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EXTERIOR PROBLEM OF THE DARWIN MODEL AND ITS NUMERICAL
COMPUTATION
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Abstract. In this paper, we study the exterior boundary value problems of the Darwin model to the
Maxwell’s equations. The variational formulation is established and the existence and uniqueness is
proved. We use the infinite element method to solve the problem, only a small amount of computational
work is needed. Numerical examples are given as well as a proof of convergence.
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1. Introduction

The Darwin model is an approximation model [5, 7] for the Maxwell’s equations:

1
c2
∂E

∂t
−∇×B = −µ0J, (1)

∂B

∂t
+ ∇× E = 0, (2)

∇ ·E =
1
ε0
ρ, (3)

∇ ·B = 0. (4)

where E,B are the electric field and the magnetic flux density respectively, and ρ, J are the charge and current
densities, satisfying

∂ρ

∂t
+ ∇ · J = 0. (5)

The positive constants c, ε0, µ0 are the light velocity, the electric permittivity, and the magnetic permeability
of vacuum respectively.

There have been some work done on Darwin model. It was shown in [2] that the Darwin model approximates
the Maxwell equations up to the second order for B and to the third order for E, provided η = v̄/c is small,
where v̄ is a characteristic velocity. In [1] variational formulation and the finite element method for the Darwin
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model was studied. Two kinds of variational formulation were given. Well posedness and error estimates were
proved.

To the authors’ knowledge, works in the literature on this model are limited to the bounded domain cases.
However, quite a number of problems in application are related to the unbounded domain, and this is why we
come to this paper.

Let us recall the model for bounded domain first. Suppose we have an open, bounded, simply connected
domain Ω in R

n (n = 2 or 3). Γi, 0 ≤ i ≤ m, are the connected components of the boundary ∂Ω with the unit
outward normal ν, and Γ0 is the outer boundary. Notice that the electric field E can be written as the sum of
a transverse component ET and a longitudinal component EL, that is,

E = ET + EL,

and

∇ · ET = 0, ∇× EL = 0.

Then equation (1) becomes

∇×B = µ0J +
1
c2
∂EL
∂t

+
1
c2
∂ET
∂t

· (6)

In order to get the Darwin Model, we neglect the last term in above equation and get

∇×B = µ0J +
1
c2
∂EL
∂t

· (7)

Then the system (2)–(4), (7) with initial and boundary conditions

E × ν|∂Ω = 0,
∂

∂t
B · ν|∂Ω = 0,

E|t=0 = E0, B|t=0 = B0

will be reduced to

(i) EL = −∇φ, and φ satisfies

−� φ =
1
ε0
ρ,

φ|Γi = αi, 0 ≤ i ≤ m,

α = {αi} satisfies

c
dα
dt

=
1
ε0

∫
Ω

J · ∇χ dx,

α(0) = α0,

where α0 depends on E0, c = {cij} is the capacitance matrix. Here cij = 〈∂χi

∂ν , 1〉Γj , and χ = {χi} is the
solution of

�χi = 0,
χi|Γj = δij .
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(ii) B satisfies

−�B = µ0∇× J, (8)
∇ ·B = 0, (9)

B · ν|∂Ω = B0 · ν|∂Ω, (10)
(∇×B) × ν|∂Ω = µ0J × ν|∂Ω. (11)

(iii) ET satisfies

�ET =
∂

∂t
∇×B, (12)

∇ ·ET = 0, (13)
ET × ν|∂Ω = 0, (14)

〈ET · ν, 1〉Γi
= 0, 1 ≤ i ≤ m. (15)

The above problems are well posed (see [1]).
Now we can turn to the exterior problem. Let ∂Ω be a simply closed curve in R

2, and Ω the exterior domain
of it. Then we study problem (iii) as an example, the method to problem (ii) is similar. In the following sections,
we are going to show that there are nonzero functions v on Ω which satisfy

∇ · v = 0, ∇× v = 0, v × ν|∂Ω = 0, 〈v · ν, 1〉∂Ω = 0. (16)

Therefore the solutions to (iii) are not unique. It turns out that these solutions will be unique up to a function
which is from a two dimensional space and satisfies (16). After introducing a quotient space, we are able to
establish the variational formulation for (12)–(15) as well as the numerical method to solve it, namely, we will
use the infinite element method, which has been successfully applied to a large class of problems (see [10]). In
particular, this method is effective to solve the exterior problems of the Stokes equation [9], the result there is
very useful in our algorithm.

The paper is organized as follows. In Section 2, some notations are introduced. Since the result from Stokes
equation is used here, in Section 3, we will recall the variational formulation for the Stokes equation in bounded
as well as in exterior domains, in particular, a weighted space is introduced for exterior problem. In Section 4,
the Darwin model in bounded and exterior domain will be discussed. The infinite element method for the
Darwin model is discussed in Section 5 and a convergence result under a semi-norm is obtained. The algorithm
of our scheme in Section 6 is followed by some numerical examples in Section 7.

2. Notations

From now on, let Ω be an open domain in R
2 with Lipschitz-continuous boundary ∂Ω, it will be either a

bounded domain or an exterior domain depending on the problem we are considering. When we come to the
exterior problem, we further assume that ∂Ω is simply closed. The unit outward normal to ∂Ω is denoted by ν.
Furthermore, let x = (x1, x2) be a typical point in R

2.
L2(Ω), H1(Ω), H1

0 (Ω), H1/2(∂Ω) (as well as the vector form (L2(Ω))2, (H1(Ω))2, (H1
0 (Ω))2, (H1/2(∂Ω))2, for

simplicity, we will just use scalar notation if there is no confusion) are the conventional notations of the Sobolev
spaces (see [3], for example). (·, ·), || · ||0 are the inner product and norm in L2(Ω). || · ||1, | · |1 are the norm and
seminorm for H1(Ω) (also for H1

0 (Ω)). We will always denote by C a generic constant.
Moreover, the following Hilbert spaces will be used for bounded domain Ω:

L2
0(Ω) =

{
p ∈ L2(Ω);

∫
Ω

p dx = 0
}
,
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and
H(curl, div; Ω) = {v ∈ L2(Ω);∇ · v,∇× v ∈ L2(Ω)}

provided with the norm
‖v‖0,curl,div =

(‖v‖2
0 + ‖∇ · v‖2

0 + ‖∇× v‖2
0

) 1
2 .

