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TRANSPORT OF POLLUTANT IN SHALLOW WATER
A TWO TIME STEPS KINETIC METHOD
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Abstract. The aim of this paper is to present a finite volume kinetic method to compute the transport
of a passive pollutant by a flow modeled by the shallow water equations using a new time discretization
that allows large time steps for the pollutant computation. For the hydrodynamic part the kinetic solver
ensures – even in the case of a non flat bottom – the preservation of the steady state of a lake at rest,
the non-negativity of the water height and the existence of an entropy inequality. On an other hand
the transport computation ensures the conservation of pollutant mass, a non-negativity property and
a maximum principle for the concentration of pollutant and the preservation of discrete steady states
associated with the lake at rest equilibrium. The interest of the developed method is to preserve these
theoretical properties with a scheme that allows to disconnect the hydrodynamic time step – related
to a classical CFL condition – and the transport one – related to a new CFL condition – and further
the hydrodynamic calculation and the transport one. The CPU time is very reduced and we can
easily solve different transport problems with the same hydrodynamic solution without large storage.
Moreover the numerical results exhibit a better accuracy than with a classical method especially when
using 1D or 2D regular grids.
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1. Introduction

The shallow water equations are an usual model to describe the flows in rivers or coastal areas. The conser-
vative form is written as a first order hyperbolic system with source terms coming from the bottom topography
or the friction on the bed river. Research on solution methods for these equations has received considerable
attention in the past two decades and a great number of finite-volume schemes have been developed – refer to [8]
or [12] for a detailed presentation. The finite volume method can be used on general triangular grids with a
finite element data structure and preserves the conservativity property of the equations. It requires to compute
the fluxes at the control volume interface and its stability requires some upwinding in the interpolation of the
fluxes and a CFL condition on time steps – refer to [5] for a survey of its properties.

A well-known difficulty of the Saint-Venant system is the preservation of nontrivial equilibria due to the
presence of the source terms. In the last years many authors treated this question along with an early idea of

Keywords and phrases. Shallow water equations, Saint-Venant system, finite volume method, kinetic scheme, transport of
pollutant, time discretization.

1 Projet M3N, INRIA, Domaine de Voluceau, 78153 Le Chesnay, France.
e-mail: Emmanuel.Audusse@inria.fr, Marie-Odile.Bristeau@inria.fr

c© EDP Sciences, SMAI 2003



390 E. AUDUSSE AND M.-O. BRISTEAU

Roe [17] to upwind the source terms at the interfaces – see for instance [2,6,9,11] or [13]. On an other hand the
non-negativity of the water height, especially when applications with dry areas are considered, is still a problem
for several schemes.

Here we use a kinetic scheme initiated in [1] and developed in [16] and [3]. This scheme is based on a kinetic
theory exposed in [15] that allows to link the shallow water equations to a kinetic equation at the mesoscopic
level. In [1] only the homogeneous Saint-Venant system has a kinetic interpretation and the source terms are
upwind at the macroscopic level. In [16] the source terms are also included in the kinetic formulation. The
deduced schemes are conservative and we can prove analytically the non-negativity of the water height and the
conservation of the equilibrium for the steady state of a lake at rest. Moreover with the second scheme the
numerical solutions satisfy a discrete entropy inequality. For proofs and numerical examples, see the papers
cited above.

More specifically in this paper we are concerned with addressing several questions related to the advection of
a pollutant in the Saint-Venant system. It is introduced with a classical transport equation on the concentration
of pollutant. The pollution phenomena have today a very large audience and many industrial applications –
see for instance [10] for the French electricity group EDF. Then several studies were initiated to understand
better the chemical and biological background or the physical mechanisms – see for instance the study about
the river Seine near Paris in [14]. But we do not find many works about the well adapted mathematical
and numerical treatments. However it is an important point because the transport equation presents many
properties which would be interesting to satisfy at the discrete level. Indeed as for the water height we must
ensure the non-negativity of the concentration of pollutant but also a maximum principle while keeping the
conservation property for the pollutant. On an other hand as we do not introduce diffusion in the model we
want also to preserve the steady state equilibria related to a lake at rest. Finally we use in our scheme the fact
that the characteristic velocities of the hydrodynamic and transport phenomena can be very different in order
to disconnect the two time discretizations. It allows a larger time step for pollutant transport based upon the
CFL condition

|u|∆t ≤ ∆x

which does not take into account the speed of sound by opposition to the hydrodynamic CFL. It is particularly
useful when numerous pollutants are computed or when different pollutant problems are computed with the
same hydrodynamic background as it appears often in water quality questions.

The outline of this paper is the following. After presenting the equations in Section 2, we briefly recall the
kinetic formulation, the deduced scheme and its extension to the advection equation in Section 3. Then we
prove in Section 4 the non-negativity properties, the maximum principle for the pollutant and the preservation
of equilibria. Finally in Section 5 we present a two time steps scheme and the associated time discretization. In
Section 6 we present some numerical results to illustrate the improvements of the method. Then in Section 7 we
discuss an extension to the two dimensional case and we present some numerical results on realistic geometries.

2. Equations

The one dimensional shallow water system allows to describe the flow in an ideal rectangular river, at time
t ∈ R+ and at the point x ∈ R, through the water height h(t, x) ∈ R+ and the velocity u(t, x) ∈ R, by the
hyperbolic system

∂h

∂t
+

∂(hu)
∂x

= S(t, x), (2.1)

∂(hu)
∂t

+
∂

∂x

(
hu2 +

gh2

2

)
+ gh

∂z

∂x
= 0, (2.2)



TRANSPORT OF POLLUTANT IN SHALLOW WATER: A TWO TIME STEPS KINETIC METHOD 391

with g the gravity acceleration and z(x) ∈ R the bottom topography and where S(t, x) ∈ R denotes the sources
of water (in m × s−1). Therefore h + z is the level of water surface and in the following we denote q = hu the
discharge.

