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Abstract. The paper deals with the numerical resolution of the convection-diffusion system which
arises when modeling combustion for turbulent flow. The considered model is of compressible tur-
bulent reacting type where the turbulence-chemistry interactions are governed by additional balance
equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation
form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other
words, classical finite volume methods induce large errors when approximated the convection-diffusion
extracted system. To solve this difficulty, recent works propose a nonlinear projection scheme based
on cancellation phenomenon of relevant dissipation rates of entropy. Unfortunately, such a property
never holds in the present framework. The nonlinear projection procedures are thus extended.
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Introduction

An accurate description of the effects of turbulence-chemistry interactions is required to predict most reacting
flows of practical interest. In the present work, we are interested in the numerical resolution of a convection-
diffusion system which arises when modeling combustion for turbulent flow. We consider here a model where
the combustion is modeled with two passive scalars. Both scalars are governed by “transport” equations.
Unfortunately, the system does not recast in conservation form excepted for restrictive modeling assumptions.
The numerical capture of the viscous shock layers coming with considered nonconservative PDE’s systems, is the
topic of the present work. Since the Reynolds numbers of interest are large, these layers display the character of
a shock wave in that they differ from their end states only in a small interval of rapid transition (see Berthon–
Coquel [3], Raviart–Sainsaulieu [21]). Hence for mesh refinements of practical interest, the associated discrete
profiles stay largely under resolved. Our purpose is actually to correctly capture the two end states, vL and vR,
of a given shock layer together with its relevant speed of propagation σ without resolving sharply the viscous
layer itself.
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1 MAB UMR 5466 CNRS, Université Bordeaux I, 351 cours de la libération, 33400 Talence, France.
2 INRIA Futurs, Domaine de Voluceau-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France.
e-mail: christophe.berthon@math.u-bordeaux.fr

c© EDP Sciences, SMAI 2004



452 C. BERTHON AND D. REIGNIER

It is quite well-known that such an issue does not raise special difficulties within the standard frame of the
Navier-Stokes equations, e.g. in conservation form. Indeed, the triples (σ;vL,vR) are solutions of the classi-
cal Rankine–Hugoniot relations and finite volume methods in conservation form readily ensure their suitable
capture.

The situation turns out to be completely different in the setting of the non conservation model. Its non
conservation form makes this time the Rankine–Hugoniot relations unknown (see Dal Maso–LeFloch–Murat [11],
LeFloch [19]). A close characterization of the triples (σ;vL,vR) is proposed on the basis of generalized jump
relations which involve the entropy dissipation rates. In fact, the dissipation rates of entropy do not evolve
independently but proportionally.

Underlining that despite relevant Godunov type methods actually enjoy several stability properties (see
Berthon–Coquel [5], Godlewski–Raviart [13]), their corresponding numerical rate of entropy dissipation stays
always smaller than the required one and as a result, the discrepancies with the exact solutions can only amplify
with time. This error analysis will then suggest the introduction of a nonlinear projection step that enforce the
validity of the generalized jump conditions at the discrete level [5]. In the framework of compressible turbulent
flows (for instance the (k, ε) model), such a nonlinear projection gives a good agreement between exact and
discrete solutions. Furthermore, approximate solutions performed thanks to the nonlinear method satisfy the
required positivity preserving properties in addition to several (nonlinear) stability requirements.

In the present paper, the combustion turbulent model we are focusing on differs from the usual (k, ε) model
by two additional unknowns associated with combustion phenomena and governed by transport equations with
production terms. As in [5], these production terms play a crucial role when approximating viscous shock layers.
The main difference with the standard (k, ε) model stays in the lack of proportionality relations between the
production terms. In the framework of large Reynolds numbers, we establish that the production terms are
almost proportional with an error in O(1/Re). Then, we deduce an approximate nonlinear projection procedure.

The present paper is organized as follows. In the next section, we introduce the set of equations and we
state algebraic properties satisfied by the solutions. Next, we emphasize the numerical negative consequences
of the non-conservation form of the system. In the third section, we explain the discrete scheme; as a first step
we recall the nonlinear projection scheme (see [5]) and as a second step we develop a new nonlinear procedure
according to our system. In the last section, some numerical results are given.

1. The physical model

An accurate description of the effects of turbulence-chemistry interactions is required to predict most reacting
flows of practical interest. These effects play an important role in a number of industrial applications where
physico-chemical phenomena are crucial. The considered model is devoted to multicomponent turbulent reactive
flow (see Baurle and Girimaji [2], Laborde [16] for similar model). Three distinct interacting physical phenomena
are considered, namely the flow of the fluid, the turbulence and the combustion. The flow is characterized by
the total density ρ > 0, the mass fraction of each component Cj ∈ [0, 1] with 1 ≤ j ≤ N , where N ≥ 2, the
velocity vector U ∈ R

3 and the total energy E > 0. Concerning the turbulence, the standard (k, ε) model is
adopted (see Berthon and Coquel [4], but also Larrouturou and Olivier [18], Mohammadi and Pironneau [20]).
The turbulence is thus governed by the kinetic turbulent energy k > 0 and its dissipation rate ε > 0. Following
Laborde [16], the combustion is modeled with two passive scalars namely kh > 0 the enthalpy variance and
Q > 0 the variance of mass fractions. Let us note that the introduction of passive scalars is generally used
as soon as algebraic closures are not prescribed by the modeling assumptions. The considered (k, ε, g) model,
where g denotes the passive scalars, is governed by a convection-diffusion-reactive PDE system. Owing to the
rotational invariance of the model of interest, one space dimension is assumed with no restriction to obtain the
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following system:

∂tρCj + ∂xρCju = ∂x((ρD + ρDt)∂xCj) + ω̇j, 1 ≤ j ≤ N,
∑

1≤j≤N

Cj = 1,

∂tρu+ ∂x

(
ρu2 + p+

2
3
ρk

)
= ∂x((µ+ µt)∂xu),

∂tE + ∂x

(
E + p+

2
3
ρk

)
u = ∂x((µ+ µt)u∂xu) − ∂xq + ∂x(µk∂xk),

∂tρk + ∂xρku+
2
3
ρk∂xu = µt(∂xu)2 + ∂x(µk∂xk) − ρε,

∂tρε+ ∂xρεu+
2
3
Cε1ρε∂xu = Cε1

ε

k
µt(∂xu)2 + ∂x(µε∂xε) − Cε2ρ

ε2

k
,

(1)


∂tρkh + ∂xρkhu = ∂x(

λt

Cp
∂xkh) + 2

λt

Cp
(∂xp

�)2 − 2ρCg1
ε

k
kh,

∂tρQ+ ∂xρQu = ∂x(ρDt∂xQ) + 2
λt

Sct

∑
1≤j≤N

(∂xCj)2 − 2ρCg2
ε

k
Q+ 2

∑
1≤j≤N

ω̇jC′′
j .

We refer to Baurle and Girimaji [2] or Laborde [16] for the details of the functions and constants involved in
the system. Briefly, we recall that µ > 0 and µt > 0 respectively denote the laminar and turbulent viscosity
functions: µ is given by the Sutherland law while we set

µt = Cµρ
k2

ε
, Cµ = 0.09.

The viscosity functions µk and µε reads (see [20]):

µk = µ+
µt

σk
, µε = µ+

µt

σε
, σk = 1, σε = 1.3.

As usual, q denotes the heat conduction and p� = p+ 2
3ρk the total pressure. The constants Cε1, Cε2, Cg1 and

Cg2 are prescribed by the model (Mohammadi and Pironneau [20] propose Cε1 = 1.44 and Cε2 = 1.92 while
Laborde [16] propose Cg1 = 1 and Cg2 = 2). The functions ρD > 0 and ρDt > 0 denote diffusive coefficients
issued from the Fick laws. Finally, Sct denotes the turbulent Schmidt number, λt = µtCp/Prt the dynamical
turbulent conductivity with Cp the specific heat and Prt = 0.9 the turbulent Prandtl number.

Concerning the combustion, the quantities ω̇j and ω̇jC′′
j are source terms (they do not involve partial deriv-

ative of the unknowns) and are given by the PDF model (see Baurle and Girimaji [2] for further details). For
the sake of simplicity, we assume that ω̇j are the only terms which couple the unknowns kh and Q with the
hydrodynamic equations. In the present work, the perfect gas law is thus assumed:

p = (γ − 1)
(
E − ρ

u2

2
− ρk

)
, γ ∈ (1, 3]. (2)

We refer the reader to Berthon and Coquel [3] for extensions to more general pressure laws.
Let us recall that the source terms ω̇j , given in [2, 16], must satisfy:

∑
1≤j≤N ω̇j = 0.