When we come to the exterior problem, the following weighted Sobolev space will be very useful (we might
assume the origin o is in the interior of ∂Ω for notation simplicity):

H1,∗(Ω) = {u ∈ D′;∇u, u

|x| ln |x| ∈ L2(Ω)}

which is a Hilbert space [6], provided with the following norm

‖u‖1,∗ =
(∫

Ω

|∇u|2 +
u2

|x|2 ln2 |x| dx
) 1

2

where D′ is the distribution space. Actually H1,∗(Ω) is the closure of C∞
0 (Ω) with respect to the norm || · ||1,∗.

Likely, denote H1,∗
0 (Ω) as the closure of of C∞

0 (Ω) under the same norm. It is proved [6] that in H1,∗
0 (Ω), the

semi-norm | · |1 is equivalent to || · ||1,∗.

3. Stokes equation

3.1. The bounded domain problem

The Stokes problem is: find u, p, such that

−� u−∇p = f, x ∈ Ω, (17)
∇ · u = 0, x ∈ Ω, (18)
u|∂Ω = g, (19)

with ∫
∂Ω

g · ν ds = 0. (20)

For functions g ∈ H1/2(∂Ω) satisfying (20), a function u0 ∈ H1(Ω) exists such that ∇ · u0 = 0, and u0|∂Ω = g
(see [8] Lem. 2.4 on p. 22). Let u′ = u − u0 be the new unknown function, then the problem is reduced to a
homogeneous one with new right hand side term f+�u0. So here only the homogeneous problem is considered.

Define bilinear forms on H1
0 (Ω) ×H1

0 (Ω) and H1
0 (Ω) × L2

0(Ω),

a(u, v) =
∫

Ω

∇u · ∇v dx, (21)

b(u, p) =
∫

Ω

(∇ · u)p dx, (22)

then the variational formulation of the Stokes problem is: given a function f ∈ H−1(Ω), find u ∈ H1
0 (Ω),

p ∈ L2
0(Ω), such that

a(u, v) + b(v, p) = 〈f, v〉 , ∀v ∈ H1
0 (Ω), (23)

b(u, q) = 0, ∀q ∈ L2
0(Ω). (24)

where 〈f, v〉 is the duality product between H−1(Ω) and H1
0 (Ω).

The problem admits a unique solution (see [8]).
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3.2. The exterior problem

The same problem (17)–(20) is considered on exterior domain Ω. Generally, the solutions to the exterior
Stokes equation do not vanish at the infinity, so the weighted Sobolev spaces H1,∗(Ω) (and H1,∗

0 (Ω)) are much
suitable functional setting instead of H1(Ω) (and H1

0 (Ω)).
Again, for g ∈ H1/2(∂Ω) satisfying (20), a function u0 ∈ H1(Ω) with compact support exists such that

∇ · u0 = 0, u0|∂Ω = g (see Lem. 3.1 in [4]), so we only need to consider the homogeneous problem.
Hence, the variational formulation for the homogeneous exterior Stokes problem is: given a function f ∈(
H1,∗

0 (Ω)
)′

, find u ∈ H1,∗
0 (Ω), p ∈ L2(Ω), such that

a(u, v) + b(v, p) = 〈f, v〉 , ∀v ∈ H1,∗
0 (Ω), (25)

b(u, q) = 0, ∀q ∈ L2(Ω) (26)

where a(u, v), b(u, q) have the same forms as (21, 22), and 〈f, v〉 is the duality product between
(
H1,∗

0 (Ω)
)′

and H1,∗
0 (Ω).

This problem admits a unique solution [4].

4. Darwin model

4.1. The bounded domain problem

First introduce a subset of H(curl, div; Ω):

H0c(Ω) = {v ∈ H(curl, div; Ω); v × ν|∂Ω = 0},
and also two bilinear forms defined on H0c(Ω) ×H0c(Ω) and H0c(Ω) × L2(Ω),

d(u, v) =
∫

Ω

(∇× u) · (∇× v) dx +
∫

Ω

(∇ · u)(∇ · v) dx + 〈u · ν, 1〉∂Ω 〈v · ν, 1〉∂Ω (27)

b(v, p) =
∫

Ω

(∇ · v)pdx. (28)

The following result is proved in [1]

Theorem 4.1. The problem: find u ∈ H0c(Ω), p ∈ L2(Ω), such that

d(u, v) + b(v, p) =
∫

Ω

B · (∇× v) dx, ∀v ∈ H0c(Ω), (29)

b(u, q) = 0, ∀q ∈ L2(Ω), (30)

admits a unique solution, and p ≡ 0. Moreover, the norm defined by
√
d(·, ·) is equivalent to ‖ · ‖0,curl,div

in H0c(Ω).

Remark 4.1. The following observation will be useful for our later discussion: The space L2(Ω) in the above
formulation can be replaced by L2

0(Ω), then the formulation becomes: find u ∈ H0c(Ω), p ∈ L2
0(Ω), such that

d(u, v) + b(v, p) =
∫

Ω

B · (∇× v) dx, ∀v ∈ H0c(Ω), (31)

b(u, q) = 0, ∀q ∈ L2
0(Ω). (32)

This is because the solution (u, p) to (29, 30) satisfies p ≡ 0, hence it is also a solution to (31, 32). On the other
hand, it is easy to prove (31, 32) also admits a unique solution.
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Remark 4.2. Notice that the solution to (29, 30) satisfies

〈u · ν, 1〉∂Ω = 0.

This comes from the Green formula and the fact ∇ · u = 0.

