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1. Introduction

The inverse problem of finding out a crack from boundary measurements has been thoroughly studied since
the pioneering paper by Friedmann and Vogelius [15], where the authors showed that two measurements are
needed to identify a crack with no ambiguity, since this latter may be part of a current line (for insulating cracks)
which makes a single measurement unable to discriminate it from another one lain along the same or any other
current line. Two measurements taken from a pair of proper fluxes, that generate families of intersecting current
lines, in order that no smooth crack may lie in the same time along one of each, have later on been proved to
be sufficient to provide identifiability for any family of cracks [3, 10].

Provided some further information is available on the location of the crack, for example in the case this latter
is a breaking surface line segment one, it has also been proved that a single identifying flux can be explicitly set
up for the Laplace equation as well as the elasticity system [6, 7]. Alternatively, replacing prior information on
the crack by an appropriate condition on the prescribed flux, is another way to get identifiability. However, one
cannot expect such a condition to be verifiable by only checking the flux and the measurements it produces, if
no restriction on the crack itself is a priori set, since – for any given flux – moving the crack from one current
line to another doesn’t change in any way the measurements.

Plane or line segment cracks have focused lots of interest, not only for the reason they are easier to solve,
but also because the situation described is not as restrictive as it looks to be: actually, cracks mostly initiate
in fragile parts of the structures, for instance those that have been welded or stuck by any means, and usually
their geometries are simple if not plane. Moreover, fracture mechanics theories claim that cracks are unlikely
to change directions when propagating, unless material inhomogeneities are met, which makes straight cracks a
wide enough class to deserve attention. Identifiability from one single explicitly designed flux has been proved
for breaking surface line segment cracks [6,7], and local Lipschitz stability results have also been obtained. The
setting up of algorithms based on the reciprocity gap also provides with some identifiability results [5]. Finally,
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stability results have been obtained for planar cracks in several works by Alessandrini et al. [1, 2, 4]. Most of
the above mentioned papers have dealt with insulating cracks, or perfectly conducting ones.

In the present one, we are interested in the stable recovery of an arbitrary crack, meaning a crack that might
be non straight, submitted to a non linear impedance boundary condition, from a single boundary measurement.
The reason is that our concern is, beyond identifiability, the stability which means – given an identifying flux –
the continuity of the recovered crack and impedance with respect to the measured data.

Requiring the flux to generate singularities at both crack tips, in order to be identifying and to furthermore
provide the recovery process with local Lipschitz stability, has been more than once proved to be sufficient [6,7].
Though not verifiable, such a condition is critical for the stability task, without bringing serious restriction with
respect to the identifiability one. Two kinds of difficulties arise at this stage.

The first one is that, whereas the singular parts of the solutions are explicitly known for Neumann and
Dirichlet boundary conditions [16], they here need to be investigated. As expected, the first singularities are
those of the Neumann problem, and the above condition again turns out to ensure identifiability, both for the
crack and the impedance law.

The second difficulty is that the method used in [6,7,14] to prove stability in the case of line segment cracks,
including those submitted to a linear impedance boundary condition, doesn’t work anymore for arbitrarily shaped
cracks. Actually, that method is based on the ability – due to the simple geometry of the crack – to explicitly
exhibit a wide enough class of harmonic functions verifying appropriate boundary conditions on it. Instead,
point source solutions have been used here, and the situation has been handled by using the single and double
layer potentials features on the crack. It turns out that the method also addresses, at the price of a few slight
additional difficulties, the widest possible range of impedance laws, i.e. all those ensuring the forward problem
well posedness. There is therefore no use to limiting our study to the linear impedance case, which is definitely
not the only relevant one.

The outline of the paper is the following. In Section 2, the forward problem is set up, its variational
formulation recalled, and expansions of the solution in a singular part and a regular one are investigated.
Section 3 is then devoted to the identifiability result from one single measurement, and Section 4 to the study
of the longitudinal and transverse stability.