The aim of the present work is to develop a Riemann solver consistent (in a sense to be specified) with
the convection system extracted from (1). Unfortunately, the first order extracted system cannot be recast
in conservation form since the products ρk∂xu and ρε∂xu, involved respectively in the ρk and ρε evolution
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equations, never read under divergence form. The nonexistence of a conservation form is proved in Berthon and
Coquel [4]. After the work of Dal Maso, LeFloch and Murat [11], Colombeau, Leroux, Noussair and Perrot [7],
Raviart and Sainsaulieu [21], the weak solutions of such a system may not be defined in the sense of distributions
as soon as the solution admits discontinuities. However, Raviart and Sainsaulieu [21] define the discontinuous
solutions as the limit of viscous shock layers of an associated convection-diffusion system when the diffusion
tends to zero. These solutions are thus shown to be dependent on the choice of the diffusion operator. In fact,
the solutions are dependent on the shape of the diffusion and not on the Reynolds number. Put in other words,
the convection and diffusion operators cannot be discretized independently. In the frame of (1), the diffusion
operator is prescribed by the model.

The dissipation operator is associated with the convection terms while the Fourier laws and the source terms
are dropped into a second step. Such a splitting, according to a physical point of view, yields to remarks of
practical interest. First, in a number of models close to (1), the main modeling assumptions coincide with
distinct choices of both turbulent heat conduction and source terms. For instance, we refer to [20] where the
authors prove that the (k, ε), (k, l) and (k, ω) models differ solely by the turbulent heat conduction terms (up
to a change of variables). As a consequence of such a splitting, the convection-dissipation operator is the same
for a class of models while the turbulent conduction operator differs from one model to other. In addition, the
splitting makes the flow variables (here ρCj , ρu, E, ρk, ρε) independent of the passive scalars (ρkh and ρQ).
Indeed, the interactions are, generally, governed by the source terms. This last remark finds a numerical interest
and it will be used with benefit in the sequel. We adopt the same decomposition and we focus our attention on
the convection-dissipation part of (1). The system under consideration thus reads:

∂tρCj + ∂xρCju = ∂x((ρD + ρDt)∂xCj), 1 ≤ j ≤ N,

∂tρu+ ∂x

(
ρu2 + p+

2
3
ρk

)
= ∂x((µ+ µt)∂xu),

∂tE + ∂x

(
E + p+

2
3
ρk

)
u = ∂x((µ+ µt)u∂xu),

∂tρk + ∂xρku+
2
3
ρk∂xu = µt(∂xu)2,

∂tρε+ ∂xρεu+
2
3
Cε1ρε∂xu = Cε1

ε

k
µt(∂xu)2,

(3a)


∂tρkh + ∂xρkhu = ∂x

(
λt

Cp
∂xkh

)
+ 2

λt

Cp
(∂xp

�)2,

∂tρQ+ ∂xρQu = ∂x(ρDt∂xQ) + 2
λt

Sct

∑
1≤j≤N

(∂xCj)2,
(3b)



p = (γ − 1)
(
E − ρ

u2

2
− ρk

)
,

p� = p+
2
3
ρk,∑

1≤j≤N

Cj = 1.

(3c)

In order to ensure the definition of LeFloch [19], Raviart and Sainsaulieu [21] for the weak solutions of the
first order extracted system, the viscous shock layers, namely traveling wave solutions, of the above system (3)
must be proved to exist (see Berthon and Coquel [3,4], Raviart and Sainsaulieu [21], Sainsaulieu [23] for further
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details). We just recall that a traveling wave solution of (3) is a particular solution in the form v(x, t) = v̂(x−σt)
with

lim
ξ→−∞

v̂(ξ) = vL, lim
ξ→+∞

v̂(ξ) = vR, ξ = x− σt, (4)

where the triple (σ;vL,vR) is prescribed. We have used the notation v to denote the unknown vector. These
solutions characterize the viscous shock layers and tend, as the diffusion goes to zero, to the expected discon-
tinuous solutions. In the present work, we conjecture existence of traveling wave solutions, but we recall that
the result of existence is proved in [3, 4] in the framework of the (k, ε) model, i.e. for the sub-system (3a).

1.1. Algebraic properties

Before we present the discrete scheme of the system (3), we need to precise some algebraic properties of (3).
We also emphasize inconsistencies of usual finite volume schemes when extended to system in non-conservation
form.

First, we establish basic properties satisfied by the convection system extracted from (3). The following
straightforward result is given with no proof:

Lemma 1.1. The first order system extracted from (3) is hyperbolic. It admits u±c and u as eigenvalues where
we have set

c2 =
γp

ρ
+

10
9
k. (5)

The multiplicity of the eigenvalue u is N+4 and is associated with a linearly degenerate field, while the multiplic-
ity of the eigenvalues u± c is one and associated with genuinely nonlinear fields. Moreover, u and p∗ = p+ 2

3ρk
are continuous through the contact discontinuity.

We go on while establishing additional governing equations satisfied by the smooth solutions of (3). These
additional laws will be crucial in the next sections devoted to the numerical approximation of the solution of (3).
We now state:

Lemma 1.2. The smooth solutions of (3) satisfy in addition the following balance equations:

∂tρs+ ∂xρsu = µ
γ − 1
ργ−1

f ′(f−1(s))(∂xu)2, (6)

∂tρst + ∂xρstu = µt
γt − 1
ργt−1

f ′
t(f

−1
t (st))(∂xu)2, (7)

where f and ft denote smooth invertible functions and the entropies s and st are defined by:

s = f

(
p

ργ

)
and st = ft

(
(γt − 1)ρk

ργt

)
,

γt =
5
3
. (8)

As a consequence, the smooth solutions of (3) obey

µ
γ − 1
ργ−1

f ′(f−1(s)) {∂tρst + ∂xρstu} − µt
γt − 1
ργt−1

f ′
t(f

−1
t (st)) {∂tρs+ ∂xρsu} = 0. (9)

The smooth solutions of (3) also satisfy the following balance equation:

∂tρ
C2

j

2
+ ∂xρ

C2
j

2
u = ∂x((ρD + ρDt)Cj∂xCj) − (ρD + ρDt)(∂xCj)2, (10)
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for all 1 ≤ j ≤ N . Finally, the smooth solutions of (3) satisfy in addition the following conservation law:

∂tρ
kCε1

ε
+ ∂xρ

kCε1

ε
u = 0. (11)

Since the convexity of the entropies turns out to be crucial in the next section (to establish stability results of
the numerical method), the function f and ft have been introduced in the balance equations (6) and (7). In
the sequel, the following condition is assumed to be satisfied by both f and ft:

(H) g ∈ C2(R+,R+) is a strictly decreasing function and satisfies:
g′′(x)
g′(x)

< −α− 1
α

x, ∀x > 0, α = max(γ, γt).

As soon as the functions f and ft, respectively introduced in (6) and (7), satisfy (H), both maps

(ρ, ρu,E, ρs) → {ρst}(ρ, ρu,E, ρs),
(ρ, ρu,E, ρst) → {ρs}(ρ, ρu,E, ρst),

are convex. Let us note from now on that the numerical stability results (namely Th. 2.3 and Th. 2.4) hold
false as soon as both above maps are not assumed convex.

Proof of Lemma 1.2. As usual, the momentum equation can be developed to obtain

∂tu+ u∂xu+
1
ρ
∂x

(
p+

2
3
ρk

)
=

1
ρ
∂x((µ+ µt)∂xu),

so that we deduce

∂tρ
u2

2
+ ∂xρ

u2

2
u+ u∂x

(
p+

2
3
ρk

)
= u∂x((µ+ µt)∂xu). (12)

Now, we subtract (12) and the ρk equation from the total energy equation:{
∂tE + ∂x(E + p+

2
3
ρk)u

}
−
{
∂tρ

u2

2
+ ∂xρ

u2

2
+ u∂x(p+

2
3
ρk)
}

−
{
∂tρk + ∂xρku+

2
3
ρk∂xu

}
= ∂x((µ+ µt)u∂xu) − u∂x((µ+ µt)∂xu) − µt(∂xu)2,

to obtain after computations:

∂tp+ u∂xp+ γp∂xu = (γ − 1)µ(∂xu)2.

Since
∂tρ+ u∂xρ+ ρ∂xu = 0,

we have:

1
ργ

{∂tp+ u∂xp+ γp∂xu} − γp

ργ+1
{∂tρ+ u∂xρ+ ρ∂xu} = µ

γ − 1
ργ

(∂xu)2,

which reads

∂t
p

ργ
+ u∂x

p

ργ
= µ

γ − 1
ργ

(∂xu)2,
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to obtain

∂ts+ u∂xs = µ
γ − 1
ργ

f ′(f−1(s))(∂xu)2.

Since we have

ρ {∂ts+ u∂xs} + s {∂tρ+ ∂xρu} = ∂tρs+ ∂xρsu,

the identity (6) is thus obtained. In a same way, we have:

2/3
ρ5/3

{
∂tρk + u∂xρk +

5
3
ρk∂xu

}
− 5/3
ρ5/3+1

2
3
ρk {∂tρ+ u∂xρ+ ρ∂xu} = µt

5/3 − 1
ρ5/3

(∂xu)2, (13)

and (7) is thus obtained as soon as (13) is multiplied by f ′
t

(
2/3ρk
ρ5/3

)
.