These equations were originally written by Saint-Venant in [18]. Gerbeau and Perthame present in [7] a
derivation from the Navier–Stokes system. The system (2.1, 2.2) corresponds to a very simple case. Other
terms can be added in the right-hand side, in order to take into account frictions on the bottom or other
phenomena.

To perform the analysis of transport of pollutant in this ideal river, we add a third equation

∂(hT )
∂t

+
∂(huT )

∂x
= TSS, (2.3)

where T (t, x) ∈ R+ is the concentration of pollutant and TS are the given values of the concentration of pollutant
at the sources S. In the following we denote e = hT the quantity of pollutant in the flow. We can also write
this equation on the nonconservative form where ‘monotonicity’ is better seen

∂T

∂t
+ u

∂T

∂x
=

(TS − T )S
h

· (2.4)

It is a classical transport equation. Here we suppose that the pollutant is passive and does not interact with
the flow. But in some cases, other phenomena like sedimentation, erosion, birth or death of particles have to
be considered.

We can write this system in the conservative and compact form

∂U

∂t
+

∂F (U)
∂x

= B(U),

with

U =


 h

q
e


 , F (U) =




q

q2

h
+

gh2

2
qe

h


 , B(U) =




S

−gh
∂z

∂x
TSS


 .

3. The kinetic scheme

3.1. Kinetic interpretation of the shallow water equations

We introduce here a kinetic approach to system (2.1)–(2.3) written with S = 0. Then we can deduce from
the discretization of the kinetic equation a “kinetic scheme” for the macroscopic system.

Let χ(w) be an even and compactly supported probability defined on R satisfying that its second moment
is equal to one. Then we introduce two microscopic densities of particles M(t, x, ξ) and N(t, x, ξ) defined by a
Gibbs equilibrium

M(t, x, ξ) =
h(t, x)
c(t, x)

χ

(
ξ − u(t, x)

c(t, x)

)
, (3.1)

N(t, x, ξ) =
e(t, x)
c(t, x)

χ

(
ξ − u(t, x)

c(t, x)

)
, (3.2)

with

c(t, x)2 =
gh(t, x)

2
·
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We denote

G(t, x, ξ) =
(

M(t, x, ξ)
N(t, x, ξ)

)
. (3.3)

Theorem 3.1. The functions (h,q,e)(t,x) are strong solutions of the shallow water system (2.1)–(2.3) if and
only if G(t, x, ξ) is solution of the kinetic equation

∂G

∂t
+ ξ

∂G

∂x
− g

∂z

∂x

∂G

∂ξ
= Q(t, x, ξ), (3.4)

where Q(t, x, ξ) is a “collision term” equal to zero at the macroscopic level.

Proof. The result is obtained by a simple integration in ξ of the equation (3.4) against the matrix K(ξ)

K(ξ) =


 1 0

ξ 0
0 1


 . �

The non-linear Saint-Venant system is now reduced to a linear transport system on nonlinear quantities M
and N , for which it is easier to find a simple numerical scheme with good theoretical properties. For a detailed
proof of the hydrodynamic part of the kinetic interpretation refer to [1] and for the treatment of the source
term at this microscopic level, see [16].

3.2. The kinetic scheme

We now describe the kinetic scheme without taking into account the source term due to the bottom topog-
raphy. Indeed we are more interested here with the treatment of the pollutant and for the simplicity of the
purpose we restrict ourselves to the flat bottom case. For a complete hydrodynamic presentation we refer to [1]
or [16].

To approximate the solution U(t, x), x ∈ X ∈ R, t ≥ 0, of the shallow water equations with transport of
pollutant by discrete values Un

i , i ∈ I ⊂ Z, n ∈ N we consider as usual a grid of points xi+1/2, i ∈ I,

· · · < xi−1/2 < xi+1/2 < xi+3/2 < . . . ,

and we define the cells (or finite volumes) and their lengths

Ci =]xi−1/2, xi+1/2[, ∆xi = xi+1/2 − xi−1/2 > 0.

We shall denote also xi = (xi−1/2 +xi+1/2)/2 and we consider a time-step ∆tn > 0 – that will be specified later
– and define the discrete times by

tn =
n−1∑

0

∆tk, n ∈ N
∗.

Now being given a piecewise constant approximation of the initial data, we must find a formula of the form

Un+1
i = Un

i + σn
i

(
Fn

i− 1
2
− Fn

i+ 1
2

)
, (3.5)

where

Un
i =


 hn

i

qn
i

en
i



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and Un+1
i are the piecewise constant approximations at times tn and tn+1 on the cell Ci, where σn

i is defined by

σn
i =

∆tn

∆xi
,

and where the fluxes Fn
i− 1

2
and Fn

i+ 1
2

must be specified.
Here we use the kinetic interpretation to precise the formula (3.5). First we define two discrete densities of
particles Mn

i (ξ) and Nn
i (ξ) by

Mn
i (ξ) =

hn
i

cn
i

χ(
ξ − un

i

cn
i

),

Nn
i (ξ) =

en
i

cn
i

χ(
ξ − un

i

cn
i

),

and the corresponding quantity Gn
i (ξ). Then we define a new density function Gn+1

i (ξ) at time tn+1 with
applying a simple upwind scheme for the discrete version of the kinetic equation (3.4) for every ξ and without
taking account the right-hand side

Gn+1
i (ξ) = Gn

i (ξ) − ξσn
i

(
Gn

i+ 1
2
(ξ) − Gn

i− 1
2
(ξ)
)

,

with

Gn
i+ 1

2
(ξ) =

{
Gn

i (ξ) if ξ ≥ 0
Gn

i+1(ξ) if ξ < 0.