4.2. The exterior problem

In order to figure out the suitable functional setting for the exterior Darwin problem, we first take a cut-off
function ζ ∈ C∞(Ω), which satisfies: ζ ≡ 1 near the boundary ∂Ω, ζ ≡ 0 near the infinity, and 0 ≤ ζ ≤ 1.
Let Ω′ be a bounded subset of Ω such that supp(ζ) ⊂ Ω′. Define

H0c(Ω) = {v ∈ D′; ||ζv||0,curl,div <∞, (1 − ζ)v ∈ H1,∗
0 (Ω), v × ν|∂Ω = 0},

and

‖u‖∗ =
{
‖∇ × u‖2

0 + ‖∇ · u‖2
0 + 〈u · ν, 1〉2∂Ω

} 1
2
.

However, ‖ · ‖∗ does not provide a norm in H0c(Ω), actually we have the following result:

Lemma 4.1. Let V0 = {u ∈ H0c(Ω); ‖u‖∗ = 0}, then

V0 =
{
u = (u1, u2);u1 =

∂φ

∂x2
, u2 = − ∂φ

∂x1
, φ = a(x2 + f(x)) + b(x1 + g(x)), (a, b) ∈ R

2

}
,

where f, g ∈ H1,∗(Ω) satisfy

−� ψ = 0, x ∈ Ω,
∂ψ

∂ν

∣∣∣∣
∂Ω

= − ∂χ

∂ν

∣∣∣∣
∂Ω

,

when χ(x1, x2) = x2, x1 separately.

Proof. We take any u ∈ V0, it will satisfy

∇ · u = 0, (33)
∇× u = 0, (34)

u× ν|∂Ω = 0, (35)
〈u · ν, 1〉∂Ω = 0. (36)

From (33)–(36),
∫
Γ
−u2 dx1 + u1 dx2 = 0 is true for any closed curve Γ in Ω. Thus we can define

φ(x) =
∫ x

x0

−u2 dx1 + u1 dx2,

where x0 can be any but fixed point in Ω. Notice now u1 = ∂φ
∂x2

, u2 = − ∂φ
∂x1

.
From (34, 35), we can get

−� φ = ∇×
(
∂φ

∂x2
,− ∂φ

∂x1

)
= ∇× u = 0,

and
∂φ

∂ν

∣∣∣∣
∂Ω

=
(
∂φ

∂x2
,− ∂φ

∂x1

)
× ν

∣∣∣∣
∂Ω

= u× ν|∂Ω = 0.
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Thus starting from every u ∈ V0, we will end up with a problem: find a function φ, satisfying

−� φ = 0, x ∈ Ω
∂φ

∂ν
|∂Ω = 0. (37)

Besides, u is a bounded harmonic function, which can be developed in a neighborhood of the infinity as follows:

u1 − iu2 =
∞∑
k=0

z0k
zk
,

where z0k = ak + ibk, (ak, bk) ∈ R
2, z = x+ iy = reiθ . That is

(u1, u2) =

( ∞∑
k=0

ak cos kθ + bk sin kθ
rk

,

∞∑
k=0

ak sin kθ − bk cos kθ
rk

)
·

From (33)–(36) we know a1 = 0, so

u1 − iu2 =
(
a0 +

b1 sin θ
r

,−b0 − b1 cos θ
r

)
+

∞∑
k=2

z0k
zk

·

Hence the asymptotic expansion of φ(x) near the infinity will be

φ(x) → a0(x2 − x20) + b0(x1 − x10) + b1(ln r − ln r0) +O

(
1
r

)
= h(x) + c+O

(
1
r

)
,

where h(x) = a0x2 + b0x1 + b1 ln r.
Introduce a new function ψ, such that φ = ψ + h. Then ψ will satisfy

−� ψ =0, x ∈ Ω

∂ψ

∂ν

∣∣∣∣
∂Ω

= − ∂h

∂ν

∣∣∣∣
∂Ω

, (38)

Notice that it suffices to consider the solution only in H1,∗(Ω)/R now.
Knowing that the well posedness of problem (38) is equivalent to

∫
∂Ω

∂h

∂ν
ds = 0,

so let D(r) = {x; |x| < r}, and Ωr = Ω ∩D(r), then by the Green formula we get

∫
∂Ω

∂h

∂ν
ds =

∫
Ωr

�h dx−
∫
∂D(r)

∂h

∂ν
ds = −2πb1.

Therefore b1 = 0 is sufficient and necessary in order that (38) admits a unique solution in H1,∗(Ω)/R.
Once b1 = 0, there exist f, g ∈ H1,∗(Ω)/R, such that

ψ = a0f(x) + b0g(x)
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where f, g are the solutions to (38) with h(x) = x2, x1 respectively. Consequently

φ(x) = a0(x2 + f(x)) + b0(x1 + g(x)).

On the other hand, it is easy to see that the u given in the Lemma for all a, b are in V0. �

Let V = {v ∈ H0c(Ω); 〈v · ν, 1〉∂Ω = 0}, and let the closure of the quotient space V/V0 with respect to the
norm ‖ · ‖∗ be W . Besides, let Q = {p ∈ L2(Ω); suppp ⊂⊂ Ω}, equipped with norm

‖p‖� =
(
‖p‖2

0 + |
∫

Ω

p dx|2
) 1

2

.

Then we take closure to obtain a Hilbert space Q. If p ∈ Q and lim pn = p, pn ∈ Q, then we define
∫
Ω
p dx =

lim
∫
Ω pn dx. Notice this can be seen as a generalized integral. The subspace of Q, {p ∈ Q;

∫
Ω p dx = 0} is

denoted by Q0.
Now the variational formulation for the exterior problem will be: find u ∈ W , p ∈ Q0, such that

d(u, v) + b(v, p) =
∫

Ω

B · (∇× v) dx, ∀v ∈W, (39)

b(u, q) = 0, ∀q ∈ Q0, (40)

here, bilinear forms d(·, ·), b(·, ·) have the same forms as (27, 28).
In order to prove that there is a unique solution to the problem (39, 40), we need an auxiliary lemma.