2. The direct problem

Let Ω be a bounded connected open set of the plane with a Lipschitz boundary Γ. We suppose that Ω
contains exactly one crack σ strictly included into Ω. In the whole paper, a crack is supposed to be a C2 non
self-intersecting compact curve with a finite length and Ωσ will mean the domain Ω \ σ. The extremities of σ
will be denoted by S1 and S2.

To describe the direct problem we have in mind we suppose given a current flux φ ∈ H−1/2(Γ) such that

〈φ, 1〉 = 0.

We further fix an increasing and continuous mapping r from R into itself with the properties:

r(0) = 0, (1)
|r(x)| ≤ M(1 + |x|α), ∀x ∈ R, (2)

for some α ≥ 1 and M ≥ 0.
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Figure 1. Normal to the crack.

The direct problem consists in finding u ∈ H1(Ωσ) solution of


∆u = 0 in Ωσ,

∂nu + r([ u ]) = 0 on σ,

∂nu = φ on Γ,

(3)

that we normalize by requiring that ∫
Γ

u(s) ds = 0. (4)

On Γ, ∂nu means the outward normal derivative of u, while on σ it means the normal derivative in one fixed
normal direction, let us say from the “upper part” Ω+ to the “lower part” Ω− (see Fig. 1). With this choice
the jump of u through σ is defined by [ u ] := u+ − u− on σ, where u± = u|Ω± .

To set problem (3) in a variational form, let us define

V = {v ∈ H1(Ωσ) satisfying (4)},

equipped with the standard semi-norm

|v|1,Ωσ =
(∫

Ωσ

|∇v(x)|2 dx

)1/2

,

which is a norm in V , that we denote later on by ‖ · ‖V for shortness.
Then the variational formulation is to find u ∈ V solution of∫

Ωσ

∇u(x) · ∇v(x) dx +
∫

σ

r([u(x)])[v(x)] ds(x) = 〈φ, v〉, ∀v ∈ V. (5)

Let us notice that the assumption (2) and the embedding H1/2(σ) ↪→ Lp(σ), for all 1 < p < ∞ give a meaning
to the left-hand side of (5). We start with an existence and uniqueness result:

Theorem 2.1. The problem (5) has a unique solution u ∈ V that satisfies

‖ u ‖V ≤ C‖φ ‖H−1/2(Γ), (6)

for some positive constant C.

Proof. To prove the existence result we introduce the nonlinear functional

I : V → R : u → 1
2

∫
Ωσ

|∇u(x)|2 dx +
∫

σ

R([u(x)]) ds(x) −
∫

Γ

φ(x)u(x) ds(x),
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where R(x) :=
∫ x

0
r(t) dt, for all x ∈ R. Observe that the assumptions on r imply that R is a nonnegative

function on R. The growth condition (2) on r and the embedding H1/2(σ) ↪→ Lp(σ), for all 1 < p < ∞, lead to
the well posedness of

∫
σ

R([u(x)]) ds(x), since∫
σ

R([u(x)]) ds(x) ≤ M

∫
σ

|[u(x)]|(1 + |[u(x)]|α) ds(x) ≤ M
(
‖[u(x)]‖L1(σ) + ‖[u(x)]‖1+α

L1+α(σ)

)
.

Moreover I is lower bounded due to the nonnegativeness of R.
Now consider a minimizing sequence (un)n≥1, which has a weakly convergent subsequence (unk

)k≥1. Let us
denote by u its weak limit. A similar argument than above shows that (R([unk

]))k≥1 is bounded in L2(σ) and
thus uniformly integrable. By Theorem 21 of [12], R([unk

]) tends to R([u]) in L1(σ). This allows to prove that
the nonlinear functional I attains its minimum at u. Consequently I ′(u) = 0, which shows that u is a solution
of (5).

Let us pass to the uniqueness: Let u1 ∈ V and u2 ∈ V be two solutions of (5). Then, taking their difference
as a test function, we get∫

Ωσ

| ∇(u1 − u2) |2 dx +
∫

σ

{r([u1]) − r([u2])} [u1 − u2] ds = 0.