This new density function is not an equilibrium but thanks to the property of the right-hand side of (3.4) we
can recover the macroscopic quantity at time tn+1 by a simple integration in ξ. Finally we can precise the
macroscopic formula (3.5) with

Fn
i+ 1

2
= F (Un

i , Un
i+1) = F+(Un

i ) + F−(Un
i+1), (3.6)

where

F−(Un
i ) =

∫
ξ∈R−

ξK(ξ) Gn
i (ξ) dξ, (3.7)

F+(Un
i ) =

∫
ξ∈R+

ξK(ξ) Gn
i (ξ) dξ. (3.8)

A detailed expression of F+(Ui) can also be written

F+(Ui) =


F+

h (Ui)
F+

q (Ui)
F+

e (Ui)


 = hi

∫
w≥−ui

ci

(ui + wci)


 1

ui + wci

Ti


χ(w)dw. (3.9)

This kinetic method is interesting because it gives a very simple and natural way to propose a numerical flux
through the kinetic interpretation and, if we can perform analytically the integration in (3.9), it is numerically
powerful because the kinetic level disappears and the scheme is written directly as a macroscopic scheme.

Notice also that according to the above derivation, the pollutant flux F+
e (Ui) that we refer to as the classical

kinetic scheme and that we denote F+
k,e(Ui) in the following, has a very simple expression

F±
k,e(Ui) = TiF

±
h (Ui). (3.10)

Nevertheless we will not use it in practice because of a lack of accuracy as we will show in the next section.
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3.3. Preservation of the equilibria

We do not treat here the problem of the hydrodynamic equilibria because in the case of a flat bottom they
are trivially preserved. We refer to [1] or [16] where the authors prove analytically the preservation of the lake
at rest equilibrium whatever is the bottom topography.

We are now interested with the problem of the conservation of equilibria for the pollutant. Consider the
situation of a lake at rest – with a flat bottom or not – and a numerical scheme that preserves it. Then the
numerical discharge vanishes and the water height is constant. So

Fh(Uj , Uj+1) = 0 ∀ j ∈ Z, (3.11)

and so due to (3.6)
F+

h (Uj) = −F−
h (Uj+1) ∀ j ∈ Z,

but – from (3.9) – these two fluxes are not equal to zero.
Now put some pollutant with concentration equal to one at the node i of the mesh and zero everywhere

else. As there is no diffusion in the model this situation is an equilibrium. But numerically – from (3.10) – the
classical kinetic scheme induces

F±
k,e(Ui) �= 0,

F±
k,e(Uj) = 0 ∀ j �= i,

and then (3.6) shows immediately that the equilibrium is not preserved for the concentration of pollutant. For
long time integration the classical kinetic scheme will create very large diffusion for the pollutant and thus we
discard it.

We rather introduce some upwinding in the transport advection depending on the sign of the total mass flux.
Then the pollutant flux vanishes with the total mass flux. It is done with the introduction of the new pollutant
flux Fuk,e(Ui, Ui+1) defined in the following formula that replaces (3.10)

Fuk,e(Ui, Ui+1) = Ti+ 1
2
Fh(Ui, Ui+1) (3.12)

where

Ti+ 1
2

=
(

Ti for Fh ≥ 0
Ti+1 for Fh ≤ 0

)
. (3.13)

In the following we call this new scheme the upwind kinetic scheme.

Theorem 3.2. With the pollutant flux (3.12, 3.13) the upwind kinetic scheme (3.5)–(3.8) preserves the pollutant
equilibrium in a lake at rest.

Proof. The hydrodynamic computation is unchanged and so (3.11) is always true. Then from (3.12, 3.13) we
have immediately

Fuk,e(Uj , Uj+1) = 0 ∀ j ∈ Z.

�

4. Properties of the scheme

4.1. Positivity of the water height

In addition to the preservation of the hydrodynamic and transport equilibria in a lake at rest the upwind
kinetic scheme has numerous good properties. As we are interested here with the coupling between the shallow
water system and a transport equation, the problem of the source term is not treated. As for the hydrodynamic
part of the proofs we restrict ourselves to the case of a flat bottom. But notice that these results also hold true
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with a non-flat bottom, cf. [1] or [16] for complete proofs on the hydrodynamic part. In Sections 6 and 7 some
numerical examples with a non-flat bottom are presented using our scheme.

Theorem 4.1. The scheme is consistent and conservative. It ensures the non-negativity of the water height
under the CFL condition

∆tn ≤ min

(
∆xi

|un
i | + wMcn

i

)
(4.1)

where 2wM is the size of the compact support of χ.

Proof. Consistency and conservativity are easily deduced by (3.5)–(3.8).
To prove the positivity of the water height let us go back to the microscopic level. Suppose we have hn

i ≥
0 ∀i ∈ Z. From the definition of the function M in (3.1) and the positivity of the function χ, we immediately
deduce

Mn
i (ξ) ≥ 0 ∀i.

We now introduce the quantities ξ+, ξ− defined by

ξ+ = max(0, ξ), ξ− = max(0,−ξ), (4.2)

and so we write the upwind microscopic scheme deduced by (3.4) in the form

fn+1
i (ξ) = (1 − σn

i |ξ|)Mn
i (ξ) + σn

i−1ξ+Mn
i−1(ξ) + σn

i+1ξ−Mn
i+1(ξ). (4.3)

Then, for each j, either the value of ξ is such that

|ξ − un
j | ≥ wMcn

j ,

and then from the definitions of wM and of function M we have

Mn
j (ξ) = 0,

or the value of ξ is such that
|ξ − un

j | ≤ wMcn
j ,

which implies that |ξ| ≤ (|un
j | + wMcn

j ) and then, using the CFL condition (4.1), we obtain

σn
j |ξ| ≤ 1.