Lemma 4.2. For a given q ∈ Q0 there is a (vq + V0) ∈W such that

∇ · vq = q, ∇× vq = 0, vq × ν|∂Ω = 0,

consequently

‖vq‖2
∗ = ‖q‖2

0 = ‖q‖2
� .

Proof. For a given ε > 0, there exists qε ∈ Q so that‖q − qε‖� < ε. Then consider the following problem: Find
φ ∈ H1,∗

0 (Ω), such that

(∇φ,∇ψ) = (qε, ψ), ∀ψ ∈ H1,∗
0 (Ω).

By Lax–Milgram theorem there is a unique solution, and φ ∈ H1,∗(Ω) ∩H2
loc(Ω).

Take a cut-off function ζ ∈ C∞
0 (R2) such that ζ ≡ 1 for |x| < 1, ζ ≡ 0 for |x| > 2, and 0 ≤ ζ ≤ 1.

Define ζa(x) = ζ(x/a) and φa = φζa. Let qεa = −∆φa, then qεa ∈ Q. When a is large enough, we have
−ζa∆φ = −∆φ = qε, therefore for sufficiently large a, it holds that

‖qεa − qε‖� = ‖∆φa − ∆φ‖�
= ‖∆ζaφ+ 2∇ζa∇φ+ ζa∆φ− ∆φ‖�
= ‖∆ζaφ+ 2∇ζa∇φ‖�

=
(
‖∆ζaφ+ 2∇ζa∇φ‖2

0 + |
∫

Ω

(∆ζaφ+ 2∇ζa∇φ) dx|2
) 1

2

. (41)
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Let us estimate the right hand side of (41). Since |x|2 ln2 |x| ≤ |x|3 ≤ 8a3 in the domain D = {x; a ≤ |x| ≤ 2a},
we have

‖∆ζaφ‖2
0 ≤ 1

a4
‖∆ζ‖2

0,∞

∫
D

|φ(x)|2 dx ≤ 8
a
‖∆ζ‖2

0,∞

∫
D

|φ(x)|2
|x|2 ln2 |x| dx

≤8C
a

‖∆ζ‖2
0,∞‖∇φ‖2

0,Ω → 0, (a→ ∞).

Analogously we have

‖2∇ζa∇φ‖2
0 ≤ 4

a2
‖∇ζ‖2

0,∞‖∇φ‖2
0,Ω → 0.

For the second term of (41) we notice that

−
∫

Ω

∆ζaφdx =
∫

Ω

∇ζa∇φdx,

therefore

|
∫

Ω

(∆ζaφ+ 2∇ζa∇φ) dx| ≤
∫
D

|∇ζa∇φ| dx ≤ 1
2
‖∇ζ‖0,Ω‖∇φ‖0,D ≤ C‖∇φ‖0,D → 0.

To conclude there is a a0 such that ‖qεa − qε‖� < ε for a ≥ a0. We fix such an aε.
Let vqε = −∇φaε , then vqε ∈ H0c(Ω), and ∇ · vqε = qεaε , ∇× vqε = 0, 〈vqε · ν, 1〉 =

∫
Ω qεaε dx. Consequently

(
‖∇ · vqε − q‖2

0 + | 〈vqε · ν, 1〉∂Ω −
∫

Ω

q dx|2
) 1

2

= ‖qεaε − q‖� ≤ ‖qε − q‖� + ‖qεaε − qε‖� < 2ε.

Therefore vqε converges as ε→ 0. Let vq be the limit, then vq + V0 is the element in W we are looking for. �
Theorem 4.2. The problem (39, 40) admits a unique solution (u, p), and p = 0.

Proof. Because

d(u, u) =
∫

Ω

|∇ × u|2 dx+
∫

Ω

|∇ · u|2 dx = ‖u‖2
∗,

the bilinear form d(·, ·) is coercive. By Lemma 4.2

sup
v ∈W
v �= 0

b(v, q)
‖v‖∗ ≥ b(vq, q)

‖vq‖∗ =
‖q‖2

0

‖q‖� = ‖q‖�.

Therefore the inf-sup condition holds, and there is a unique solution to the problem (39, 40).
Next let us show p = 0. It is easy to see that ∇ · u ∈ Q. Let un ∈ V/V0, and un → u, then

∫
Ω ∇ · un dx =

〈un · ν, 1〉∂Ω = 0, and
∫
Ω
∇ · u dx = 0 (in the generalized sense), so ∇ · u ∈ Q0. Let q = ∇ · u in (40), we will

have ∇ · u = 0. According to Lemma 4.2 there is vp corresponding to the solution p. We take v = vp in (39)
and obtain (p, p) = 0, therefore p = 0. �
Remark 4.3. The solutions are not unique. They may differ from a function in V0. It seems the most natural
way to make the solution unique is to impose a boundary condition at the infinity, u||x|=∞ = 0, because
a function in V0 satisfying this condition is zero. Unfortunately we still can not prove the existence if this
boundary condition is imposed. However we conjecture that existence holds under this condition, and we will
see that in real computation, the lack of uniqueness is not a barrier.
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5. infinite element approximation