The identity (10) is nothing but

Cj {∂tρCj + ∂xρCju} = Cj∂x((ρD + ρDt)∂xCj),

since we have
∂tρCj + ∂xρCju = ρ (∂tCj + u∂xCj) .

To obtain the additional conservation law (11), we first note the following identities:

∂tρX + ∂xρXu = ρ {∂tX + u∂xX} +X {∂tρ+ ∂xρu} ,
= ρ {∂tX + u∂xX} ,

where X respectively denotes k or ε. Then we deduce from the ρk and ρε equations:

∂tk + u∂xk +
2
3
k∂xu =

µt

ρ
(∂xu)2,

∂tε+ u∂xε+
2
3
Cε1ε∂xu = cε1

µt

ρ

ε

k
(∂xu)2,

to obtain:

Cε1
ε

k

{
∂tk + u∂xk +

2
3
k∂xu

}
−
{
∂tε+ u∂xε+

2
3
Cε1ε∂xu

}
= 0,

which reads

∂t
kCε1

ε
+ u∂x

kCε1

ε
= 0.

The last identity (11) is thus proved. �

The balance equations (6) and (7) and the conservation law (11) can be proved to be the only non trivial
additional equations for smooth solutions. As a consequence and besides several close relationships with the
usual Navier–Stokes system, the very discrepancy stays in the lack of N+6 non trivial conservation laws. Indeed
and without restrictive modeling assumptions, none of the equations (6), (7) and (9) recast as a conservation
law except in some special cases which are not of interest. As a consequence, (3) cannot be recast, generally
speaking, in full conservation form.
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Figure 1. Viscous shock layers as a function of µ/µt for a given (σ,vL).

After the pioneering works by LeFloch [19], Raviart–Sainsaulieu [21] and Sainsaulieu [23], the non conser-
vation form met by (3) makes the end states of viscous shock layers to intrinsically depend on the closure
relations for the transport coefficients µ, µt, λt and Cp. Under the assumption of two constant viscosities, such
a dependence more precisely occurs in term of the ratio of µ and µt when computing p and ρk. In order to assess
this issue, let us focus our attention on the non standard balance equation (9). Its straightforward derivation
reflects a cancellation property. Namely the entropy balance equations (6) are not independent but actually
evolve proportionally to the ratio of the two viscosities µ and µt. Indeed and at least formally, (9) yields once
integrated with respect to the space variable:

µt

µ+ µt

{∫
R

γt − 1
ργt−1

f ′
t(f

−1
t (st))(∂tρs+ ∂xρsu)dx

}
− µ

µ+ µt

{∫
R

γ − 1
ργ−1

f ′(f−1(s))(∂tρst + ∂xρstu)dx
}

= 0, (14)

so that the evolution in time of the two entropies must be kept in balance according to the ratio of the two
viscosities. Let us emphasize that by contrast with (6) or (7) where entropy dissipation rates are actually
independently imposed, the weighted equation (9) exhibits a compared rate of both entropy dissipations.

The dependence we have just pointed out is numerically illustrated in Figure 1. For a given left end state vL

and a given velocity σ, the required right end states vR are defined when solving numerically the nonlinear
ODE’s system governing traveling wave solutions (see [4]) for various ratios of the viscosities.

1.2. Negative numerical consequences

Now, let us deduce from the above section, the main numerical consequences. First, we note that the
system (3) involves two distinct types of non-conservation product (NCP): the first order NCP where the
product involves a function of the unknowns and one partial derivative of the unknowns (the product ρk∂xu for
instance) and the second order NCP where two partial derivatives of the unknowns are involved (µt(∂xu)2 for
instance).

The classical finite volume methods are shown to converge to wrong function in the scalar case by Hou–
LeFloch [15] when approximating first order NCPs. In Berthon and Coquel [5], the failure is shown in the
framework of system in non-conservation form (see Fig. 2). The system (3) involves two distinct first order
NCPs, namely 2

3ρk∂xu and 2
3Cε1ρε∂xu respectively in the evolution equations of ρk and ρε. However, by virtue

of Lemma 1.2, the governing equation of ρk and ρε may be substituted by (7) and (11) to obtain an equivalent
system with no first order NCP but for one more second order NCP.

The second order NCPs are shown to be crucial in the characterization of the viscous shock layers (see Berthon
and Coquel [5], Berthon, Coquel and LeFloch [6]). Unfortunately, both above papers show that classical schemes
largely under resolve these second order NCP (see Fig. 3). In fact, this problem is well-known in the framework
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Figure 2. Typical failure of classical finite volume methods in the capture of viscous shock layers.
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Figure 3. Typical failure when evaluated dissipation rates of entropies s = log( p
ργ ) and st =

log
( 2
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)
through a viscous 1-shock.

of the Navier–Stokes equations when considering the specific entropy balance equation:

∂tρs+ ∂xρsu = µ
γ − 1
ργ−1

(∂xu)2,

instead of the usual conservation law of the total energy.
In the next section, devoted to the numerical approximation of solutions of (3), we briefly recall the nonlinear

projection method (see [5]) which ensures stability and agreement with exact solutions in the framework of some
non-conservation system such as the (k, ε) model. This method will be shown to be a way to approximate some
second order NCPs, but not for all second order NCP. Indeed, as proposed in [5], the nonlinear projection method
cannot be extended to resolve the second order NCPs involved in the governing equations of ρkh and ρQ. This
mentioned work indeed deals with the second order NCPs (∂xu)2. The nonlinear procedure is based on the
cancellation property of the entropy dissipation rates, detailed in (6) and (7), to obtain (9) which does not
involve second order NCP. Such a property never arises when considering the product (∂xp

�)2 of the evolving
combustion equations. With the assumption of a large Reynolds number, we propose an approximate nonlinear
projection method to assess this issue.
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2. A Godunov type method

This section is devoted to a nonstandard finite volume method to approximate the solutions of the non-
conservation system (3). To assess this issue, let us first note that (3) may be split in two sub-system associated
with the turbulence (3a) and the combustion (3b) respectively. Indeed, the system (3a) is independent of (3b)
while (3b) is coupled with (3a) via the second order terms and the velocity. In the sequel the functions f and ft

are fixed according to assumption (H).

2.1. Numerical approximation of (3a): Turbulence

In the first step, the solutions of (3a) are approximated. For the sake of simplicity in the following develop-
ments, the viscosity functions are assumed to be constant in the sequel. The reader is referred to Section 2.1.4
for the case of varying coefficients.

To reduce the number of NCPs involved in (3a), we propose to consider the following system, equivalent
to (3a) by virtue of Lemma 1.2, where we have substituted both ρk and ρε governing equations by the additional
laws (7) and (11) satisfied by the solutions of (3):



∂tρCj + ∂xρCju = ∂x((ρD + ρDt)∂xCj), 1 ≤ j ≤ N,

∂tρu+ ∂x

(
ρu2 + p+

2
3
ρk

)
= ∂x((µ+ µt)∂xu),

∂tE + ∂x

(
E + p+

2
3
ρk

)
u = ∂x((µ+ µt)u∂xu),

∂tρst + ∂xρstu = µt
γt − 1
ργt−1

f ′
t(f

−1
t (st))(∂xu)2,

∂tρ
kCε1

ε
+ ∂xρ

kCε1

ε
u = 0,

(15)

with in addition the following balance entropy law:

∂tρs+ ∂xρsu = µ
γ − 1
ργ−1

f ′(f−1(s))(∂xu)2. (16)

When considering the specific case N = 1 (or equivalently C1 = 1), the system (15) is nothing but the multi-
entropies Navier–Stokes system proposed by [5] where the authors develop a nonlinear projection method to
approximate solutions. We adopt this numerical method and we briefly recall the main steps and properties,
its extension to the case N ≥ 2 being obvious.