Since the monotonicity of r implies that∫
σ

{r([u1]) − r([u2])} [u1 − u2] ds ≥ 0,

the above identity yields ∫
Ωσ

| ∇ (u1 − u2) |2 dx = 0,

and consequently u1 = u2.
Taking v = u as test function in (5), using the estimate∫

Ωσ

| ∇u |2 dx +
∫

σ

r([u])[u] ds ≥ |u |21,Ωσ
,

following from the property r([u])[u] ≥ 0, and a standard trace theorem, we obtain the estimate (6). �
For our future purposes we need the following regularity results for the solution u ∈ V of (5):

Theorem 2.2. Let u ∈ V be the unique solution of problem (5). Then it satisfies

[u] ∈ C(σ̄). (7)

If moreover r is locally Lipschitz, i.e., for all ρ > 0 there exists Mρ > 0 such that

|r(x) − r(y)| ≤ Mρ |x − y|, ∀|x|, |y| < ρ,

then u admits the following decomposition into a regular part and a singular one

u = ureg +
∑

i=1,2

cir
1
2
i cos

(
φi

2

)
in ω \ σ, (8)

where ω is a neighbourhood of σ, ureg ∈ H2+ε(ω \ σ) for a small enough ε > 0 is the regular part, ci is the
coefficient of singularity related to the extremity Si (the so-called stress intensity factor) and (ri, φi) are polar
coordinates centred at Si such that the half-lines φi = 0 and φi = 2π are tangent to σ at Si.
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Proof. By the growth condition (2) on r and the embedding H1/2(σ) ↪→ Lp(σ), for all 1 < p < ∞, r([u]) belongs
to Lp′

(σ), for all p′ > 1. Since for all ε ∈ (0, 1
2 ) L2(σ) ↪→ Hε−1/2(σ) we deduce that

∂nu = −r([u]) ∈ Hε− 1
2 (σ), for all ε ∈

(
0,

1
2

)
· (9)

Looking at u as solution of the Neumann problem near σ, by Theorem 23.3 of [11] (a standard reflexion argument
allows to reduce the problem to a mixed Dirichlet–Neumann boundary value problem and a pure Neumann
problem in a flat domain, both problems being in the scope of the above mentioned theorem), u satisfies

u ∈ H1+ε(ω \ σ), ∀ε ∈
(

0,
1
2

)
, (10)

where ω is a neighbourhood of σ. By the Sobolev embedding theorem we conclude that u is continuous on ω \σ
with a finite limit from above and from below on σ. Consequently the jump of u satisfies (7).

For the second assertion we remark that the locally Lipschitz continuity of r and the regularity (7) of u imply

|r([u(x)]) − r([u(y)])| ≤ M||[u]||∞ | [u(x)] − [u(y)] | , ∀x, y ∈ σ,

which implies that

∫
σ×σ

|r([u(x)]) − r([u(y)])|2
|x − y|2+2ε

ds(x) ds(y) ≤ M2
||[u]||∞

∫
σ×σ

|[u(x)] − [u(y)]|2
|x − y|2+2ε

ds(x) ds(y).

This clearly implies the property

r([u]) ∈ H
1
2+ε
0 (σ), ∀ε ∈

(
0,

1
2

)
,

since (10) implies [u] ∈ H
1
2+ε
0 (σ), for all ε ∈ (0, 1

2 ).
By the boundary condition on σ, we may see u as solution of the Neumann problem (in a neighbourhood of

σ) with a Neumann datum in H
1
2+ε
0 (σ). The decomposition (8) then follows from Theorem 23.7 of [11]. �

3. Identifiability for the inverse problem

The inverse problem we are now interested in is the following: setting a current flux φ on the external part
of the boundary Γ, and measuring the induced potential u on some open subset with positive measure M of the
same boundary, try to recover the unknown crack σ and impedance r. The first issue arising is identifiability,
which means: is the pair (φ, u|M ) we are holding enough an information to recover the desired unknowns? This
can also be seen as injectivity of the operator (σ, r) �→ (φ, u|M ).