Therefore in the relation (4.3), fn+1
i (ξ) is a convex combination of nonnegative quantities and thus

fn+1
i (ξ) ≥ 0.

With a simple integration in ξ, we obtain
hn+1

i ≥ 0.

�

4.2. Positivity of the concentration of pollutant

Theorem 4.2. The upwind kinetic scheme (3.5)–(3.8) and (3.12, 3.13) preserves the positivity of the concen-
tration of pollutant.
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Proof. We present first another equivalent formula for the pollutant flux (3.12, 3.13)

Fuk,e(Ui, Ui+1) = TiFh(Ui, Ui+1)+ − Ti+1Fh(Ui, Ui+1)−, (4.4)

where we refer to (4.2) for the definitions of the positive and negative parts.
We assume that the concentration of pollutant is nonnegative at time tn and we drop the superscripts n for

simplicity. Then

(hT )n+1
i = (hT )i + σi (Fuk,e(Ui−1, Ui) − Fuk,e(Ui, Ui+1)) ,

that is exactly with (4.4)

(hT )n+1
i = (hT )i

+σi[Ti−1Fh(Ui−1, Ui)+ − TiFh(Ui−1, Ui)−
−TiFh(Ui, Ui+1)+ + Ti+1Fh(Ui, Ui+1)−]. (4.5)

Thanks to the non-negativity of the concentration of pollutant at time tn we can write the inequality

(hT )n+1
i ≥ Ti (hi − σi (Fh(Ui−1, Ui)− + Fh(Ui, Ui+1)+)) . (4.6)

Now we remark from (3.7, 3.8) and due to the positivity of function M that

F−(Uj) ≤ 0 ∀ j ∈ Z,

F+(Uj) ≥ 0 ∀ j ∈ Z,

and so we can write, using (3.6),

(hT )n+1
i ≥ Ti

(
hi − σi

(
F+

h (Ui) − F−
h (Ui)

))
.

Until now we have not used the fact that we are on a flat bottom and if we forget the concentrations of the
pollutant in the precedent expression we recognize a step of the proof of the non-negativity of the water height.
We can conclude the two proofs are linked and so if the scheme ensures the non-negativity of the water height
then it ensures automatically the non-negativity of the concentration of pollutant – whatever is the bottom
topography. More precisely in the case of a flat bottom the end of the proof is to use the detailed expression of
the fluxes to minimize the right-hand side. Indeed from (3.9) and thanks to the property of χ

F+
h (Ui) − F−

h (Ui) = hi

∫
w≥−ui

ci

(ui + wci)χ(w)dw

−hi

∫
w≤−ui

ci

(ui + wci)χ(w)dw

≤ hi

∫
w∈R

(ui + |w|ci)χ(w)dw

≤ hi(ui + wM ci).

Therefore, we deduce

(hT )n+1
i ≥ Tihi (1 − σi(ui + wMci))

and the CFL condition (4.1) ensures also the non-negativity of concentration of pollutant. �
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4.3. Maximum principle for the concentration of pollutant

Theorem 4.3. The upwind kinetic scheme (3.5)–(3.8) and (3.12, 3.13) ensures a maximum principle for the
concentration of pollutant. Indeed it satisfies

∀n ∀i T n+1
i ≤ max(T n

i−1, T
n
i , T n

i+1). (4.7)

Proof. We rewrite (4.5) in another form – still dropping the superscripts n for more readability

(hT )n+1
i = Ti (hi − σi (Fh(Ui−1, Ui)− + Fh(Ui, Ui+1)+))

+Ti−1σiFh(Ui−1, Ui)+ + Ti+1σiFh(Ui, Ui+1)−. (4.8)

The two last parts of the right-hand side are clearly nonnegative and we established in the precedent proof it is
true for the first part too. So we can maximize the left quantity

(hT )n+1
i ≤ max (Ti−1, Ti, Ti+1) (hi + σi(−Fh(Ui−1, Ui)− − Fh(Ui, Ui+1)+

+Fh(Ui−1, Ui)+ + Fh(Ui, Ui+1)−)) .

A simple reorganization of the right-hand side gives with the formulae (3.5) and (3.6)

(hT )n+1
i ≤ hn+1

i max (Ti−1, Ti, Ti+1) . �

5. Larger time steps for the pollutant

5.1. Motivation

It is well known that the two eigenvalues of the Saint-Venant system are related to the velocity of the flow
and to the water height by the formulae u +

√
gh and u − √

gh. The eigenvalue of the transport equation is
simply equal to the velocity of the flow. So it appears in the cases where the Froude number defined by

Fr =
u√
gh

is small – which is almost always the case for a classical river – that the characteristic time for information
transfer is very different for the hydrodynamic and for the transport parts. Then if the CFL number is relevant
for the hydrodynamic computation it is not connected to the physical background of the transport phenomenon.
Therefore it could be interesting to create an adaptive numerical scheme that allows to disconnect the two time
discretizations. Especially in some realistic applications, when we can have to treat twenty or thirty different
pollutants – and some of them are modeled by more complicated equations than (2.3) – or when we want to
test different phenomena of pollution in the same hydrodynamic background. So we would like to solve only
the relevant transport states and to store only the useful global hydrodynamic informations while ensuring all
the properties presented in the previous section.