Let ∆t and ∆x respectively denote the time and space increments, chosen to be constant without restriction.
The numerical approximate solution, wh : R × R+ → Ω, is as usual supposed to be piecewise constant and we
set using classical notations:

wh(x, t) = wn
i , (x, t) ∈ (xi−1/2, xi+1/2) × (tn, tn+1), i ∈ Z, n ∈ N, (17)

where the notation w denotes the unknown vector (ρC1, ..., ρCN , ρu,E, ρst, ρ
kCε1

ε ).
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2.1.1. First step: Extracted first order system (tn → tn+1,=)

Assume that the discrete solution wh(x, tn) is known at the time level tn. In order to evolve it in time, we
propose to solve as a first step the following Cauchy problem:

∂tρCj + ∂xρCju = 0, 1 ≤ j ≤ N,

∂tρu+ ∂x

(
ρu2 + p+

2
3
ρk

)
= 0,

∂tE + ∂x

(
E + p+

2
3
ρk

)
u = 0,

∂tρst + ∂xρstu = 0,

∂tρ
kCε1

ε
+ ∂xρ

kCε1

ε
u = 0,

(18)

when prescribing the initial data to wh(x, tn) ∈ Ω where

Ω =
{(

ρC1, ..., ρCN , ρu,E, ρst, ρ
kCε1

ε

)
∈ R

N+4;

ρ > 0, Cj ∈ [0, 1],
∑

1≤j≤N

Cj = 1, ρu ∈ R,

E − (ρu)2

2ρ
− 2

3
ρ5/3f−1

t (st) > 0, ρst > 0, ρ
kCε1

ε
> 0
}
·

Weak solutions of the above hyperbolic system are asked to satisfy the following Lax entropy inequality

∂tρS + ∂xρSu ≤ 0, S = φ

(
p

ργ

)
, (19)

where φ ∈ C2(R,R) denotes any function which satisfies (H) to ensure w → φ(p/ργ) convex, to rule out
unphysical solutions. For convenience in the discussion, the problem (18, 19) is solved exactly. Then under the
following CFL like condition:

∆t
∆x

max |λi(w)| ≤ 1
2
, (20)

the solution is classically made of neighboring and non interacting elementary Riemann solutions. This solution
is then classically averaged over each cell (see Godlewski and Raviart [13], Harten, Lax and Van Leer [14]).
Let denote by g : Ω × Ω → R

4 the associated Lipschitz continuous numerical flux function. Setting gn
i+1/2 =

g(wn
i ,w

n
i+1), the updated solution then reads:

wn+1,=
i = wn

i − ∆t
∆x
{
gn

i+1/2 − gn
i−1/2

}
, i ∈ Z. (21)

From now on, we state the following maximum principle result of the mass fractions, directly deduced from
Larrouturou [17]:
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Lemma 2.1. Under the CFL condition (20), the unknowns (Cj)1≤j≤N satisfy (Cj)
n+1,=
i ∈ [0, 1] for all 1 ≤

j ≤ N , i ∈ Z, as soon as

(g{ρCju})n
i+1/2 = (g{ρu})n

i+1/2 ×


(Cj)n

i if (g{ρu})n
i+1/2 < 0,

(Cj)n
i+1 if (g{ρu})n

i+1/2 > 0.

2.1.2. Second step: Diffusion operator (tn+1,= → tn+1,−)

The discrete solution wh(x, tn+1,=) is next evolved in time to the date tn+1,− when solving with the initial
data wh(x, tn+1,=):

∂tρCj = ∂x((ρD + ρDt)∂xCj), 1 ≤ j ≤ N, (22a)
∂tρu = ∂x((µ+ µt)∂xu), (22b)
∂tE = ∂x((µ+ µt)u∂xu), (22c)

∂tρst = µt
γt − 1
ργt−1

f ′
t(f

−1
t (st))(∂xu)2, (22d)

∂tρ
kCε1

ε
= 0. (22e)

In that aim, we suggest to adopt the following implicit finite difference scheme:

(ρCj)
n+1,−
i = (ρCj)

n+1,=
i + ∆t∂x((ρD + ρDt)∂xCj)

n+1,−
i , 1 ≤ j ≤ N, (23a)

(ρu)n+1,−
i = (ρu)n+1,=

i + ∆t∂x((µ+ µt)∂xu
n+1,−
i , (23b)

En+1,−
i = En+1,=

i + ∆t∂x((µ+ µt)u∂xu)
n+1,−
i , (23c)

(ρst)
n+1,−
i = (ρst)

n+1,=
i + ∆tµt

γt − 1
ργt−1

f ′
t(f

−1
t (st))(∂xu)2

n+1,−

i

, (23d)

(ρ
kCε1

ε
)n+1,−
i = (ρ

kCε1

ε
)n+1,=
i , (23e)

where we have set:

∂x((ρD + ρDt)∂xCj)
n+1,−
i =

1
∆x2

(
(ρD + ρDt)n

i+1/2

(
(ρCj)

n+1,−
i+1

ρn+1,−
i+1

− (ρCj)
n+1,−
i

ρn+1,−
i

)

−(ρD + ρDt)n
i−1/2

(
(ρCj)

n+1,−
i

ρn+1,−
i

− (ρCj)
n+1,−
i−1

ρn+1,−
i−1

))
, (24a)

∂x((µ+ µt)∂xu
n+1,−
i =

µ+ µt

∆x2
(Mnui+1 − 2Mnui +Mnui−1) , (24b)

∂x(µ+ µt)u∂xu
n+1,−
i =

µ+ µt

2∆x2

(
(Mnui+1)2 − 2(Mnui)2 + (Mnui−1)2

)
, (24c)

µt
γ − 1
ργ−1

f ′
t(f

−1
t (st))(∂xu)2

n+1,−

i

=
µt(γ − 1)

2∆x2(ρn+1,−
i )γ−1

f ′
t(f

−1
t ((st)))

n+1,−
i

× ((Mnui+1 −Mnui)2 + (Mnui −Mnui−1)2
)
, (24d)
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with ui = (ρu)i/ρi and (st)
n+1,−
i = (ρst)

n+1,−
i /ρn+1,−

i and

f ′
t(f

−1
t ((st)))

n+1,−
i =


1

(f−1
t )′((st)

n+1,−
i )

if (ρst)
n+1,−
i = (ρst)

n+1,=
i ,

(st)
n+1,−
i − (st)

n+1,=
i

f−1
t ((st)

n+1,−
i ) − f−1

t ((st)
n+1,=
i )

, otherwise.

In our setting, the average (ρD + ρDt)n
i+1/2 remains free. To fix the ideas, we will set (ρD + ρDt)n

i+1/2 =
((ρD + ρDt)n

i + (ρD + ρDt)n
i+1)/2. In (24), Mn denotes a time averaging operator given by:

MnX =
Xn+1,− +Xn+1,=

2
· (25)

Let us emphasize that the first three finite difference operators, (24a, 24b) and (24c), preserve by construction
the conservation property to be satisfied by the unknowns ρCj , ρu and E.

Besides and as pointed out below, the benefit of these formulas is twofold.
On the one hand, straightforward computations yield from the above formulas the following identity:

{ρs}(wn+1,−
i ) = {ρs}(wn+1,=

i ) + ∆tµ
γ − 1
ργ−1

f ′(f−1(s))(∂xu)2
n+1,−

i

, (26)

where µ γ−1
ργ−1 f ′(f−1(s))(∂xu)2

n+1,−
i

is defined by the analogous formula (24d). Hence during the second step
(and only the second step), the proposed finite difference operators allow for preserving at the discrete level the
expected dissipation rate of the entropy ρs. Other finite difference formulas are actually possible but up to our
knowledge, such formulas systematically produce errors in the discrete entropy balance equation (26) for ρs.

On the second hand, the density is kept constant during this second step. Indeed, we establish

Lemma 2.2. The formula (24a) yields the following identity:∑
1≤j≤N

∂x((ρD + ρDt)∂xCj)
n+1,−
i = 0, (27)

thus ρn+1,−
i = ρn+1=

i . During the second step, the mass fractions (ρCj)
n+1,−
i are solutions of the following

linear problems:

(ρCj)
n+1,−
i = (ρCj)

n+1,=
i +

∆t
∆x2

(
(ρD + ρDt)n

i+1/2

(
(ρCj)

n+1,−
i+1

ρn+1,=
i+1

− (ρCj)
n+1,−
i

ρn+1,=
i

)

−(ρD + ρDt)n
i−1/2

(
(ρCj)

n+1,−
i

ρn+1,=
i

− (ρCj)
n+1,−
i−1

ρn+1,=
i−1

))
, (28)

for 1 ≤ j ≤ N . The maximum principle (Cj)
n+1,−
i ∈ [0, 1] is satisfied.

As a consequence, the implicit equations (23b) stay completely decoupled from the others, namely (23c)
and (23d).

Therefore solving (23) just amounts in practice to evaluate the mass fractions next to invert a positive definite
symmetric matrix for the unknown Mnu. The unknowns En+1,−

i and (ρst)
n+1,−
i can be then evaluated.

Proof of Lemma 2.2. Since ρn+1,−
i :=

∑
1≤j≤N (ρCj)

n+1,−
i , the identity (27) arises when summing the identi-

ties (24a) for 1 ≤ j ≤ N . As a consequence, we have ρn+1,−
i = ρn+1,=

i . The linear problems (28) thus hold
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as ρn+1,−
i are substituted by ρn+1,=

i in the operators (24a). Since the matrix to invert is a M-matrix, the
maximum principle is obtained. Indeed, let us set

αi+1 =
∆t
∆x2

(ρD + ρDt)n
i+1/2 > 0,

to rewrite (28) in the following form:

−αi−1(Cj)
n+1,−
i−1 + (1 + αi+1 + αi−1)(Cj)

n+1,−
i − αi+1(Cj)

n+1,−
i+1 = (Cj)

n+1,=
i ,

where (Cj)
n+1,=
i ∈ [0, 1]. The proof is thus completed. �

The above two steps yield a standard finite volume method for approximating the solutions of (15). Such a
method will be referred in the sequel as to a classical L2-projection method. Nevertheless, this scheme is easily
seen to yield the following discrete form for (9):

µt
γt − 1

(ρn+1,−
i )γt−1

f ′
t(f

−1
t ((st)

n+1,−
i ))

(
{ρs}(wn+1,−

i ) − (ρs)n
i +

∆t
∆x

{
{ρsu}n

i+1/2 − {ρsu}n
i−1/2

})
− µ

γ − 1
(ρn+1,−

i )γ−1
f ′(f−1(s(wn+1,−

i )))
(

(ρst)
n+1,−
i − (ρst)n

i +
∆t
∆x

{
{ρstu}n

i+1/2 − {ρstu}n
i−1/2

})
= En

i �= 0,

(29)

where the error En
i is nothing but the numerical rate of entropy dissipation (see Godlewski and Raviart [13]

for further details but also Berthon and Coquel [5]). As usual, we have used the notations {ρsu}n
i+1/2 and

{ρstu}n
i+1/2 for denoting the associated numerical flux functions.

