

∫
Ω

|∇u ± η∇w| − |∇u|
η

dxdt = ±
∫ s

0

∫
Ω

Sgn(∇u) · ∇w dxdt, (3.9)

by setting η → 0 in (3.8) and using (3.9) we obtain

±
∫ s

0

∫
Ω

vtw dxdt ±
∫ s

0

∫
Ω

Sgn(∇u) · ∇w dxdt ± λ

∫ s

0

∫
Ω

(u − g)w dxdt ≥ 0,

and equivalently,

∫ s

0

∫
Ω

vtw dxdt +
∫ s

0

∫
Ω

Sgn(∇u) · ∇w dxdt + λ

∫ s

0

∫
Ω

(u − g)w dxdt = 0, (3.10)

for any w ∈ C∞
0 (ΩT ), which gives (1.37).

(1.38) can be shown by the same argumentation as above, the only difference is to set v = u ± ηw, for all
w ∈ C∞(ΩT ) in (1.33). So we omit the proof.

It remains to show (1.39), which comes immediately from testing (1.37) by ut ∈ L2(ΩT ) and the standard
density argumentation. The proof is complete. �.

4. Proofs of Theorems 1.5–1.7

The goal of this last section is to give proofs for Theorems 1.5 through 1.7. To this end, we need some
preparations.

Define the L2 projection operator Qh : L2(Ω) → V h

(v − Qhv, wh) = 0 ∀wh ∈ V h, (4.1)

and the (nonlinear) elliptic projection operator Ph : H1(Ω) → V h ∩ H1
0 (Ω)

(
f ′

ε(|∇Phv|)
|∇Phv| ∇Phv,∇wh

)
=
(

f ′
ε(|∇v|)
|∇v| ∇v,∇wh

)
∀wh ∈ V h, (4.2)

where (·, ·) denotes the standard inner product of L2(Ω).
It is well-known that Qh has the following approximation properties [6, 12]:

‖ v − Qhv ‖L2 + h ‖∇(v − Qhv) ‖L2 ≤ Ch‖v‖H1 ∀ v ∈ H1(Ω), (4.3)

‖ v − Qhv ‖L2 ≤ Ch2‖v‖H2 ∀ v ∈ H2(Ω). (4.4)

For the elliptic projection Ph, the following approximation properties can be obtained using the ideas of [20, 23].
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Lemma 4.1. Let uε ∈ W 1,∞(ΩT )∩L2
(
(0, T ); H2(Ω)

)
be the solution of (1.7)–(1.9). There holds for h ∈ (0, 1)

‖∇Phuε ‖L∞(L∞) ≤ Ĉ6(ε) , (4.5)

‖uε − Phuε ‖L2(L2) + h ‖∇(uε − Phuε) ‖L2(L2) ≤ Ĉ7(ε)h2, (4.6)

where

Ĉ6(ε) := T ‖∇uε ‖L∞(L∞) + ‖uε ‖L2(H2) , Ĉ7(ε) := ‖∇uε ‖L∞(L∞) ‖uε ‖L2(H2) .

We are ready to give a proof for Theorem 1.5.

Proof of Theorem 1.5. To show (1.45), testing (1.40) with dtU
m yields

‖ dtU
m ‖2

L2 +
λ

2
dt ‖Um − g ‖2

L2 +
λk

2
‖ dt(Um − g) ‖2

L2 +
1
2

∫
Ω

f ′
ε(|∇Um|)
|∇Um|

(
dt|∇Um|2 + k|∇dtU

m|2
)

dx = 0.