The way to reach our goal is to disconnect the transport solution from the CFL condition (4.1). Indeed this
time step condition is strictly related to the eigenvalues of the hydrodynamic process but is not necessary to
ensure the transport properties. In fact it appears that the only theoretical time step restriction is given by the
positivity of the right-hand side of (4.6) – the non-negativity property that we can then deduce is also sufficient
to prove the maximum principle. It is clear that the CFL condition (4.1) is more restrictive. On an other hand
notice that the positivity of the right-hand side of (4.6) is the less restrictive formula that we can obtain, if we
impose that the non-negativity condition for the concentration of pollutant depends only of the hydrodynamic
process.
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At last notice that the new condition we introduce exhibits a term which is analogous to a velocity and so
it is in accordance with the remark on the eigenvalues that we make first. Furthermore in the very simple case
where we consider a stationary flow on a flat bottom – constant discharge and water height – the non-negativity
of the right-hand side of (4.6) is reduced to

∆tn ≤ min
(

∆xi

|un
i |
)
·

5.2. Algorithm

We now consider two different time step conditions. Notice that the CFL condition (4.1) is an a priori
condition – we need only to know the hydrodynamic state at time tn to compute the time step – while the
transport time step condition (4.6) is an a posteriori condition – we must compute the mass fluxes before we
compute the time step condition. On an other hand it is convenient to manage with the hydrodynamic and the
pollutant quantities at the same time and so the transport time step must be the sum of some hydrodynamic
time steps.

So we propose the following algorithm: starting from a given state we perform the hydrodynamic computation
– time step and fluxes – then we compute the transport time step condition (4.6) with this time step and these
fluxes. If (4.6) is satisfied we perform another hydrodynamic computation, we sum the hydrodynamic time
steps and fluxes and we compute (4.6) with these sums. We continue this algorithm until (4.6) is not satisfied.
Then we compute the new pollutant state.

Before we present precisely the algorithm let us make some useful remarks. First the hydrodynamic compu-
tation is exactly the same as in the case of the upwind solution. It means that our strategy preserves the fact
that the pollutant has no influence on the hydrodynamic phenomena and it ensures that the positivity property
is preserved. Second the transport time step is computed as a sum of hydrodynamic time steps. It means that
we can not know a priori the transport time step but it allows us to be very adaptive and the transport time
step to be as large as possible in relation to the hydrodynamic conditions. Third the reference to the transport
time step condition ensures the preservation of the properties of the precedent section.

Let us now present the details of the algorithm:

Initialization
• Start from the state hn

i , qn
i , en

i .
• Initialization of the transport time step and total fluxes:

∆tn = 0,

Gn
h(Ui−1, Ui) = 0,

Gn
h(Ui, Ui+1) = 0.

• Initialization of the step indicator:
k = 0.

• Initialization of the small time step hydrodynamic computation:

hn,0
i = hn

i ,

qn,0
i = qn

i .

Computation at the step n,k

(1) Computation of hydrodynamic time step ∆tn,k deduced by the CFL condition (4.1) related to hn,k
i

and Qn,k
i .

(2) Computation of the partial fluxes F+(Ui)n,k and F−(Ui)n,k with the formula (3.9).
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(3) Computation of the total interfaces fluxes Fn,k(Ui, Ui+1) and Fn,k(Ui−1, Ui) with the formula (3.6).
(4) Test based on an extension of the non-negativity condition (4.6):

hn
i − 1

∆xi

(
k∑
0

∆tn,jFn,j
h (Ui, Ui+1)

)
+

− 1
∆xi

(
k∑
0

∆tn,jFn,j
h (Ui−1, Ui)

)
−
≥ 0. (5.1)

Updating of the solution
• If (5.1) is true then update the hydrodynamic quantities

hn,k+1
i = hn,k

i − ∆tn,k

∆xi

(
Fn,k

h (Ui, Ui+1) − Fn,j
h (Ui−1, Ui)

)
,

Qn,k+1
i = Qn,k

i − ∆tn,k

∆xi

(
Fn,k

Q (Ui, Ui+1) − Fn,j
Q (Ui−1, Ui)

)
,

the transport quantities

Gn
h(Ui−1, Ui) = Gn

h(Ui−1, Ui) + ∆tn,kFn,j
h (Ui−1, Ui),

Gn
h(Ui, Ui+1) = Gn

h(Ui, Ui+1) + ∆tn,kFn,k
h (Ui, Ui+1),

∆tn = ∆tn + ∆tn,k,

and the step indicator
k = k + 1.

Then go to the Computation step.
• If (5.1) is false then update the hydrodynamic quantities

hn+1
i = hn,k

i ,

Qn+1
i = Qn,k

i ,

and the new concentration of pollutant

(hT )n+1
i = (hT )n

i

+
1

∆xi

(
Ti−1 (Gn

h(Ui−1, Ui))+ + Ti (Gn
h(Ui−1, Ui))−

)
− 1

∆xi

(
Ti (Gn

h(Ui, Ui+1))+ + Ti+1 (Gn
h(Ui, Ui+1))−

)
.

Then go to the Initialization step.

5.3. Consistency, conservativity, positivity, maximum principle
and preservation of equilibria

The hydrodynamic computation is unchanged and so the scheme is still consistent and conservative for its
hydrodynamic part and the non-negativity of the water height is still ensured by the CFL condition introduced
at each hydrodynamic time step.

On an other hand the consistency and the conservativity are also preserved for the transport part thanks to
the form of the algorithm and the non-negativity of the concentration of pollutant is ensured at each transport
time step by the test (5.1). The maximum principle is satisfied too because the essential point – that is the
non-negativity of each term in equation (4.8) – is also ensured by the same test (5.1).
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Finally the preservation of the different equilibria in a lake at rest is always true because even if the scheme
contains now two different time discretizations its global form for hydrodynamic part on one hand and for
transport part on the other hand is not modified.