This strongly implies that the classical L2-projection method can only fail in satisfying the balance entropy
condition (9), excepted with violation of the convexity properties of the Lax entropies (see [5]). The reader is
referred to the numerical results below for an illustration of the negative consequences of such a failure.

2.1.3. Third step: Nonlinear projection (tn+1,− → tn+1)

According to the discrete balance equation (29), standard finite volume methods induce a too large numerical
rate of entropy dissipation for ρs in comparison with that of ρst that in turn precludes the satisfaction of (9).
Here, we propose to add a nonlinear procedure as an additional step to classical L2-projection methods, the
so-called nonlinear projection step, which purpose is precisely to correct the former errors. Indeed, the aim of
the third step we propose is to redistribute the errors between the two rates of entropy dissipation in order to
keep them in balance according to (9). Let us emphasize that the numerical procedure derived below inherits
by construction all the desirable stability properties satisfied by relevant approximate Riemann solvers.

In order to preserve the required conservation properties, let us define:

(ρCj)n+1
i = (ρCj)

n+1,−
i , 1 ≤ j ≤ N,

(ρu)n+1
i = (ρu)n+1,−

i , En+1
i = En+1,−

i ,

(
ρ
kCε1

ε

)n+1

i

=
(
ρ
kCε1

ε

)n+1,−

i

. (30)

Then to enforce the validity of the balance entropy condition at the discrete level (9), we propose to seek for
(ρst)n+1

i as a solution of:

µt
γt − 1

(ρn+1,−
i )γt−1

f ′
t(f

−1
t ((st)

n+1,−
i ))

(
{ρs}(wn+1

i ) − (ρs)n
i +

∆t
∆x

{
{ρsu}n

i+1/2 − {ρsu}n
i−1/2

})
− µ

γ − 1
(ρn+1,−

i )γ−1
f ′(f−1((s(wn+1,−

i )))
(

(ρst)n+1
i − (ρst)n

i +
∆t
∆x

{
{ρstu}n

i+1/2 − {ρstu}n
i−1/2

})
= 0, (31)
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where the numerical flux functions {ρstu}n
i+1/2 and {ρsu}n

i+1/2 satisfy the Larrouturou formulas [17] (see
also [5]). This in turn uniquely defines (ρs)n+1

i according to:

(ρs)n+1
i = {ρs}

(
(ρC1)n+1

i , ..., (ρCN )n+1
i , (ρu)n+1

i , En+1
i , (ρst)n+1

i ,

(
ρ
kCε1

ε

)n+1

i

)
.

Numerical methods based on (31) are referred in the sequel as to L2 nonlinear projection methods. The above
nonlinear problem in the unknown (ρst)n+1

i can be shown to admit a unique nonnegative solution as soon as
the approximate Riemann solver involved in the first step 2.1.1 obeys discrete entropy inequalities for the Lax
pair (ρs, ρsu). Indeed we have (see [5] for the proof):

Theorem 2.3. Under the CFL restriction (20), the L2 nonlinear projection (31) admits a unique solution.
This solution satisfy

{ρs}(wn+1
i ) − (ρs)n

i +
∆t
∆x

{
{ρsu}n

i+1/2 − {ρsu}n
i−1/2

}
≤ 0. (32)

This above result is completed by the following stability result given in [5]:

Theorem 2.4. Under the CFL restriction (20), the following discrete entropy inequalities are satisfied:

{ρφ(s)}(wn+1
i ) − (ρφ(s))n

i +
∆t
∆x

{
{ρφ(s)u}n

i+1/2 − {ρφ(s)u}n
i−1/2

}
≤ 0, (33a)

{ρψ(st)}(wn+1
i ) − (ρψ(st))n

i +
∆t
∆x

{
{ρψ(st)u}n

i+1/2 − {ρψ(st)u}n
i−1/2

}
≤ 0, (33b)

for any strictly increasing functions φ and ψ assumed to satisfy the convexity of the maps w → ρφ(s(w)) and
w → ρψ(st). The following maximum principles for the specific entropies s and st are met:

(s)n+1
i ≤ max((s)n

i−1, (s)
n
i , (s)

n
i+1), (34a)

(st)n+1
i ≤ max((st)n

i−1, (st)n
i , (st)n

i+1). (34b)

The pressure p(wn+1
i ), the kinetic turbulent energy (ρk)n+1

i and its dissipation rate (ρε)n+1
i stay positive as soon

as the density ρn+1
i is positive.

In addition, the following result is deduced from Lemma 2.1 and Lemma 2.2:

Theorem 2.5. Under the CFL restriction (20), the maximum principle

(Cj)n+1
i ∈ [0, 1], for all 1 ≤ j ≤ N and i ∈ Z,

is satisfied.

This concludes the presentation of the nonlinear projection method.

2.1.4. About variable viscosities

For the sake of simplicity in the presentation of the nonlinear projection method, actually both viscosities
are assumed to be constant. In a more general setting, the viscosities are smooth functions of the unknowns.
All the above statements extend easily to such a viscosity function when adopting the following finite difference



466 C. BERTHON AND D. REIGNIER

formulas:

∂x((µ+ µt)∂xu)
n+1,−
i =

1
∆x2

(
(µ+ µt)n

i+1/2(M
nui+1 −Mnui) − (µ+ µt)n

i−1/2(M
nui −Mnui−1)

)
,

∂x((µ+ µt)u∂xu)
n+1,−
i =

1
2∆x2

(
(µ+ µt)n

i+1/2((M
nui+1)2 − (Mnui)2)

−(µ+ µt)n
i−1/2((M

nui)2 − (Mnui−1)2)
)
,

µt
γt − 1
ργt−1

f ′
t(f

−1
t (st))(∂xu)2

n+1,−

i

=
γt − 1

2∆x2(ρn+1,−
i )γt−1

f ′
t(f

−1
t ((st)

n+1,−
i ))

×
(
(µt)n

i+1/2(M
nui+1 −Mnui)2 + (µt)n

i−1/2(M
nui −Mnui−1)2

)
,

where (µ+ µt)n
i+1/2 = (µ)n

i+1/2 + (µt)n
i+1/2. The extension of the nonlinear projection (31) thus reads:

µt
n+1,−
i

γt − 1
(ρn+1,−

i )γt−1
f ′

t(f
−1
t ((st)

n+1,−
i ))

(
{ρs}(wn+1

i ) − (ρs)n
i +

∆t
∆x

{
{ρsu}n

i+1/2 − {ρsu}n
i−1/2

})
− µ n+1,−

i

γ − 1
(ρn+1,−

i )γ−1
f ′(f−1((s(wn+1,−

i )))
(

(ρst)n+1
i − (ρst)n

i +
∆t
∆x

{
{ρstu}n

i+1/2 − {ρstu}n
i−1/2

})
= 0,

where the averaged viscosities are defined as follows:

µ n+1,−
i =


(µ)n

i+1/2 + (µ)n
i−1/2

2
if Mnui+1 = Mnui = Mnui−1,

(µ)n
i+1/2(M

nui+1 −Mnui)2 + (µ)n
i−1/2(M

nui −Mnui−1)2

(Mnui+1 −Mnui)2 + (Mnui −Mnui−1)2
, otherwise,

with the analogous formula for the viscosity µt.

2.1.5. Nonlinear procedure and second order NCPs

To conclude the present section, we emphasize that the above nonlinear method can be understood as a
systematic procedure to compute the entropy ρst dissipation rate, i.e. the second order NCP (∂xu)2. Indeed,
the nonlinear step (31) reads as follows:

(ρst)n+1
i − (ρst)n

i +
∆t
∆x

{
{ρstu}n

i+1/2 − {ρstu}n
i−1/2

}
= µt

γt − 1
(ρn+1,−

i )γt−1
f ′

t(f
−1
t ((st)

n+1,−
i ))×

×
[

(ρn+1,−
i )γ−1

(γ − 1)µ
1

f ′(f−1(s(wn+1,−
i )))

(
{ρs}(wn+1

i ) − (ρs)n
i +

∆t
∆x

{
{ρsu}n

i+1/2 − {ρsu}n
i−1/2

})]
, (35)

which is nothing but a discrete form of (7). When compared with the discrete form of (7) obtained from the
first two steps, we deduce from (35) the following formulas:

(∂xu)2
n+1

i =

(ρn+1,−
i )γ−1

(γ − 1)µ
1

f ′(f−1(s(wn+1,−
i )))

({ρs}(wn+1
i ) − (ρs)n

i

∆t
+

1
∆x

{
{ρsu}n

i+1/2 − {ρsu}n
i−1/2

})
≥ 0. (36)
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Put in other words, the discrete formulas of (∂xu)2, here proposed, to evaluate the dissipation rate of ρst are
consistent with the dissipation rate of the entropy ρs since, from (6), we have:

(∂xu)2 =
ργ−1

(γ − 1)µ
1

f ′(f−1(s))
× (∂tρs+ ∂xρsu) , (37)

and (36) is a discrete form of (37).