(4.7)
Rewrite the fourth term on the left-hand side as

1
2

∫
Ω

f ′
ε(|∇Um|)
|∇Um| dt|∇Um|2 dx =

1
k

∫
Ω

f ′
ε(|∇Um|)

(
|∇Um| − |∇Um−1|

)
dx

− 1
2k

∫
Ω

f ′
ε(|∇Um|)
|∇Um|

(
|∇Um| − |∇Um−1|

)2
dx. (4.8)

By convexity of fε(z), the first term on the right-hand side of (4.8) is bounded by

1
k

∫
Ω

f ′
ε(|∇Um|)

(
|∇Um| − |∇Um−1|

)
dx ≥ dt

[∫
Ω

fε(|∇Um|) dx

]
. (4.9)

Using the formula (|a| − |b|)2 ≤ |a − b|2 we have

− 1
2k

∫
Ω

f ′
ε(|∇Um|)
|∇Um|

(
|∇Um| − |∇Um−1|

)2
dx ≥ −1

2

∫
Ω

f ′
ε(|∇Um|)
|∇Um| k|∇dtU

m|2 dx. (4.10)

(1.45) now follows from substituting (4.8)–(4.10) into (4.7) and applying the summation operator k
∑M

m=1 to
the resulting inequality.
To show (1.46, 1.47), we first notice that (1.45) implies the following (uniform in both h, k and ε) estimates:

∥∥∥∥U
ε,h,k

t

∥∥∥∥
L2(L2)

=

(
k

M∑
m=1

‖ dtU
m ‖2

L2

) 1
2

≤ C, (4.11)

∥∥∥∥U
ε,h,k

∥∥∥∥
L∞(L2)

≤
∥∥∥U

ε,h,k
∥∥∥

L∞(L2)
= max

0≤m≤M
‖Um ‖L2 ≤ C, (4.12)

∥∥∥∥∇U
ε,h,k

∥∥∥∥
L∞(L1)

≤
∥∥∥∇U

ε,h,k
∥∥∥

L∞(L1)
= max

0≤m≤M
‖∇Um ‖L1 ≤ C , (4.13)

M∑
i=1

∥∥Um − Um−1
∥∥2

L2 ≤ C if λ �= 0 . (4.14)
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Then there exists a convergent subsequence of {U
ε,h,k

} (denoted by the same notation) and a function ûε ∈
L∞ ((0, T ); BV (Ω)) ∩ H1

(
(0, T ); L2(Ω)

)
such that as h, k → 0

U
ε,h,k

−→ ûε weakly	 in L∞ ((0, T ); L2(Ω)
)
, (4.15)

weakly in L2
(
(0, T ); L2(Ω)

)
strongly in Lp(Ω), 1 ≤ p <

N

N − 1
, for a.e. t ∈ [0, T ],

U
ε,h,k

t −→ ûε
t weakly in L2

(
(0, T ); L2(Ω)

)
, (4.16)

Here we have used the fact that BV (Ω) is compactly embedded in Lp(Ω) for 1 ≤ p < N
N−1 (cf. [1, 18]). Notice

that the assumption on U0 implies that ûε(0) = u0.
Next, we like to pass to the limit in (1.40) and show that ûε is indeed a solution of the differential prob-

lem (1.7)–(1.9) with the initial value u0. Clearly, it suffices to show that ûε satisfies (1.20). To the end, we
rewrite (1.40) as the following equivalent variational inequality formulation:(

U
ε,h,k

t , (tr vh − U
ε,h,k

)
)

+ Jλ,ε(tr vh) − Jλ,ε

(
U

ε,h,k
)

≥ 0 ∀ vh ∈ V h, r ≥ 0.

Setting h, k → 0, using (4.15, 4.16), the lower semicontinuity of Jλ,ε(·) in BV (Ω) with respect to convergence
in L1 (cf. [1]), and Fatou’s lemma we get for s ∈ [0, T ]∫ s

0

( ûε
t , (t

r vh − ûε) ) dt +
∫ s

0

[ Jλ,ε(tr vh) − Jλ,ε ( ûε ) ] dt ≥ 0 ∀ vh ∈ V h. (4.17)

To show (4.17) holds for all v ∈ L1 ((0, T ); BV (Ω)) ∩ L2(ΩT ), we appeal to the fact that the polynomials
ϕ : [0, T ] → V h

ϕ(t) := ah
0 + ah

1 t + · · · + ah
r tr

with ah
j ∈ V h for all j = 0, 1, 2, · · · , r, r ∈ N are dense in L1 ((0, T ); BV (Ω)) ∩ L2(ΩT ).