We are actually going to prove that two different pairs of cracks and impedances – belonging to proper
classes – may not produce the same measurements on the boundary, provided the prescribed current flux indeed
generates singularities at both tips of the actual crack. Impedances need only to belong to the class insuring
well posedness of the forward problem. As for the cracks, we are able to discriminate only between those holding
coherent directions, in the sense of the following:

Definition 3.1. Two cracks σ1 and σ2 will be said to hold coherent directions if both of them can be parame-
terized with respect to the same frame (X, Y ):

(X, Y ) ∈ σi ⇐⇒ Y = ϕi(X); X ∈ [αi, βi] ; i = 1, 2

ϕ1 and ϕ2 being C2 functions.
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Figure 2. Intersecting cracks with different cracktips.

Figure 3. Intersecting cracks with same cracktips.

Theorem 3.2 (Identifiability). Let σ1 and σ2 be two cracks with coherent directions. Assume a prescribed flux
φ generating singularities at both extremities of the actual crack (say σ1), also generates equal measurements
on M . Therefore σ1 ≡ σ2 := σ and u1 ≡ u2 := u on Ωσ. Furthermore r1 ≡ r2 on the whole of the range of
x �→ [u(x)] (x ∈ σ), which means the impedance laws are the same.

Proof.
• Let us first prove geometrical identifiability. Let u1 solve the forward problems in Ω \ σ1 with r1 as an
impedance, and u2 solve it in Ω \ σ2, with r2 as an impedance. Let w := u1 − u2 be their difference, hence
solving: 


∆ w = 0 in Ω \ (σ1 ∪ σ2)
∂nw = 0 on Γ

w = 0 on M.
(11)

By Holmgren’s theorem, we derive that w ≡ 0 in the external connected component Ωe of Ω\ (σ1 ∪ σ2), i.e. the
one having M as part of its boundary. Assuming σ1 �= σ2, two situations may occur:

(a) The cracks are disconnected: In that case, Ωe = Ω \ (σ1 ∪ σ2). But u2 is continuous across σ1, whereas u1

is not (because of its singular parts). This situation is therefore not possible.

(b) The cracks are intersecting: Then, because of the singular parts of u1, the cracks cannot have different
endpoints (see Fig. 2). Otherwise, u2 would be singular at the vicinity of an endpoint of σ1 which is an internal
point either to Ω \ σ2 or to σ2. In the first case, u2 is smooth, whereas it does not behave like u1 in the second
case. σ1 and σ2 have hence the same cracktips. Since both cracks have the same main direction, they can be
parameterized by

(X, Y ) ∈ σi ⇐⇒ Y = ϕi(X); X ∈ [α, β] ; i = 1, 2
this situation has been pictured in Figure 3.

The boundary of Ωe is composed by Γ and upper or lower parts of σ1 and σ2. Let Oi be any connected
component of Ω \ (σ1 ∪ σ2 ∪ Ωe), the boundary of which is necessarily composed by parts of σ1 and σ2.

Across σ2, u1 is continuous, and so are ∂nu1 and ∂nu2, this latter because of the boundary condition on the
crack. On the other hand, u1 ≡ u2 in Ωe, which yields ∂nu1 = ∂nu2 on ∂Ωe, including the external parts of σ1
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and σ2. It comes out therefore:

∂nw = 0 on σ2

and for the same reason ∂nw = 0 on σ1, and w is harmonic thus constant on Oi. Let κi be that constant. We
have then:

w = κi on σ1 ∩ ∂Oi

and since w is null in Ωe, this yields:

[u1] ≡ [w] = ± κi on σ1 ∩ Oi

[u1] is therefore piecewise constant on σ1, which is not possible unless it is constant on the whole of σ1 since no
discontinuity is allowed to functions in H

1
2 (σ1). Hence:

[u1] = κ on σ1.