6. Numerical results

6.1. Transport of pollutant in a flat bottom channel with constant discharge

We consider a flat bottom channel and the associated stationary solution of the shallow water equations with
constant discharge and water height. Taking into account this hydrodynamic background and the form of the
transport equation (2.4) a polluted area will be simply transported with the constant speed uc of the flow

∂T

∂t
+ uc

∂T

∂x
= 0.

The interest of this very simple case is to clearly exhibit the influence of the Froude number and the diffusion
of the schemes by comparing the numerical results with an exact solution.

The data of the numerical test are

Spatial domain: x ∈ [0, 500]
Uniform mesh with 101 nodes.
Water height: 1 m.

Initial concentration of pollutant:
{

1 if x ∈ [20, 70]
0 if not.

Then we compute the solution for different Froude numbers Fr – the simulation time is equal to 100
Fr – and we

present in Table 1 the number of necessary transport and hydrodynamic time steps. We do not compute the
case of the lake at rest since we established that the hydrodynamic and transport equilibria were preserved by
both schemes.

Table 1. Comparison between numbers of hydrodynamic and transport time steps.

Froude number Simulation Time Transport Steps Hydrodynamic Steps
10. 10 71 71
1. 100 70 140
0.1 1000 64 830
0.01 10000 63 7735

First of all these results exhibit the auto-adaptive aspect of the two time steps method. Indeed the ratio
between the number of transport and hydrodynamic time steps appears to be a function of the Froude number.
Then the results imply clearly that in the cases where the Froude number is small the computation cost economy
could be very important because the gain in term of number of time steps is very large. It will authorize also
to apply easily different pollution models on the same hydrodynamic background since we need to store only
one global hydrodynamic information – which corresponds to the global mass flux at each interface – for each
transport time step.

We are interested now with the numerical results. We just mention that the scheme preserves the hydrody-
namic stationarity and we present in Figures 1 and 2 the numerical results for the pollutant concentration. We
indicate the exact solution and the results for the upwind kinetic scheme and the two time steps scheme. First
notice that the numerical results are in accordance with the different properties of the schemes established in
the precedent sections. Then it appears that the two time steps method does not only improve the computation
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Figure 1. Concentration of pollutant for some constant discharge problems. Exact solution
(dotted line); upwind scheme (dash line); two time steps scheme (continuous line).

time but also the precision of the numerical results. Indeed the two time steps solution is always closer to the
exact solution than the upwind kinetic one. And lower is the Froude number larger is the difference between
the two schemes: if the results are the same for the case where the Froude number is equal to 10 – we see also
in Table 1 that the numbers of time steps are the same in this case – the upwind kinetic results are worse and
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Figure 2. Concentration of pollutant for some constant discharge problems. Exact solution
(dotted line); upwind scheme (dash line); two time steps scheme (continuous line).

worse when the Froude number decreases – because it corresponds to a large increasing of the simulation time
and then of the number of hydrodynamic time steps – while the two time steps results are better and better –
because here the number of transport time steps is very stable. To quantify this analysis we present in Table 2
the discrete relative L1 error on the pollutant concentration for both schemes and for the different cases.
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Table 2. Discrete relative L1 error.

Fr = 10. Fr = 1. Fr = .1 Fr = .01
Upwind kinetic scheme 0.427 0.906 1.099 1.125
Two time steps scheme 0.427 0.412 0.192 0.110

6.2. Dam break

We now consider the very classical case of a dam break on a flat bottom in which the concentration of
pollutant is different on each side of the dam.

The interest of this second test is to present a more complex – and then more interesting – hydrodynamic
background but preserving the existence of an exact solution for both hydrodynamic and pollutant problems.

The geometrical and time data are the following:

Spatial domain: x ∈ [−1000, 1000]
Uniform mesh with 101 nodes.
Physical time: 240 s.

We present three different cases by modifying only the water height on the right side of the dam. The hydro-
dynamic and pollutant initial data are – with the classical notations and with the subscripts l for the negative
values of x and r for the positive ones

hl = 1. hr = {.95 ; .8 ; .2}
Ql = 0. Qr = 0.

Tl = .7 Tr = .5

The analytic hydrodynamic solution of this problem is given in [19]. It is composed of three flat zones – the two
original inactive zones at the two ends and an intermediate one – separated by two simple waves – a rarefaction
wave going to the left and a shock wave going to the right. And the jump in the concentration is just transported
at the speed ui of the intermediate flat zone which is given by the relation

−2u2
i

(
cl − ui

2

)2

c2
r +

((
cl − ui

2

)2

− c2
r

)((
cl − ui

2

)4

− c4
r

)
= 0, (6.1)

where cl and cr are defined by
c2
l = ghl, c2

r = ghr.

We present in Figure 3 the water height and the discharge profiles for the large jump – hr = .2. It appears that
the velocity of the shock and the water height of the intermediate flat zone are well captured.

Then as for the first test case we exhibit in Table 3 the auto-adaptive aspect of the method in terms of ratio
between the number of hydrodynamic time steps and the number of transport time steps.

Table 3. Comparison between numbers of hydrodynamic and transport time steps.

hl hr Froude number Transport Steps Hydrodynamic Steps
1. .95 0.026 1 47
1. .8 0.112 5 48
1. .2 0.804 27 54

Finally we present in Figure 4 the zoom view of the discontinuous area for the concentration of pollutant for
the three cases.
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Figure 3. Dam break on a flat bottom: hydrodynamic results. Exact solution (dash line);
kinetic scheme (crosses).
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Let us notice some remarks: First the pollutant shock front is well captured by both schemes and its speed
grows with the size of the water height jump as it is given by the formula (6.1). Second – as for the first test
case – the two time steps solution is always better than the upwind one and the difference is more important
when the jump is smaller – i.e. when the Froude number is smaller.