Hence, ûε satisfies (1.20) with ûε(0) = u0. By uniqueness of solutions for (1.19, 1.20), we conclude that

ûε = uε and the whole sequence
{
U

ε,h,k}
converges to uε. This completes the proof of (1.47).

Finally, it remains to show (1.46). From (4.11) we obtain

∥∥∥∥U
ε,h,k

− U
ε,h,k

∥∥∥∥
2

L2(L2)

=
∫ T

0

∥∥∥∥U
ε,h,k

− U
ε,h,k

∥∥∥∥
2

L2

dt

=
M∑

m=1

∥∥Um − Um−1
∥∥2

L2

∫ tm

tm−1

(
t − tm−1

k

)2

dt

=
k3

3

M∑
m=1

‖ dtU
m ‖2

L2

≤ C k2. (4.18)

This and (1.47) immediately give (1.46). The proof is complete. �
Remark 4.1.

(a) Since the proof of (1.45) only relies on the structure of the function fε(z), it is easy to see that (1.45)
holds for any gradient flow whose energy density function f(z) satisfies (i) f(z) is convex, (ii) f ′(z) is
bounded.
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(b) The convergence in (1.46, 1.47) also hold for the case p = 2. This can be proved by analyzing an
equation satisfied by the global error E := uε − U

ε,h,k
(see Proof of Th. 1.7).

Proof of Theorem 1.6. Since the limits in (1.46, 1.47) hold uniformly in ε, the assertions (1.48) and (1.49)
follows immediately from (1.34), (1.46, 1.47) and the triangle inequality. The proof is complete. �
Proof of Theorem 1.7. To show (1.51) and (1.52), we decompose the global error Em := Um − uε(tm) into
Em = Φm + Θm, where

Φm := Um − Phuε(tm), Θm := Phuε(tm) − uε(tm).

Test (1.7) with any vh ∈ V h and subtract it from (1.40) gives the following error equation:

(dtE
m, vh) +

(
f ′

ε(|∇Um|)
|∇Um| ∇Um − f ′

ε(|∇uε(tm)|)
|∇uε(tm)| ∇uε(tm),∇vh

)
+ λ (Em, vh) = (Rm, vh) , (4.19)

where
Rm := uε

t (tm) − dtu
ε(tm). (4.20)

Now, taking vh = Φm in (4.19) and using (4.2) gives

1
2
dt ‖Φm ‖2

L2 +
k

2
‖ dtΦm ‖2

L2 + λ ‖Φm ‖2
L2 +

(
f ′

ε(|∇Um|)
|∇Um| ∇Um − f ′

ε(|∇Phuε(tm)|)
|∇Phuε(tm)| ∇Phuε(tm),∇Φm

)
=

(Rm, Φm) − (dtΘm, Φm) − λ (Θm, Φm) . (4.21)

The convexity of the function fε(z) immediately implies that the fourth term on the left-hand side of (4.21)
is non-negative. However, this only leads to some estimate in L∞ ((0, T ); L2(Ω)

)
, provided that uε

tt ∈ L2(ΩT ),
which is not assumed in the statement of the theorem. It turns out that in order to get error estimates
not only in L∞ ((0, T ); L2(Ω)

)
but also in L2

(
(0, T ); H1(Ω)

)
, especially under the weaker assumption uε

tt ∈
L2
(
(0, T ); H−1(Ω)

)
, we need to extract a positive contribution from that term.