2.2. Numerical approximation of (3b): Combustion

From the numerical approximation of the solutions of the turbulence subsystem (3a), in the sequel the discrete
solution wh(x, tn+1) is assumed to be known. Now, we deal with the combustion subsystem (3b) setting the
same notations as stated in the above section.

Similarly to the approximation of (3a), the discrete vector

uh(x, tn) = ((ρkh)h(x, tn), (ρQ)h(x, tn)),

is assumed to be known at the time level tn, and is evolved in time by two steps. For the sake of simplicity,
let λt and Cp be assumed to be constant in the sequel. The extension to variable coefficients is directly deduced
from the Section 2.1.4 where an extension to variable viscosities is proposed for the turbulence subsystem.

2.2.1. First step (tn → tn+1,−)

We propose to solve as a first step the following Cauchy problem:

∂tρCj + ∂xρCju = 0, 1 ≤ j ≤ N,

∂tρu+ ∂x

(
ρu2 + p+

2
3
ρk

)
= 0,

∂tE + ∂x

(
E + p+

2
3
ρk

)
u = 0,

∂tρst + ∂xρstu = 0,

∂tρ
kCε1

ε
+ ∂xρ

kCε1

ε
u = 0,

∂tρkh + ∂xρkhu = 0,

∂tρQ+ ∂xρQu = 0,

(38)

when prescribing the initial data to vh(x, tn) = (wh(x, tn),uh(x, tn)) ∈ Ω×R
�
+×R

�
+. Once again, we solve (38)

with the CFL like condition (20). Setting Gn
i+1/2 = G(vn

i ,v
n
i+1), where G denotes the Lipschitz continuous

numerical flux function, the updated solution reads:

vn+1,−
i = vn

i − ∆t
∆x

{
Gn

i+1/2 −Gn
i−1/2

}
, i ∈ Z. (39)

Let us note from now on that the first step in fact reads:

Gn
i+1/2 = t

(
gn

i+1/2, g̃
n
i+1/2

)
, (40)
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where gn
i+1/2 is defined by (21) and g̃n

i+1/2 = g̃(vn
i ,v

n
i+1) with g̃ the numerical flux function associated with the

subsystem (3b).
The combustion first step is concluded when stated the following easy result:

Lemma 2.6. Under the CFL restriction (20), the combustion unknowns satisfy positiveness: (ρkh)n+1,−
i > 0

and (ρQ)n+1,−
i > 0 for all i ∈ Z.

We omit the proof which is a direct consequence of the Godunov type method (for instance, see Godlewski
and Raviart [13]).

2.2.2. Second step: Diffusion operator (tn+1,− → tn+1)

The discrete vector uh(x, tn+1,−) is next evolved in time to the date tn+1 when solving with the initial data
uh(x, tn+1,−): 

∂tρkh = ∂x

(
λt

Cp
∂xkh

)
+ 2

λt

Cp
(∂xp

�)2,

∂tρQ = ∂x(ρDt∂xQ) + 2
λt

Sct

∑
1≤j≤N

(∂xCj)2.
(41)

For that purpose, we suggest to adopt the following implicit difference scheme:

(ρkh)n+1
i = (ρkh)n+1,−

i + ∆t∂x

(
λt

Cp
∂xkh

)n+1

i

+ 2∆t
λt

Cp
(∂xp�)2

n+1

i , (42a)

(ρQ)n+1
i = (ρQ)n+1,−

i + ∆t∂x(ρDt∂xQ)
n+1

i + 2∆t
λt

Sct

∑
1≤j≤N

(∂xCj)2
n+1

i , (42b)

where we have set:

∂x

(
λt

Cp
∂xkh

)n+1

i

=
1

∆x2

λt

Cp

(
(ρkh)n+1

i+1

ρn+1
i+1

− 2
(ρkh)n+1

i

ρn+1
i

+
(ρkh)n+1

i−1

ρn+1
i−1

)
, (43a)

∂x(ρDt∂xQ)
n+1

i =
1

∆x2

[
(ρDt)n+1

i+1/2

(
(ρQ)n+1

i+1

ρn+1
i+1

− (ρQ)n+1
i

ρn+1
i

)
− (ρDt)n+1

i−1/2

(
(ρQ)n+1

i

ρn+1
i

− (ρQ)n+1
i−1

ρn+1
i−1

)]
. (43b)

To complete the implicit difference scheme (42), we have to choose formulas for the discrete form of the dis-
sipation rate (∂xp

�)2 and (∂xCj)2. As exemplified in the next section, basic finite difference formulas induce
large errors for the approximated solutions when compared either the exact solutions. Indeed, basic formulas
predict too low dissipation rates (see Fig. 3) which are of prime importance in the capture of viscous shock
layers (see [5] to further details).

2.2.3. Discrete form of (∂xCj)2

Concerning (∂xCj)2, the dissipation rate of the ρQ governing equation is actually independently imposed. In
fact, the evolution in time of both ρQ and (ρC2

j /2)1≤j≤N must be kept in balance according to the additional
law (10). Since we have

(∂xCj)2 = − 1
ρD + ρDt

{
∂tρ

C2
j

2
+ ∂xρ

C2
j

2
u− ∂x((ρD + ρDt)Cj∂xCj)

}
, (44)
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for all 1 ≤ j ≤ N , we thus propose the following formula:

(∂xCj)2
n+1

i = − 1
(ρD + ρDt)n+1

i

×


{
ρ

C2
j

2

}
(wn+1

i ) −
(
ρ

C2
j

2

)n

i

∆t
+

{
ρ

C2
j

2 u
}n

i+1/2
−
{
ρ

C2
j

2 u
}n

i−1/2

∆x
− ∂x((ρD + ρDt)Cj∂xCj)

n+1

i

 (45)

where we have set

∂x((ρD + ρDt)Cj∂xCj)
n+1

i =
1

2∆x2

(
(ρD + ρDt)n

i+1/2

(
((Cj)n+1

i+1 )2 − ((Cj)n+1
i )2

)
−(ρD + ρDt)n

i−1/2

(
((Cj)n+1

i )2 − ((Cj)n+1
i−1 )2

) )
, (46)

where Cj := (ρCj)/ρ.
Let us emphasize from now on that the above two steps yield, at the discrete level, the following balance

equation deduced from (10) and the ρQ equation:

(ρD + ρDt) {∂tρQ+ ∂xρQu− ∂x(ρDt∂xQ)}

+ 2
λt

Sct

∑
1≤j≤N

{
∂tρ

C2
j

2
+ ∂xρ

C2
j

2
u− ∂x((ρD + ρDt)Cj∂xCj)

}
= 0. (47)

As a consequence, we deal with the dissipation rate (∂xCj)2 as a nonlinear projection method, similar to the
procedure (31), with the benefit of the splitting turbulence-combustion making explicit the nonlinear proce-
dure (45).

The discrete form of the mass fraction variance equation is thus obtained when establishing the following
positiveness result:

Lemma 2.7. Under the CFL restriction (20), (ρQ)n+1
i ≥ 0 for all i ∈ Z.

Since the matrix to be inverted to solve (42b) is monotone, the above result readily follows from Lemma 2.6
(see also the proof of the Lem. 2.2) and

Lemma 2.8. Let assume (∂xCj)2
n+1

i be given by (45) for all 1 ≤ j ≤ N , then (∂xCj)2
n+1

i ≥ 0 for all i ∈ Z.