As a preparation for solving the exterior problems of the Darwin model, we recall the infinite element method
for the exterior problems of the Stokes equation [9]. We use P2 −P0 elements [3] as an example. For simplicity
we assume that ∂Ω is a convex polygon. Denote Γ0 = ∂Ω. We may assume the origin is in the interior of Γ0.
Taking a constant ξ > 1, we draw the similar curves of Γ0 with center o and the constants of proportionality
ξ, ξ2, · · · , ξk, · · · , which are denoted by Γ1,Γ2, · · · ,Γk, · · · respectively. The domains between two polygons Γk−1

and Γk are denoted by Ωk. Afterward each sub-domain is further divided into elements. We require that the
triangulation of all Ωk is geometrical similar to each other, and the triangulation of the entire domain Ω satisfies
the condition of C0 type, namely, the nodes of the mesh on Ωk and the nodes of the mesh on Ωk+1 should
coincide on Γk. Let K be an element, then u ∈ P2(K) and p ∈ P0(K) on K. By this way we construct infinite
element spaces, Sh = {u ∈ C(Ω);u|K ∈ P2(K), ∀K}, and Mh = {p ∈ L2(Ω); p|K ∈ P0(K), ∀K}. Let g be the
boundary value of u, then we take an approximation gh, which is continuous, belongs to P2 on each element
edge, and

∫
Γ0
gh · ν ds = 0. The formulation of the infinite element approximation is: Find uh ∈ Sh

⋂
H1,∗(Ω),

ph ∈Mh, such that uh|Γ0 = gh, and

a(uh, v) + b(v, ph) = (f, v), ∀v ∈ Sh ∩H1,∗
0 (Ω), (42)

b(uh, q) = 0, ∀q ∈Mh. (43)

We have

Theorem 5.1. The problem (42, 43) admits a unique solution.

The proof of it is routine, thus omitted here.
Using the approach in [10] we can prove the following convergence theorem. For simplicity we assume that

the boundary value is zero, u|Γ0 = 0. We define the following weighted norms for u and p.

|u|2(2) =
{∫

Ω

r2|D2u|2 dx
} 1

2

,

|p|1(2) =
{∫

Ω

r2|Dp|2 dx
} 1

2

·

Theorem 5.2. We assume that the triangulation is regular, and

measK ≤ C0h
2dist(o,K)2,

where C0 is a positive constant, h is the maximum diameter of the elements in Ω1, dist(o,K) is the distance
from K to the origin o. If |u|2(2) and |p|1(2) are bounded, then

|u− uh|1 ≤ Ch{|u|2(2) + |p|1(2)}· (44)

If u ∈ H1,∗
0 (Ω), and p ∈ L2(Ω), then

|u− uh|1 → 0(h→ 0). (45)

Proof. Using the inequalities in [10], it holds that

inf
wh∈H1,∗

0 (Ω)
⋂
Sh

|u− wh|1 ≤ Ch|u|2(2),

inf
qh∈Mh

‖p− qh‖0 ≤ Ch|p|1(2).
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Then (44, 45) follows from the standard result of the mixed finite element method [3]. �
We now turn to consider the infinite element method for the Darwin model. We need some auxiliary lemmas.

We denote by ξkΩ the domain exterior to Γk, and consider a bounded domain Ω \ ξkΩ. The mesh restricted in
this domain is also a mesh with finite number of elements. The finite element space defined on it is still denoted
by Sh. Let

Sh ∩W (Ω \ ξkΩ) =
{
u ∈ Sh|Ω\ξkΩ;u× ν|Γ0 = 0,

∫
Γ0

u · ν ds = 0
}
,

and let

‖u‖∗,Ω\ξkΩ =

(∫
Ω\ξkΩ

|∇ · u|2 dx+
∫

Ω\ξkΩ

|∇ × u|2 dx

) 1
2

.

Lemma 5.1. ‖ · ‖∗,Ω\ξkΩ is a norm on Sh
⋂
W (Ω \ ξkΩ).

Proof. If ‖u‖∗,Ω\ξkΩ = 0, then �u = 0, so u is a harmonic function. u ∈ P2 on individual elements, hence
u ∈ P2 on Ω \ ξkΩ. We extend u to the interior of Γ0 analytically. Then we define the stream function ψ, such
that u =

(
∂ψ
∂x2

,− ∂ψ
∂x1

)
, then �ψ = 0. By the boundary condition of u, ∂ψ

∂ν |Γ0 = 0, so ψ is a constant in the
interior of Γ0. Therefore u = 0. �

Lemma 5.2. The space Wh = {u ∈ Sh;� · u,∇× u ∈ L2(Ω), u × ν|∂Ω = 0, 〈u · ν, 1〉∂Ω = 0} is a Hilbert space
under the norm ‖ · ‖∗.

Proof. Because V0 ∩ Sh = {0}, ‖ · ‖∗ is a norm on Wh. Let us prove it is complete. Let {un} be a Cauchy
sequence with limit u. We are going to prove u ∈ Sh. {un} is also a Cauchy sequence on Sh ∩W (Ω \ ξkΩ). By
Lemma 5.1, u ∈ Sh ∩W (Ω \ ξkΩ). Since k is arbitrary, u ∈ Sh. �

Lemma 5.3. Wh ⊂ H1,∗(Ω).

Proof. Let u ∈ Wh. We define a cut-off function ζ ∈ C∞(Ω), such that ζ ≡ 1 near Γ0, ζ ≡ 0 near the infinity,
and 0 ≤ ζ ≤ 1. Denote η = 1 − ζ. We take an arbitrary ϕ ∈ C∞

0 (Ω), then by the Green formula,∫
Ω

∇(ϕ) · ∇(ηu) dx =
∫

Ω

(∇ · ϕ)(∇ · (ηu)) dx+
∫

Ω

(∇× ϕ) · (∇× (ηu)) dx

≤‖ϕ‖∗‖ηu‖∗ = |ϕ|1‖ηu‖∗.

Since u ∈ H1 on any bounded domain, ‖ηu‖∗ is bounded. Consequently ηu ∈ H1,∗
0 (Ω), that is, u ∈ H1,∗(ξkΩ)

for large k. Then by u ∈ H1 on any bounded domain we have u ∈ H1,∗(Ω). �

Lemma 5.4. The norm ‖ · ‖∗ is equivalent to ‖ · ‖1,∗ on Wh.