(
f ′

ε(|∇Um|)
|∇Um| ∇Um − f ′

ε(|∇Phuε(tm)|)
|∇Phuε(tm)| ∇Phuε(tm),∇Φm

)
=
∫

Ω

|∇Φm|2√
|∇Um|2 + ε2

dx

+
∫

Ω

[
1√

|∇Um|2 + ε2
− 1√

|∇Phuε(tm)|2 + ε2

]
∇Phuε(tm) · ∇Φm dx . (4.22)

Define

γ := max
(x,t)∈ΩT

[
|∇Phuε(tm)|√

|∇Phuε(tm)|2 + ε2

]
·

We remark that γ < 1 in view of the estimate (4.5). Then, using the elementary inequality | |a|− |b| | ≤ |a−b|,
the second term on the right-hand side of (4.22) can be bounded as follows

∫
Ω

[
1√

|∇Um|2 + ε2
− 1√

|∇Phuε(tm)|2 + ε2

]
∇Phuε(tm) · ∇Φm dx =

∫
Ω

∇Phuε(tm) · ∇Φm√
|∇Phuε(tm)|2 + ε2

√
|∇Um|2 + ε2

|∇Phuε(tm)|2 − |∇Um|2√
|∇Phuε(tm)|2 + ε2 +

√
|∇Um|2 + ε2

dx

< γ

∫
Ω

|∇Φm|2√
|∇Um|2 + ε2

dx. (4.23)
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Substituting (4.22, 4.23) into (4.21) and applying the operator k
∑�

m=1 (� ≤ M) to the inequality we get

∥∥Φ�
∥∥2

L2 + k

�∑
m=1

[
k ‖ dtΦm ‖2

L2 + λ ‖Φm ‖2
L2 + (1 − γ)

∫
Ω

|∇Φm|2√
|∇Um|2 + ε2

dx

]

≤
∥∥Φ0

∥∥2

L2 + k

�∑
m=1

[
1
η

(
‖Rm ‖2

H−1 + ‖ dtΘm ‖2
H−1

)
+ λ ‖Θm ‖2

L2 + η ‖∇Φm ‖2
L2

]
, (4.24)

where η > 0 is some positive constant to be chosen later.
Since Rm can be written as

Rm =
1
k

∫ tm+1

tm

(s − tm)uε
tt(s) ds ,

from (4.6) we get

k

η

M∑
m=0

‖Rm ‖2
H−1 ≤ k

η

M∑
m=0

[∫ tm+1

tm

(s − tm)2 ds

] [∫ tm+1

tm

‖ utt(s) ‖2
H−1 ds

]

≤ Ĉ2
7

η
k2 . (4.25)

It follows from (1.50) and (4.5) that

∥∥Φ0
∥∥2

L2 ≤
(
C + Ĉ2

7

)
h4, (4.26)

k

M∑
m=1

[
1
η
‖ dtΘm ‖2

H−1 + λ ‖Θm ‖2
L2

]
≤
(

λ +
1
η

)
Ĉ2

7 h4. (4.27)

Substituting (4.25)–(4.27) into (4.24) gives

∥∥Φ�
∥∥2

L2 + k

�∑
m=1

[
k ‖ dtΦm ‖2

L2 + λ ‖Φm ‖2
L2 + (1 − γ)

∫
Ω

|∇Φm|2√
|∇Um|2 + ε2

dx

]

≤ η k

�∑
m=1

‖∇Φm ‖2
L2 +

Ĉ2
7

η
k2 +

[
C +

(
1 + λ +

1
η

)
Ĉ2

7

]
h4. (4.28)

The last step of the proof involves a fixed point argumentation. Suppose that

max
0≤m≤M

‖∇Um ‖L∞(Ω) ≤ C∗ := 2 Ĉ6. (4.29)

Then we can choose

η =
1 − γ

4 C∗
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so that the first term on the right-hand side of (4.29) can be absorbed by the last term on the left-hand side.
Applying Grownwall’s inequality immediately gives

max
0≤m≤M

‖Φm ‖2
L2 + k

M∑
m=1

k ‖ dtΦm ‖2
L2 ≤ Ĉ2

7

η
k2 +

[
C +

(
1 + λ +

1
η

)
Ĉ2

7

]
h4, (4.30)

(1 − γ)k
4 C∗

M∑
m=1

‖∇Φm ‖2
L2 ≤ Ĉ2

7

η
k2 +

[
C +

(
1 + λ +

1
η

)
Ĉ2

7

]
h4. (4.31)

Now, applying the triangle inequality on Em = Φm + Θm, using the inequalities (4.6), (4.30) and (4.31) then
leads to the desired estimates (1.51) and (1.52), provided that we can justify the induction assumption (4.29).
This can be done easily as follows.