Proof. First, let us recall that (ρCj)
n+1,=
i is defined by (21), (ρCj)

n+1,−
i is defined by (23a) and (ρCj)n+1

i =
(ρCj)

n+1,−
i and ρn+1

i = ρn+1,−
i from (30) while ρn+1,−

i = ρn+1,=
i by virtue of Lemma 2.2. Since the function

(ρ, ρCj) → ρC2
j /2 is convex, the following inequality easily follows using standard arguments (see for instance

Godlewski–Raviart [13], Tadmor [24], Coquel–Perthame [10]):

{
ρ

C2
j

2

}
(wn+1,=

i )−
(
ρ

C2
j

2

)n

i
+ ∆t

∆x

{{
ρ

C2
j

2 u
}n

i+1/2
−
{
ρ

C2
j

2 u
}n

i−1/2

}
=−(Ẽj)n

i ≤0,

which is a direct consequence of the well-known Jensen inequality.
Now, let us consider (23a) to write(
Cj

2

)n+1,−

i

× (ρCj)
n+1,−
i =

(
Cj

2

)n+1,−

i

× (ρCj)
n+1,=
i +

(
Cj

2

)n+1,−

i

× ∆t∂x((ρD + ρDt)∂xCj)
n+1,−
i ,
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which reads, after a straightforward computation, as follows:{
ρ
C2

j

2

}
(wn+1,−

i ) =

{
ρ
C2

j

2

}
(wn+1,=

i ) − ρn+1
i

2

(
(Cj)

n+1,−
i − (Cj)

n+1,=
i

)2

+
(Cj)

n+1,−
i

2

(
(ρCj)

n+1,−
i − (ρCj)

n+1,=
i

)
+

∆t
2

(Cj)
n+1,−
i ∂x((ρD + ρDt)∂xCj)

n+1,−
i .

Since (
(ρCj)

n+1,−
i − (ρCj)

n+1,=
i

)
= ∆t∂x((ρD + ρDt)∂xCj)

n+1,−
i ,

where we have

(Cj)
n+1,−
i ∂x((ρD + ρDt)∂xCj)

n+1,−
i = ∂x((ρD + ρDt)Cj∂xCj)

n+1,−
i

− 1
2∆x2

[
(ρD + ρDt)n

i+1/2

(
(Cj)

n+1,−
i+1 − (Cj)

n+1,−
i

)2

+ (ρD + ρDt)n
i−1/2

(
(Cj)

n+1,−
i − (Cj)

n+1,−
i−1

)2
]
,

using (ρCj)n+1
i = (ρCj)

n+1,−
i and ρn+1

i = ρn+1,−
i , we obtain

{
ρ

C2
j

2

}
(wn+1

i ) −
(
ρ

C2
j

2

)n

i

∆t
+

{
ρ

C2
j

2 u
}n

i+1/2
−
{
ρ

C2
j

2 u
}n

i−1/2

∆x
− ∂x((ρD + ρDt)Cj∂xCj)

n+1

i =

− (Ẽj)n
i − ρn+1

i

2

(
(Cj)

n+1,−
i − (Cj)

n+1,=
i

)2

− 1
2∆x2

[
(ρD + ρDt)n

i+1/2

(
(Cj)

n+1,−
i+1 − (Cj)

n+1,−
i

)2

+ (ρD + ρDt)n
i−1/2

(
(Cj)

n+1,−
i − (Cj)

n+1,−
i−1

)2
]
≤ 0.

The proof is thus completed. �
2.2.4. Discrete form of (∂xp

�)2

Once again, the dissipation rate of the ρkh equation, namely (∂xp
�)2, is actually independently imposed

and once again basic finite difference formulas of (∂xp
�)2 induce large errors. The very discrepancy between

above dissipation rates (∂xu)2 and (∂xCj)2 stays in the lack of a balance equation which prescribes the discrete
formula to be used.

After the recent work of Coquel and LeFloch [8] (but see also [6] in the framework of systems in conservation
form), dissipation rates are numerically shown to be negligible far away from viscous shock layers for relevant
large enough Reynolds number as soon as dissipation rates vanish through contact waves (through which u and
p+ 2

3ρk are continuous).
Put in other words, we have (∂xp

�)2 := O(1/Re), but also (∂xu)2 := O(1/Re), far away from shock layers.
Of course and as emphasized in the above sections, this turns out to be very different through a viscous shock
layer where (∂xp

�)2 plays a major role.
When characterized through a viscous shock layer, the dissipation rate (∂xp

�)2 is shown to be evolved
proportionally to (∂xu)2 as follows:

(∂xp
�)2 = Θ(v)(∂xu)2, in a shock layer, (48)

where Θ denotes a function to be specified. As a consequence, we have:

∂tρkh + ∂xρkhu = ∂x

(
λt

Cp
∂xkh

)
+ 2

λt

Cp
Θ(v)(∂xu)2 +O

(
1
Re

)
, (49)
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to obtain an approximate balance equation, deduced from (37):{
∂tρkh + ∂xρkhu− ∂x

(
λt

Cp
∂xkh

)}
− 2

λt

Cp
Θ(v)

ργ−1

(γ − 1)µ
1

f ′(f−1(s))
{∂tρs+ ∂xρsu} = O

(
1
Re

)
. (50)

We thus propose the following formula:

(∂xp�)2
n+1

i = Θ(vn+1
i )(∂xu)2

n+1

i , (51)

where (∂xu)2
n+1

i is given by (36).
At the end of the second step, (50) is enforced at the discrete level.
To conclude the presentation of the discrete formula of (∂xp

�)2, the precise from of (48) is established (the
proof is given below):

Lemma 2.9. Through a viscous shock layer, the following identity holds true:

(∂xp
�)2 =

[(
1 +

γt − 1
γ − 1

µt

µ

)(
γp− ρ

∂xp

∂xρ

)
−
(
γp+

2
3
γtρk

)]2 (∂xu)2

(u− σ)2
, (52)

where σ = ∂x(ρu)/∂xρ denotes the propagation speed of the wave.

In (51), since the function Θ involves derivatives, we need to be more precise in the discrete formula to
be used. First, let us recall that never the density stays constant trough a compression wave. Then, we will
consider (∂xp�)2

n+1

i = 0 as soon as ρn+1
i+1 = ρn+1

i−1 . Next, for ρn+1
i+1 �= ρn+1

i−1 we set

∂xp

∂xρ

n+1

i

=
pn+1

i+1 − pn+1
i−1

ρn+1
i+1 − ρn+1

i−1

and σn+1
i =

(ρu)n+1
i+1 − (ρu)n+1

i−1

ρn+1
i+1 − ρn+1

i−1

·

Let us specify the case un+1
i − σn+1

i = 0. Such a situation does not occur in a viscous shock layer (but only for
contact wave). As a consequence, if un+1

i = σn+1
i we are in a region where (∂xp

�)2 = O(1/Re). We thus set

(∂xp�)2
n+1

i = 0.
To summarize, the proposed formula reads as follows:

(∂xp�)2
n+1

i =



0 if ρn+1
i+1 = ρn+1

i−1 or σn+1
i = un+1

i ,[(
1 +

γt − 1
γ − 1

µt

µ

)(
γpn+1

i − ρn+1
i

∂xp

∂xρ

n+1

i

)

−
(
γpn+1

i +
2
3
γt(ρk)n+1

i

)]2 (∂xu)2
n+1

i

(un+1
i − σn+1

i )2
, otherwise.

We conclude the discrete form of (ρkh) with the following result:

Lemma 2.10. Under the CFL condition (20), (ρkh)n+1
i ≥ 0 for all i ∈ Z.

The proof is a direct consequence of the monotone property of the matrix to be inverted to solve (42a) and
the positiveness satisfied by (36) (see also the proof of the Lem. 2.2).

The numerical results which arise when a rarefaction wave is approximated, do not give on coarse meshes a
fairly good agreement as expected when compared with the exact solution (briefly detailed in the next section).
In fact, the discrete form (51) is based on the numerical dissipation rate of the entropy ρs. This one needs
a high level refinement to be small enough (and thus to be negligible) when approximating smooth solutions,
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Figure 4. Mesh refinement for rarefaction wave using (∂xu)2
n+1

i and (∂xu)2
n+1/2

i .

rarefaction wave for instance. To illustrate our purpose, we display in the Figure 4 the approximated solution
of the Riemann problem for (3) with an initial discontinuity located at x = 0 separating the following left and
right states:

ρL = 1, uL = −1, pL = 1, kL = 1, (kh)L = 2, Q = 1,
ρR = 0.41, uR = 0.26, pR = 0.29, kR = 0.55, (kh)R = 40, Q = 1.

The parameters of the model are given by:

µt

µ
= 1,

λt

Sct(D +Dt)
=

1
2
,

λt

Cpµ
= 0.01.

To enforce a near zero numerical dissipation rate of entropy for smooth solution, we propose a Crank–Nicholson
type discrete formula of the numerical entropy flux function and we set:

(∂xp�)2
n+1

i = Θ(vn+1
i )(∂xu)2

n+1/2

i , (53)

where

(∂xu)2
n+1/2

i =
(ρn+1

i )γ−1

(γ − 1)µ
1

f ′(f−1(s(wn+1
i )))

×
(
{ρs}(wn+1

i ) − (ρs)n
i

∆t
+

1
∆x

{{ρsu}n+1
i+1/2 + {ρsu}n

i+1/2

2
−

{ρsu}n+1
i−1/2 + {ρsu}n

i−1/2

2

})
· (54)

This numerical procedure makes the numerical results to be in agreement with the exact solution for mesh
refinements of interest. The “convergence rate” is in fact increased (see Fig. 4).

To conclude the section, we establish the Lemma 2.9.