Proof. It is the direct consequence of the closed graph theorem and Lemma 5.3. �
We assume an inhomogeneous boundary condition, u× ν|∂Ω = g, and let gh be an approximation of g, then

the formulation of the infinite element method is: Find uh ∈ Sh ∩H1,∗(Ω), ph ∈Mh, such that uh × ν|Γ0 = gh,∫
Γ0
uh · ν ds = 0, and

d(uh, v) + b(v, ph) =
∫

Ω

B · (∇× v) dx, ∀v ∈ Wh, (46)

b(uh, q) = 0, ∀q ∈Mh. (47)

Theorem 5.3. The problem (46, 47) admits a unique solution.
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Proof. d(·, ·) is coercive. To verify the inf-sup condition we apply the inf-sup condition of the infinite element
method for the Stokes equation,

sup
v ∈ Sh

⋂
H1,∗

0 (Ω)
v �= 0

b(v, p)
|v|1 ≥ ‖p‖0, ∀p ∈Mh.

Now Wh ⊃ Sh ∩H1,∗
0 (Ω), thus

sup
v ∈ Wh

v �= 0

b(v, p)
|v|1 ≥ ‖p‖0, ∀p ∈Mh.

Moreover we have ‖v‖2
∗ ≤ 2|v|21, thus

sup
v ∈Wh

v �= 0

b(v, p)
‖v‖∗ ≥ 1√

2
‖p‖0, ∀p ∈Mh. �

The relationship between the solutions of the infinite element method to the Stokes equation and to the Darwin
model is the following:

Theorem 5.4. The solution to (46, 47) is a solution to (42, 43) with appropriate boundary value and inhomo-
geneous term.

Proof. We take v in (46) such that v|Γ0 = 0, then v ∈ H1,∗
0 (Ω). Let a series {vn} ⊂ C∞

0 (Ω) tend to v in H1,∗
0 (Ω),

then by the Green formula, d(uh, vn) = a(uh, vn). Let n→ ∞ we verify that uh, ph satisfy (42, 43). �
Let us study convergence. For simplicity we assume g = 0. We assume that the solution to (39, 40) satisfies

u ∈ H1,∗(Ω). Then we can modify the formulation to: Find u ∈ H1,∗(Ω) ∩W , p ∈ L2(Ω), such that

d(u, v) + b(v, p) =
∫

Ω

B · (∇× v) dx, ∀v ∈ H1,∗(Ω) ∩W, (48)

b(u, q) = 0, ∀q ∈ L2(Ω). (49)

This is because the solution u satisfies ∇ · u = 0, then b(u, p) = 0 for all p ∈ L2(Ω). Because H1,∗(Ω) ∩W is
dense in W , uniqueness holds for the problem (48, 49).

We have the following result of error estimate:

Theorem 5.5. If u and p are solutions to (48, 49), uh, ph are solutions to (46, 47), in addition, |u|2(2) is
bounded, then

‖u− uh‖∗ ≤ Ch|u|2(2).

Proof. This result follows from a theorem in [1]. Here we notice that the exact solution p = 0, so |p|1(2) is
bounded. �

6. Algorithm

The algorithm for the Stokes equation is applied to the Darwin model, so we recall the algorithm of the
infinite element method for the Stokes equation first.

The values of uh at the nodes on Γk are arranged as a column vector, yk = (u(1)
1 , u

(1)
2 , u

(2)
1 , u

(2)
2 , · · · )T , where

u
(j)
1 , u

(j)
2 are the two components of uh at the j-th node. The boundary value gh should satisfy

∫
Γ0
gh · ν ds = 0,
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that is, there is a vector h such that hT y0 = 0. We take a particular function q in the equation (43) as follows:
q = 0 on ξkΩ, and q = 1 on Ω\ξkΩ, then we get

0 =
∫

Ω\ξkΩ

∇ · u dx =
∫

Γ0

u · ν ds+
∫

Γk

u · ν ds,

therefore
∫
Γk
u · ν ds = 0, namely, hT yk = 0. We normalize h to a unit vector, then construct an orthogonal

matrix Tr = [h,H ], in which h is the first column, and set zk = HT yk, then there is a one to one correspondence
between zk and yk.

Given y0 and y1, we solve the Stokes equation on Ω1 by finite element method with boundary data y0, y1 on
the given mesh. Let the approximate solution be uh, then there are matrices K0,K

′
0, and A, such that

∫
Ω1

∇uh · ∇uh dx =
(
zT0 zT1

)( K0 −AT
−A K ′

0

)(
z0
z1

)
. (50)

The above expression is valid for all layers Ωk, hence the infinite element scheme is deduced to the following
system of infinite equations:

−Az0 +Kz1 −AT z2 = 0,

−Az1 +Kz2 −AT z3 = 0,

· · · · · ·
−Azk−1 +Kzk −AT zk+1 = 0,

· · · · · ·
where K = K0 +K ′

0. To solve this system directly is unnecessary. It is proved in [10] that there exists a real
matrix X , called transfer matrix, such that zk+1 = Xzk, then from z0 we can get the solution step by step.
The approach to solve X can be found in [10].

We need to introduce the definition of combined stiffness matrix Kz. Let Kz = K0 −ATX , then it is proved
in [10] that

∞∑
l=k+1

1
2

∫
Ωl

|∇uh|2 dx =
1
2
zTkKzzk.