6.3. Peak in the concentration of pollutant

The hydrodynamic initialization is still a dam break. The concentration of pollutant is still different on each
side of the dam. But now there is a peak in the concentration of pollutant just before the dam.

In this third test case we mix the first and the second one. The hydrodynamic background is quite complex
and the initial concentration of pollutant present some oscillations. The 1D results presented in this section
will be later compared with a 2D simulation.

The numerical values are the same as in the first example of the previous section excepted the initial value
for the concentration of pollutant which is

−1000. ≤ x < −100. : T (x, 0) = Tl = 0.7
−100. ≤ x ≤ 0. : T (x, 0) = Ti = 0.9
0. < x ≤ 1000. : T (x, 0) = Tr = 0.5.

We do not have an analytical solution for this case. But we know the initial value at the node x = 0. will be
simply transported with the speed ui given by (6.1). So as we prove on an other hand a maximum principle for
the concentration of pollutant we know its maximum value will stay equal to Ti.

On the first plot of the Figure 5 are presented the two numerical solutions after 250 s. We indicate the initial
solution too. As for the second case we observe a shock front and as for the first case the large diffusion of the
upwind kinetic scheme conducts to loose the exact maximum value of the concentration of pollutant while the
two time steps scheme computes it very precisely. Informations about the comparison between the numbers of
time steps are given in a following section.

6.4. Emission of pollutant in a non flat bottom channel

Here we want to test the introduction of a source of pollutant in a stationary flow on a non flat bottom. It is
the academic 1D version of a 2D problem that will be presented later and that models for instance the emission
of waste water in a river.

We consider an academic parabolic bottom profile with a length of 500 m

Z(x) =
(
0.2 − 0.05(x − 250)2

)
+

,

and we use a uniform mesh with 101 points of discretization.
Then there exist four different hydrodynamic stationary cases following the different fluid states – fluvial or

torrential flows. See [1] or [16] for more details. Here we choose to work with the fluvial flow problem where
the improvement due to the two time steps scheme is very clear because of a small Froude number.

h(x, 0) = H = 2.

Q(x, 0) = Q = 1.

We introduce between times tb and te and at the node Is a source of water Ss with a concentration of pollutant Ts.
Then we follow the evolution of this pollutant layer. Notice that the source modifies locally in time and space
the hydrodynamic computation.

Is = 10, Ss = .01 m s−1, Ts = 10
tb = 100 s, te = 300 s.
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Figure 5. Concentration of pollutant for the peak problem. Initial data (dotted line); upwind
scheme (dash line); two time steps scheme (continuous line).

Numerical results are presented in Figure 6 and informations about the number of time steps are given in the
next section.

6.5. With a non uniform mesh

We mention before that the two time steps method allows an important improvement in term of accuracy.
Here we want to exhibit – through some numerical examples – that this improvement is very related to the
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Figure 6. Concentration of pollutant – Emission of pollutant in a fluvial flow over a bump.
Upwind scheme (dash line); two time steps scheme (continuous line).

regularity of the mesh. We introduce a non-uniform mesh – which is a controlled random perturbation of the
uniform one – and we characterize it through its minimum and maximum space steps

∆xmin = 0.33316
∆xmax = 1.81694.
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Then we come back on the two last test cases. We begin with the dam break problem with a peak in the
concentration of pollutant. We compute this test on the new mesh and with the two methods – the upwind
kinetic scheme and the two time steps kinetic scheme – and we present the results on the second plot of the
Figure 5. We first remark that more irregular is the mesh more the CFL condition is hard since it is related to
the lower space step. So the number of time steps and then the numerical diffusion increase with the irregularity
of the mesh and the precision of the results decreases. On an other hand it appears clearly that the difference
in the precision of the results between the upwind and the two time steps methods decreases when the mesh is
very irregular. However the two time steps method is always more accurate than the upwind one and – that
is the essential point – we show in Table 4 that the ratio between the number of transport and hydrodynamic
time steps is independent of the regularity of the mesh. So there is always an important improvement on the
computation time and on the storage.

Table 4. Comparison between different meshes for a dam break problem with a peak in the
concentration of pollutant.

Mesh Transport Steps Hydrodynamic Steps
Regular mesh 13 53

Semi-random mesh 30 148

Then we compute the emission of pollutant problem of the precedent section. We apply the upwind and the
two time steps methods on our new mesh and we present the results for two times – 350 s and 750 s – in the
Figure 7. We present the informations about the number of time steps in Table 5. The conclusions are the
same as for the dam break problem.

Table 5. Comparison between different meshes for an emission of pollutant problem.

Mesh Physical time Transport Steps Hydrodynamic Steps
Regular mesh 350 42 416
Regular mesh 750 89 890

Semi-random mesh 350 114 1246
Semi-random mesh 750 243 2669

7. Extension to the 2D case

We now want to apply our new method to two-dimensional problems. We do not want to make here a complete
presentation of the two dimensional finite volume method on a general triangular grid or of the general kinetic
theory in 2D. We just mention that starting from a triangulation of R

2 the dual cells Ci are obtained by joining
the centers of mass of the triangles surrounding each vertex Pi. Then the general method is close to the 1D
finite volume method. Indeed the fluxes which appear in the scheme are interpolations of the normal component
of the fluxes on the edge of each cell. So locally the problem can be treated as a planar discontinuity and the
interpolation can be performed using a one dimensional solver. For a complete presentation of the kinetic
interpretation of the hydrodynamic part in 2D refer to [1] and for a presentation that includes the transport
theory see [4]. Before we present the numerical results let us insist on the fact that as the 2D computation is
based on a 1D strategy the properties we proved in 1D are also true for the 2D schemes. We do not reproduce
the proofs here because they are easy extensions of those in Section 4.