Let Φ(x, t) denote linear interpolation of {Φm} in t; hence, Φ(x, t) is continuous, piecewise linear in both x
and t, and the inequality (4.31) implies

(1 − γ)
4 C∗ ‖∇Φ ‖2

L2(ΩT ) = O
(
h4 + k2

)
.

By the inverse inequality bounding L∞(ΩT ) norm in terms of L2(ΩT ) norm [6, 12], we get

‖∇Φ ‖2
L∞(ΩT ) ≤ C (hk)−1 ‖∇Φ ‖2

L2(ΩT ) = O
(
h3 k−1 + h−1 k

)
. (4.32)

Clearly, for sufficient small h, the right-hand side of (4.32) is bounded by Ĉ2
6 , under the parabolic mesh relation

k = O(h2). Hence,

‖∇Um ‖L∞(ΩT ) ≤ ‖∇Φm ‖L∞(ΩT ) + ‖∇Phuε(tm) ‖L∞(ΩT ) ≤ 2 Ĉ6, 0 ≤ m ≤ M.

The proof is complete. �

Remark 4.2.
(a) In view of (4.3) and (4.6), the starting value U0 = Qhu0, the L2 projection of u0 satisfies the condi-

tion (1.50).
(b) (4.31) shows that ∇(Um − Phuε(tm)) exhibits a superconvergence property in h.
(c) Inequality (4.24) was obtained by interpreting the last term in (4.21) as a scalar product in L2; alter-

natively, interpreting this term as dual pairing on H−1 × H1
0 then leads to a bound which involves a

weaker norm of uε in (4.27).

5. Numerical experiments

In this section, we provide some numerical experiment results for our fully discrete finite element method (1.40)
with λ = 0. We test our numerical scheme on both one and two dimensional examples. These numerical results
validate our theoretical analysis in Theorems 1.5–1.7, they also show the effectiveness of the total variation
model for denoising images, as well as approximation properties for the regularized flow (1.7).

Figure 1 contains snapshots of the one-dimensional TV flow at three different times. It shows the development
of edges and homogeneous regions, as well as their expansions. As the amplitudes decrease, edges may vanish
at large times. Such a phenomenon is known as an healing effect. These experiments were done for values
( ε, k, h ) = (10−10, 4 × 10−8, 4 × 10−3).

Figure 2 shows the behavior of the error
∥∥∥u − U

ε,k,h
∥∥∥

L2
whose convergence was proved in Theorem 1.6. It

also contains the results of a computational study on optimal choices of the tuple ( ε, k ) for a fixed mesh-size
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Figure 1. Snapshots of the TV flow at times t = 0, t = 10−3, and 5 × 10−3.
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Figure 2. Behavior of the error
∥∥∥u − U

ε,h,k
∥∥∥

L2
at t = 10−3 under different scaling relations

ε = kα, α = 0, 1, 2, 3. Here, u represents the solution of the TV flow with the same u0 as in
Figure 1. The mesh size h = 4 × 10−3 in each test.

h = 4 × 10−3. We observe that the scaling relation ε = O(k) seems to be the “optimal” choice for balancing
the perturbation and the discretization effects in the error

∥∥∥u − U
ε,k,h

∥∥∥
L2

.
Figure 3 presents some snapshots of the two-dimensional TV flow at three different times. The left picture

is the original noisy image, the other two pictures are the graphs of the solution to (1.40) at t = 10−3 and
t = 5 × 10−3 with ε = 10−10.
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Figure 3. Snapshots of TV flow at time t = 0, t = 10−3, and 5 × 10−3 with ( ε, k, h ) =
(10−5, 10−5, 4 × 10−3) .
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