Being analogous to (50) there are vectors fk, gk for the inhomogeneous equation such that

1
2

∫
Ωk

∇uh · ∇uh dx−
∫

Ωk

f · uh dx =
1
2
(
zTk−1 z

T
k

)( K0 −AT
−A K ′

0

)(
zk−1

zk

)
+
(
zTk−1 z

T
k

)( fk
gk

)
. (51)

Let {z∗k} be a solution of the infinite element scheme to the equation, but it does not necessarily satisfy the
boundary conditions. Let z̃k = zk − z∗k, then z̃k+1 = Xz̃k. We have

z0 = z̃0 + z∗0 ,

z1 = z̃1 + z∗1 = Xz̃0 + z∗1 = X(z0 − z∗0) + z∗1 ≡ Xz0 + q1,

· · · · · ·
zk = Xzk−1 + qk,

· · · · · ·
Let

Wk =
∞∑

l=k+1

{
1
2

∫
Ωl

|∇uh|2 dx−
∫

Ωl

f · uh dx
}

=
1
2
zTkKzzk + zTk hk. (52)
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On the other hand

Wk = min
zk+1

{
1
2
(
zTk zTk+1

)( K0 −AT
−A K ′

0

)(
zk
zk+1

)
+
(
zTk zTk+1

)( fk+1

gk+1

)
+

1
2
zTk+1Kzzk+1 + zTk+1hk+1

}
· (53)

We take the partial derivatives with respect to zk+1, then let it be zero to obtain

(K ′
0 +Kz)zk+1 −Azk + gk+1 + hk+1 = 0.

We solve zk+1 from this equation then substitute it into (53) and compare (53) with (52). It is deduced that

hk = AT (K ′
0 +Kz)−1(gk+1 + hk+1) + fk+1, (54)

and we have

qk = −(K ′
0 +Kz)−1(gk + hk). (55)

Thus the procedure to solve inhomogeneous equations is:

(1) evaluate hk from the recurrence formula (54);
(2) evaluate qk from the formula (55);
(3) then get zk.

Now let us go to the algorithm for the Darwin model. For the formulation (46, 47), we take a boundary value γh
for the Stokes equation such that γh × ν = gh, and

∫
Γ0
γh · ν ds = 0. Then solve the following problem: find

wh ∈ Sh ∩H1,∗(Ω), rh ∈Mh, so that wh|Γ0 = γh, and

a(wh, v) + b(v, rh) =
∫

Ω

B · (∇× v) dx, ∀v ∈ Sh ∩H1,∗
0 (Ω), (56)

b(wh, q) = 0, ∀q ∈Mh. (57)

The solutions to (46, 47) also satisfy

a(uh, v) + b(v, ph) =
∫

Ω

B · (∇× v) dx, ∀v ∈ Sh ∩H1,∗
0 (Ω), (58)

b(uh, q) = 0, ∀q ∈Mh. (59)

Let uh − wh = Uh and ph − rh = Ph, then we have

a(Uh, v) + b(v, Ph) = 0, ∀v ∈ Sh ∩H1,∗
0 (Ω), (60)

b(Uh, q) = 0, ∀q ∈Mh. (61)

Let the vectors y0, y1, · · · , yk, · · · and z0, z1, · · · , zk, · · · correspond to Uh, then it holds that zk+1 = Xzk, which
yields

yk+1 = HXHTyk. (62)

Let the function form of (62) be Uh|Γ1 = Y Uh|Γ0 , where Y is an operator.
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So far the problem (46, 47) is deduced to a finite element approximation on a bounded domain Ω1 for the
following system of equations:

−� u = ∇×B, x ∈ Ω1,

∇ · u = 0, x ∈ Ω1,

u× ν|Γ0 = gh,∫
Γ0

u · ν ds = 0,

(u− wh)|Γ1 = Y (u − wh)|Γ0 ,

where wh is given. We solve the finite element problem on Ω1 with the same mesh, and get the solution uh
to (46, 47) on Ω1. Using the formula (62) and the solution wh to (56, 57) we are able to get the solution uh on
the entire domain Ω.

Using the matrix X we can find lim|x|→∞ uh, which is given in [10].

7. Numerical examples

We take a square with edge length 2 and consider the exterior domain. The original mesh is as following:
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Example 1. B = 0, and the exact solution is u1 ≡ 0, u2 ≡ 1, p ≡ 0. We take ξ = 1.2, and use the value of the
exact solution as the boundary value. And we get

||u||2 = 9.80 × 10−13, ||p||∞ = 3 × 10−11,

and
lim

|x|→∞
uh = (−7.06 × 10−16, 1).

The infinite element solution is actually the exact one for this example, so the error obtained here is just the
round-off error. However this example hints that our method do work.

We have proved that the exact solutions are not unique. It is interesting to notice that the numerical solution
obtained is just ”the one we think about”.

Example 2. B = 0, and u =
(

cos 2θ
r2 , sin 2θ

r2

)
. We use the original mesh which has the same structure as

Example 1, and further we get mesh by refining one element into four small ones with the same size. The error
is computed within the first m+ 1 layers. N is the number of nodes on Γ.
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Table 1. Structured mesh, ξ = 1.1, m = 20.

N ||u1 − u1h||2 Order ||u2 − u2h||2 Order ||u− uh||∗ Order

16 0.227782 9.079201 1.270610

32 5.689740E-02 2.0012 1.288574E-02 2.8168 0.764623 0.7327

64 5.661458E-03 3.3291 1.656519E-03 2.9595 0.394076 0.9563

128 6.330054E-04 3.1609 1.964444E-04 3.0760 0.197797 0.9945

Table 2. “Unstructured” Mesh, ξ = 1.1, m = 20.

N ||u1 − u1h||2 Order ||u2 − u2h||2 Order ||u− uh||∗ Order

16 0.231510 9.176199E-002 1.284699

32 5.668541E-002 2.0300 1.309461E-002 2.8089 0.764071 0.7497

64 5.659193E-003 3.3243 1.652787E-003 2.9860 0.394033 0.9554

128 6.821882E-004 3.0524 2.121307E-004 2.9619 0.198194 0.9914

Table 3. Structured mesh, ξ = 1.2, m = 20.

N ||u1 − u1h||2 Order ||u2 − u2h||2 Order ||u− uh||∗ Order

16 7.097883E-002 7.104025E-002 0.705941

32 9.723456E-003 2.8678 9.723475E-003 2.8691 0.385342 0.8734

64 1.591538E-003 2.6110 1.142021E-003 3.0899 0.196713 0.9700

128 1.341634E-004 3.5684 1.491097E-004 2.9371 9.862373E-002 0.9961

From Table 1, we can see first order convergence is obtained for u under the norm ||.||∗, which coincides with
our theoretical result. And also for the function itself, we get third order convergence rate, which comes from
the fact that P 2 element is used, and it hasn’t been affected by using P 0 element for p.