Now, because [u1] ∈ H
1
2
00(σ1), and thus vanishes at the endpoints of σ1, the constant κ cannot be other than

zero, making u1 continuous across σ1 and hence not singular, which contradicts the assumption made on the
flux. The cracks cannot thus intersect either.

This leads to σ1 ≡ σ2 := σ and accordingly to u1 = u2 := u on Ω \ σ.

• Identifiability for impedances: From the above conclusions, we derive that ∂nu1 − ∂nu2 = 0 on σ and hence

(r1 − r2)([u(x)]) = 0 ∀x ∈ σ.

This means r1− r2 vanishes on the range of [u(x)]), which is enough to derive the impedance laws are the same:
actually, what the impedance law is outside that set does not impact in any way the state, and can thus not be
derived from the measurements that the flux has produced. �

Remark 3.3. Current fluxes that generate no singularities at both crack tips actually span a proper closed
subset of H− 1

2 (Γ), since the singularities coefficients ci are given by the following continuous functions of the
flux [17]

ci(φ) =
∫

σ

∂nu[Ki] ds + 〈φ, Ki〉,

where Ki is the so-called dual singular function given by

Ki = 2ηi r
−1/2
i cos

(
φi

2

)
− vi,

with vi ∈ V such that ∆Ki = 0 in Ωσ and ∂nKi = 0 on Γ ∪ σ; ηi is a smooth cut-off function such that ηi ≡ 1
in a neighbourhood of Si and ηi ≡ 0 outside a small but larger neighbourhood of Si.

This feature makes such fluxes unlikely to meet, since the subset they belong to is not dense in H− 1
2 (Γ).

Should moreover one be met, computational errors would anyway draw it away from that subset, hence making
the requirement on the singular parts of the solution be fulfilled. Making this assumption is therefore not serious
restriction.

Remark 3.4. In order to prove identifiability, it would have been sufficient to require the flux to generate a
solution with a non vanishing discontinuity on the crack σ, instead of non vanishing first singular coefficients.
The whole argument works the same way but the condition, if weaker, is no more verifiable. And the singular
behaviour is critical for stability purposes, as will be pointed out in Section 4.
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4. Local Lipschitz stability

In this section, we are going to investigate how “small” perturbations on the measured data may impact the
recovered crack and impedance. Actually, we are trying to show up a Lipschitz dependence of the unknowns to
be recovered with respect to the measured data. However, such a result cannot be obtained with no additional
information on the unknowns, for inverse problems are well known to be ill posed. This is the reason why we
restrict our investigation to local Lipschitz stability, meaning we shall prove such a dependence only in some
neighbourhood of the actual crack and impedance. Following [6, 13, 18], the tool we shall be using to this end
is the Lagrangian derivative.

4.1. Lagrangian derivative

Consider a family of mappings
Fh = Id + h θ,

where Id is the identity mapping on R
2 and θ ∈ (C2(Ω̄)

)2
is such that Fh(Ωσ) = Ω\σh for some crack σh := Fh(σ)

and θ = 0 on Γ, h being a “small” positive real number. Clearly there exists h0 > 0 small enough such that for
all 0 < h ≤ h0, Fh is a diffeomorphism from Ωσ into Ωh := Fh(Ωσ). Fh is a virtual kinematics describing the
cracks move in the direction θ. Actually, only the value of θ on the crack σ is meaningful, though we need to
define it on the whole Ω for the calculations.

Similarly, we shall be considering perturbations of the impedance obtained by

rh = r + hr1

where r and r1 are C2 mappings, the perturbation direction r1 is actually an impedance itself fulfilling the same
conditions (1, 2).

The Lagrangian derivative of the solution u of problem (3, 4) with respect to the domain (i.e. the parameter
h) in the directions (θ, r1) is therefore given by the asymptotic expansion in the following theorem.