We perform two numerical tests: first a dam break problem in a rectangular channel with a peak in the
initial concentration of pollutant – see the Section 6.2 in 1D – and then an emission of pollutant problem in a
realistic river geometry.



410 E. AUDUSSE AND M.-O. BRISTEAU

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300 350 400 450 500

Non uniform mesh – t = 350 s

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300 350 400 450 500

Non uniform mesh – t = 750 s

Figure 7. Concentration of pollutant – Emission of pollutant in a fluvial flow over a bump.
Upwind scheme (dash line); two time steps scheme (continuous line).

For the dam break problem we use two meshes: a uniform one and an unstructured one. Then as in the
1D case we can compare the results based on the mesh regularity. The uniform mesh has 1111 nodes and
2000 elements and the unstructured one has 1347 nodes and 2472 elements. As the dam break case is essentially
a 1D problem we can also make comparisons between 1D and 2D solutions.
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Figure 8. 2D dam break – Meshes and hydrodynamic results.

The realistic river case is managed only with an unstructured mesh and exhibits that our method is well
adapted to treat complex geometry since the gain on the number of time steps is even more important than for
the academic problems.

7.1. A 2D dam break problem

We begin with the dam break problem. The data are the same as for the problem performed in the Section 6.2
except the length of the channel which is now one meter – and so the final time is only one second. The width
is chosen equal to 0.1 m.

The results are presented in Figures 8 and 9. The data are invariant in y-coordinates and so the solution is
very close to a 1D solution. For each figure the blue color indicates the minimum level and the red color the
maximum one.

In Figure 8 we first present the two meshes. Then we present the water height in the channel. On the left
we recognize the rarefaction wave and on the right the shock wave. Then on the last plot the Froude number
is presented. The profile is very close to the discharge profile in 1D.

In Figure 9 is first presented the initial data for the pollutant concentration and then on the four last plots
are presented the concentration of pollutant performed with the upwind kinetic scheme and with the two time
steps scheme on the unstructured mesh and then the same results with the uniform one. The profiles are very
similar to the 1D profile. With the unstructured mesh the two profiles are very close – even if the maximum
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Figure 9. 2D dam break – Concentration of pollutant.

of the concentration is a little larger with the two time steps method as in the 1D computation when the mesh
is non-uniform. With the uniform mesh the profiles are more different. With the upwind kinetic scheme the
results are worse than on the unstructured mesh – notice that the uniform mesh has less nodes – but with the
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Figure 10. Concentration of pollutant for a peak problem. Comparison between the 1D
problem and the 2D problem (plane y = 0.5); upwind scheme (dash line); two time steps
scheme (continuous line).

two time steps scheme the results are better than on the unstructured mesh. So as in the 1D computation the
improvement on the accuracy of the results is more significant when the mesh is more regular.

Before to end with this problem we make a comparison between the 1D and the 2D results. So we perform
the computations with the same initial conditions and we consider the 2D results on the line y = 0.5. Then
we present in Figure 10 the results on the two 1D meshes and on the two 2D meshes. We can see that the
regularity of the mesh has the same effects in 1D and in 2D – even if the 1D uniform mesh induces a smaller
diffusion than the 2D uniform mesh.

7.2. Emission of pollutant in a realistic river

Then we perform an emission of pollutant problem in a river. The geometric data include a jetty in the
transversal direction and a bridge pillar. We introduce a source of pollutant at one node of the mesh and for a
given time – from 1 000 s to 1 800 s – and we follow the evolution of the pollutant layer.

We use a second order scheme to compute the hydrodynamic part because the first order solution does not
show the recirculation after the jetty which is very important to compute a realistic profile of the concentration
of pollutant. We keep a first order solution for the transport part not to mix the improvement due to high order
schemes and those due to the applied method. Results are presented in Figures 11 and 12. Here the mesh is
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Figure 11. River with emission of pollutant – Mesh and hydrodynamic results.

unstructured and so the concentration of pollutant profiles are very close. But as in the other cases the two
time steps scheme is a little bit better.

8. Conclusion

Thanks to a precise analysis of the upwind kinetic scheme we have deduced a two time steps kinetic scheme
that preserves the theoretical properties of the upwind kinetic scheme. By opposition to the hydrodynamic CFL
condition, the new transport time step condition links automatically the transport time step, the space step
and the fluid velocity, ignoring the sound speed.
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Figure 12. River with emission of pollutant – Concentration of pollutant.

The hydrodynamic part of the computation remains unchanged. The whole hydrodynamic information that
is useful for the pollutant transport computation can be stored in global interface fluxes at each transport time
step.

The developed method is very interesting for the small Froude number flows. Indeed the two time steps are
very close when the speed of the flow is large compared with the sound speed but they are very different in the
other case. As we can see in Table 6, in a 2D realistic geometry and for a Froude number close to 0.1 – which
is a usual order of magnitude for rivers, the new transport time step is around hundred and fifty times larger
than the hydrodynamic time step issued from the CFL condition.

Table 6. Comparison between numbers of hydrodynamic and transport time steps for the 2D
test cases.

Froude number Transport Steps Hydrodynamic Steps
Unstructured channel 0.35 28 385

Uniform channel 0.37 14 170
Realistic river 0.08 320 45637
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The improvement is proved to be optimal if we want to preserve a priori the non-negativity properties of
the upwind kinetic scheme.

As the new time step condition is specifically adapted to the transport equation the numerical diffusion of
the two time steps kinetic scheme is lower than the numerical diffusion of the upwind kinetic scheme and we
therefore improve the accuracy of the results.
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