Proof of Lemma 2.9. The viscous shock profiles are defined by the traveling wave solutions, i.e. particular
solutions in the form v(x, t) = v̂(x − σt) where σ ∈ R denotes the propagation speed of the wave. For the
sake of simplicity, we set ξ = x− σt. These solutions satisfy the limits (4). The function v̂ is a traveling wave
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solution of (3) iff it is a solution of the following ODE system:

−σdξρCj + dξρCju = dξ((ρD + ρDt)dξCj), 1 ≤ j ≤ N, (55a)

−σdξρu+ dξ

(
ρu2 + p+

2
3
ρk

)
= dξ((µ+ µt)dξu), (55b)

−σdξE + dξ

(
E + p+

2
3
ρk

)
u = dξ((µ+ µt)udξu), (55c)

−σdξρk + dξρku+
2
3
ρkdξu = µt(dξu)2, (55d)

−σdξρε+ dξρεu+
2
3
Cε1ρεdξu = Cε1

ε

k
µt(dξu)2 (55e)

−σdξρkh + dξρkhu = dξ

(
λt

Cp
dξkh

)
+ 2

λt

Cp
(dξp

�)2, (55f)

−σdξρQ+ dξρQu = dξ(ρDtdξQ) + 2
λt

Sct

∑
1≤j≤N

(dξCj)2. (55g)

First, the sum of the N mass fractions gives

−σdξρ+ dξρu = 0, (56)

to obtain σ = dξρu/dξρ, where dξρ, and thus dξu, does not vanish (see [3, 4]).
Since the state law (2) is assumed, we easily deduce from (55c) and (55d) the following identity:

−σdξp+ dξpu+ (γ − 1)pdξu = (γ − 1)µ(dξu)2. (57)

Now, let us note the following equality:

−σdξX + dξXu+ (α− 1)Xdξu = (u− σ)dξX + αXdξu,

where α ∈ R and X denotes respectively p and 2
3ρk, to obtain:

(u− σ)dξp+ γpdξu = (γ − 1)µ(dξu)2, (58)

(u− σ)dξ
2
3
ρk + γt

(
2
3
ρk

)
dξu = (γt − 1)µt(dξu)2. (59)

The sum of the two above identities reads:

(u− σ)dξp
� =

[
((γ − 1)µ+ (γt − 1)µt)dξu−

(
γp+

2
3
γtρk

)]
dξu.

From (58), we have

dξu =
(u− σ) dξp

dξu + γp

(γ − 1)µ
,

where

(u− σ) = −ρdξu

dξρ
·
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We thus obtain

dξp
� =

[(
1 +

γt − 1
γ − 1

µt

µ

)(
γp− ρ

dξp

dξρ

)
−
(
γp+

2
3
γtρk

)]
dξu

u− σ
,

and the proof is completed. �

3. Numerical experiments

The ability of the above discussed schemes, namely the L2-projection method and the nonlinear projection
scheme, in the capture of viscous shock layers for (3) is evaluated when testing their sensitivity in the prediction
of the end states with respect to the mesh refinement when an ideal gas is considered with constant adiabatic
exponent for two components (N = 2). For the sake of comparison, the systematic approach for approximating
the solutions of systems in non conservation form is included in the benchmarks. In what follows, Riemann
solutions of (60) are approximated using one of the most widely used method: namely the Roe scheme [22] and
its extension to multicomponent flows [1,9]. We have considered an approximate Riemann solver instead of an
exact Godunov scheme (as prescribed in the previous section) to emphasize that our procedure turns out to
be a systematic correction of the L2-projection method. The theoretical properties, established in the previous
section, agree with the stability properties of the adopted finite volume method in the first step. Concerning
the boundary conditions, we have just considered boundary conditions according to the system (38) (see [13]).
In the following numerical results, the heat conduction is assumed negligible. In the case of non zero heat
conduction and turbulent conductivity, actually, the numerical method we propose is based on an additional
step where heat conduction is discretized by usual formulas (see [20]).

3.1. The usual approach for solving (3)

For the sake of comparison, we end the present section when briefly recalling the most usual (if not systematic)
approach for approximating the solutions of systems in non conservation form like (3). According to this
approach, all the non conservative products are rejected to the right hand side of the governing equations and
are treated as “source terms”. The first step is therefore concerned with the following first order extracted
system in conservation form: 

∂tρCj + ∂xρCju = 0, 1 ≤ j ≤ N,

∂tρu+ ∂x

(
ρu2 + p+

2
3
ρk

)
= 0,

∂tE + ∂x

(
E + p+

2
3
ρk

)
u = 0,

∂tρk + ∂xρku = 0,

∂tρε+ ∂xρεu = 0,

∂tρkh + ∂xρkhu = 0,

∂tρQ+ ∂xρQu = 0,

p = (γ − 1)
(
E − ρ

u2

2
− ρk

)
,

p� = p+
2
3
ρk,∑

1≤j≤N

Cj = 1.

(60)
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while in a next step, the “source terms”

−2
3
ρk∂xu, −2

3
Cε1ρε∂xu, µt(∂xu)2, Cε1

ε

k
µt(∂xu)2, 2

λt

Cp
(∂xp

�)2, 2
λt

Sct

∑
1≤j≤N

(∂xCj)2,

are to be given some ad hoc finite difference approximations. We refer for instance the reader to Larrouturou and
Olivier [18] and Mohammadi and Pironneau [20] concerning the details. The (severe) drawbacks in the resulting
numerical schemes are illustrated below. Let us furthermore emphasize after Forestier–Herard–Louis [12] that
exact Riemann solutions of (60) all preserve the positiveness of the total pressure p� (far away from vacuum)
but do not necessarily keep non negative the pressure p. By contrast, both pressure p and kinetic turbulent
energy ρk in (3) can be shown to stay positive (again far away from vacuum; we do not consider the vacuum
problem in the present work). Such schemes are referred to classical methods.

3.2. Numerical results

The initial data of the Cauchy problems to be solved are made of two constant states, the discontinuity being
located at x = 0.

The associated exact solutions thus correspond to smooth regularizations of Riemann solutions for the
underlying first order system extracted from (3). They are thus made up generally speaking of the juxtaposition
of traveling wave solutions and “rarefaction” solutions. We do not develop the way to obtain the exact solutions.
But, we just emphasize that the exact solutions are obtained when integrating, using Maple subroutines, the
ODE’s system (55) for governing traveling wave solutions. After Raviart and Sainsaulieu [21], in the limit of a
rescaling parameter, the exact solutions of the Riemann problem for the hyperbolic system (3) compatible with
the diffusive tensor are thus obtained.

Discrete solutions are systematically compared with the exact solutions.
All the calculations described below have been performed according to the following strategy. An exact Roe

type linearization for system (18) and (38) yields an approximate Riemann solver to solve the first step 2.1.1
and 2.2.1 (see [5,9] for the detailed formulas). Successive grids refinements, ranging from 200 to 1 000 cells, are
considered. The CFL number is fixed at the constant value 0.5.

Two test cases, labeled A and B, are addressed. The first one is the juxtaposition of two traveling wave with
speed σ = ±1, while case B is made of a rarefaction wave and a traveling wave. Here, both viscosities µ and µt,
both diffusion coefficients D and Dt, the dynamical turbulent viscosity λt and the specific heat Cp are assumed
to be fixed positive constants.

In all the benchmarks discussed below, the Reynolds number is set at the constant value Rey = 105, while
the viscosity ratio µt/µ is set at 1. Following [4, 5], the case of µt/µ = 1 turns out to be the more difficult test
for numerical simulation and we adopt this ratio rather than µt/µ >> 1. The other coefficients are fixed as
follows:

γ = 7/5,
λt

Sct(D +Dt)
=

1
2

and
λt

Cpµ
=

{
0.01 case A,
100 case B.

The associated initial data are defined in Table 1.
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Table 1. Initial data.

Test ρ u p C1 k ε kh Q

A 10 0.1 1 0.7 0.01 1 0 1
3.9055 −2.3488 0.1044 0.2 3.0276 250.7002 4.5544 3

B 1 1 −1 0.7 1 1 2 1
0.0354 0.0193 −2.1027 0.2 3.1772 0.1457 47.2714 3
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Figure 5. Problem A.

All the figures assess that the usual numerical strategy (see Sect. 3.1) grossly fails to properly restore the
correct end states. Considering the L2-projection method, once again large errors occur. These two schemes
furthermore suffer from a dramatic sensitivity with respect to mesh refinements and discrete solutions do not
seem to converge to a given limit function even for the finest proposed grids. The nonlinear L2-projection
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Figure 6. Problem B.

method produces approximate solutions that achieve a fairly good agreement with the exact solutions while
staying almost non-sensitive with ∆x in the two investigated problems. However, we note that the approximation
of ρkh, obtained by the nonlinear procedure, involves an error in the prediction of the right state of the 1-shock.
We conjecture that this lack of accuracy lies in the numerical dissipation rate of the entropy s. Indeed, the
production term (∂xp

�)2 is approximated via the dissipation rate of s but for a discrete formula which involves
numerical errors. According to the large errors, the considered scales in Figures 5 and 6 differ with the displayed
method.
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