Theorem 4.1. Let uh = uh ◦ Fh, uh ∈ Vh :=
{

vh ∈ H1(Ω \ σh);
∫

Γ

vh = 0
}

being the solution of:

∫
Ωh

∇uh(y) · ∇v(y) dy +
∫

σh

rh([uh(xh)])[v(xh)] dsh = 〈φ, v〉, ∀v ∈ Vh. (12)

Then there exists h0 > 0 small enough such that for all h ∈]0, h0[, uh admits the expansion

uh = u0 + hu1 + O2
h, (13)

where u0 = u ∈ V is the unique solution of (5) and u1 ∈ V is the unique solution of

∫
Ωσ

∇u1 · ∇v dx +
∫

σ

r′([u0])[u1][v] ds =
∫

Ωσ

[
(Dθ + Dθ�)∇u0

] · ∇v dx

−
∫

Ωσ

(∇u0 · ∇v)div θ dx −
∫

σ

(
r1([u0]) + r([u0])

(
t�Dθ t

))
[v] ds, ∀v ∈ V (14)

where Dθ is the Jacobian matrix of θ and O2
h ∈ V with

lim
h→0

‖O2
h ‖V

h
= 0. (15)



IDENTIFICATION OF CRACKS WITH NON LINEAR IMPEDANCES 249

Proof. We first remark that the assumptions on r and r1 guarantee that (12) has a unique solution uh ∈ Vh

satisfying (see Th. 2.1)
|uh |1,Ωh

≤ C‖φ‖H−1/2(Γ), (16)
for some positive constant C (independent on h). Indeed fix a subdomain D of Ω such that σh is included into
Ω \ D̄ for all h small enough and such that the boundary of D contains Γ. By the positiveness of r1 and a
standard trace theorem in D, we get

|uh |1,Ωh
≤ ‖φ‖H−1/2(Γ)‖ uh ‖H1/2(Γ) ≤ C1‖φ‖H−1/2(Γ)‖ uh ‖1,D,

for some positive constant C1 (independent on h). Since uh has a mean zero on Γ, we may write

‖ uh ‖1,D ≤ C2|uh |1,D,

for some positive constant C2 (independent on h). The two above estimates yields (16) since we clearly have
|uh |1,D ≤ |uh |1,Ωh

.
In the variational problem (12), performing the change of variables y = Fh(x), uh is then the unique solution of

ah

(
uh, v

)
= 〈φ, v〉 , ∀v ∈ V, (17)

where

ah(u, v) =
∫

Ωσ

((I + hDθ)−1∇u) · ((I + hDθ)−1∇v)(1 + h div θ + h2 det Dθ) dx

+
∫

σ

rh([u])[v]
{
1 + h

(
t�Dθ t

)
+ O(h2)

}
ds,

since dsh =
{
1 + h

(
t�Dθ t

)
+ O(h2)

}
ds. Furthermore for h small enough, the estimate (16) is equivalent to

‖ uh ‖V ≤ C‖φ‖H−1/2(Γ), (18)

for some positive constant C (independent on h). As the matrix (I + hDθ)−1 admits the expansion

(I + hDθ)−1 =
∞∑

k=0

(−1)k hk(Dθ)k, (19)

for h small enough, the (nonlinear) form ah admits the expansion

ah(u, v) = a0(u, v) + ha1(u, v) + Rh(u, v), ∀u, v ∈ V,

where a0, a1,Rh are (nonlinear) forms satisfying

a0(u, v) =
∫

Ωσ

∇u(x) · ∇v(x) dx +
∫

σ

r([u])[v] ds, ∀u, v ∈ V, (20)

|a1(u, v)| ≤ C(‖u‖V )‖v‖V , ∀u, v ∈ V, (21)
|Rh(u, v)| ≤ h2C(‖u‖V )‖v‖V , ∀u, v ∈ V, (22)

where C(‖u‖V ) ≥ 0 depends continuously on ‖u‖V .
Taking into account the above expansion of ah, the difference between (17) and (5) yields

a0

(
uh, v

) − a0

(
u0, v

)
= −ha1

(
uh, v

) −Rh

(
uh, v

)
, ∀v ∈ V.
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For v = uh − u0, we get∫
Ωσ

∣∣∇ (
uh − u0

) ∣∣2 dx +
∫

σ

{
r
([

uh
]) − r

([
u0

])} [
uh − u0

]
ds = −ha1

(
uh, uh − u0

) −Rh

(
uh, uh − u0

)
.