Moreover, we change each mesh (for different N) above by disturbing each node (except those at corners)
by the amount (∆x,∆y) = (x∗, y∗) × min(h)

5 , where (x∗, y∗) are identically independent random numbers from
uniform (−0.5, 0.5). By this way, we obtain a set of “unstructured” meshes. Using these meshes, we get the
same convergence rate, see Table 2.

Example 3. B = 0, and u =
(

cos θ
r , − sin θ

r

)
. Structured mesh is used. Notice the solution in this example is

less decreasing than 1
r2 . Again we here see the similar convergence rate as in Example 2.

Example 4. Still we use the same solution as in Example 2, only here we focus on the effect of different
parameter ξ. In Table 4, we list out the normal component of u on Γ0 when different ξ is used. One can see
the normal components at most points converge when ξ decreases.

Then we use the same example as in Example 3 to see how the error changes with the parameter ξ. The
error is computed in the domain {x; 1 ≤ |x1|, |x2| ≤ 25}. In Table 5, we can see with ξ getting smaller, the
error decreases, since we are using more elements to resolve our problem. However, when ξ decreases to certain
level, the error starts increasing. This is not very surprising because the shape of the element is becoming not
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Table 4. The normal component with different ξ.

node 1 2 3 4 6 7 8

ξ = 1.23 1.0274 0.8269 0.4816 0.1898 0.6075 0.6539 0.4286

ξ = 1.17 1.0273 0.8271 0.4841 0.1901 0.6073 0.6530 0.4296

ξ = 1.1 1.0263 0.8276 0.4872 0.1902 0.6070 0.6511 0.4311

ξ = 1.07 1.0255 0.8277 0.4885 0.1901 0.6070 0.6501 0.4319

ξ = 1.02 1.0237 0.8278 0.4904 0.1897 0.6068 0.6481 0.4336

ξ = 1.005 1.0231 0.8279 0.4912 0.1897 0.6065 0.6473 0.4338

exact 1.0000 0.8304 0.4800 0.1792 0.6144 0.6400 0.4429

node 9 10 11 12 14 15 16

ξ = 1.23 1.45E-7 -0.4286 -0.6539 -0.6075 0.1898 0.4816 0.8269

ξ = 1.17 -3.12E-8 -0.4296 -0.6530 -0.6073 0.1901 0.4841 0.8273

ξ = 1.1 -8.29E-9 -0.4311 -0.6511 -0.6070 0.1902 0.4872 0.8276

ξ = 1.07 1.58E-7 -0.4319 -0.6501 -0.6070 0.1901 0.4885 0.8277

ξ = 1.02 2.32E-7 -0.4336 -0.6481 -0.6068 0.1897 0.4905 0.8278

ξ = 1.005 -3.10E-4 -0.4344 -0.6477 -0.6068 0.1895 0.4909 0.8276

exact 0.0000 -0.4429 -0.6400 -0.6144 0.1792 0.4800 0.8304

node 17 18 19 20 22 23 24

ξ = 1.23 1.0274 0.8269 0.4816 0.1898 0.6075 0.6539 0.4286

ξ = 1.17 1.0273 0.8273 0.4841 0.1901 0.6073 0.6530 0.4296

ξ = 1.1 1.0263 0.8276 0.4872 0.1902 0.6070 0.6511 0.4311

ξ = 1.07 1.0255 0.8277 0.4885 0.1901 0.6070 0.6501 0.4319

ξ = 1.02 1.0237 0.8278 0.4905 0.1897 0.6068 0.6481 0.4336

ξ = 1.005 1.0228 0.8277 0.4910 0.1897 0.6065 0.6474 0.4341

exact 1.0000 0.8304 0.4800 0.1792 0.6144 0.6400 0.4429

node 25 26 27 28 30 31 32

ξ = 1.23 -1.48E-7 -0.4286 -0.6539 -0.6075 0.1898 0.4816 0.8269

ξ = 1.17 2.98E-8 -0.4296 -0.6530 -0.6073 0.1901 0.4841 0.8273

ξ = 1.1 -2.09E-8 -0.4311 -0.6511 -0.6070 0.1901 0.4872 0.8276

ξ = 1.07 1.92E-7 -0.4319 -0.6501 -0.6070 0.1901 0.4885 0.8277

ξ = 1.02 9.98E-7 -0.4336 -0.6481 -0.6068 0.1897 0.4905 0.8278

ξ = 1.005 -4.87E-5 -0.4342 -0.6475 -0.6068 0.1895 0.4910 0.8278

exact 0.0000 -0.4429 -0.6400 -0.6144 0.1792 0.4800 0.8304
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Table 5. Errors with different ξ.

ξ ||u1 − u1h||2 ||u2 − u2h||2 ||u− uh||∗
5.0000 0.1113 0.1113 0.9160

2.9240 3.7182E-002 3.7182E-002 0.5782

2.2361 2.0647E-002 2.0655E-002 0.4676

1.9037 1.4683E-002 1.4685E-002 0.4219

1.7100 1.1997E-002 1.1997E-002 0.4005

1.4300 9.5287E-003 9.5286E-003 0.3816

1.3077 9.0638E-003 9.0638E-003 0.3805

1.2085 8.9759E-003 8.9723E-003 0.3846

1.1746 9.0021E-003 8.9866E-003 0.3871

1.1502 9.0310E-003 9.0237E-003 0.3894

1.1266 9.0783E-003 9.0702E-003 0.3920

that “regular”, then the condition number of the linear system we get is becoming worse. In application, one
can reduce the parameter ξ at the same time increasing the number of elements in each sub-domain Ωk.

Acknowledgements. We are grateful to the referee for calling our attention to the papers by Girault and Sequeira on
exterior problem of Stokes equations.
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