The monotonicity of r and the estimates (18), (21) and (22) lead to∥∥ uh − u0
∥∥

V
≤ Ch, (23)

for some positive constant C depending on ‖φ‖H−1/2(Γ). This estimate means that uh tends to u0 as h goes to 0

but further means that u1
h := uh−u0

h is uniformly bounded in V . The definition of u1
h is equivalent to

uh = u0 + hu1
h.

Inserting this expression in (17) and using the fact that u0 satisfies (5), we get

∫
Ωσ

(∇u1
h − (

Dθ + Dθ�
)∇u0 + div θ∇u0

) · ∇v dx +
∫

σ

(
r′([u0])[u1

h] + r1([u0]) + r([u0])
(
t�Dθ t

))
[v] ds

= −h−1Rh

(
uh, v

)
+ R′

h

(
u0, u1

h, v
)
, ∀v ∈ V,

where R′
h is a remainder satisfying (thanks to Th. 2.2 and the properties on r and r1)∣∣R′

h

(
u0, u1

h, v
) ∣∣ ≤ Ch‖ v ‖V , ∀v ∈ V, (24)

for some positive constant C depending on ‖φ‖H−1/2(Γ). Comparing this problem with (14) we see that

∫
Ωσ

∇ (
u1

h − u1
) · ∇v dx +

∫
σ

r′([u0])
[
u1

h − u1
]

[v] ds = −h−1Rh

(
uh, v

)
+ R′

h

(
u0, u1

h, v
)
, ∀v ∈ V.

As before taking v = u1
h − u1, using the fact that r′(x) ≥ 0 and the estimates (18), (22) and (24), we obtain∥∥ u1

h − u1
∥∥

V
≤ Ch,

for some positive constant C depending on ‖φ‖H−1/2(Γ). The conclusion follows by setting O2
h = h

(
u1

h − u1
)
.
�

In the following, some additional regularity on u1 in a neighbourhood of the crack tip will be needed. More
precisely, we need:

Lemma 4.2. If r is a C2 mapping satisfying the conditions (1, 2). Then there exists a neighbourhood ω of the
extremities of the crack σ and ε > 0 such that u1 belongs to H1+ε(ω \ σ). Consequently, u1 is bounded near the
crack tips.

Proof. Taking test function in D(Ωσ) in (14) we can see that u1 satisfies (in the whole proof u ∈ V is the unique
solution of (5))

∆u1 = −div
((

Dθ + Dθ�
) · ∇u

)
+ div (div θ(∇u)) in Ωσ. (25)

Let us notice that the above right-hand side belongs to H−1+ε(Ωσ), for all ε ∈ (0, 1/2) thanks to (10) and the
smoothness of θ.

Taking now test-functions v ∈ V such that v− ≡ 0 on σ we get

∂nu1+ + r′([u])[u1] =
{(

Dθ + Dθ�
)∇u+

} · n − (∂nu) div θ − r1([u]) − r([u])
(
t�Dθ t

)
on σ.
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Similarly taking test-functions v ∈ V such that v+ ≡ 0 on σ we get

∂nu1− + r′([u])[u1] =
{(

Dθ + Dθ�
)∇u−} · n − (∂nu) div θ − r1([u]) − r([u])t�Dθ t on σ.

By Theorem 2.2, r′([ u ]) is bounded and

r′([u])[u1] ∈ Hε− 1
2 (σ), ∀ε ∈ (0, 1/2).

Moreover the regularity (10) of u and the smoothness of θ imply that

{(
Dθ + Dθ�

)∇u±} · n − (∂nu) div θ ∈ Hε− 1
2 (σ), ∀ε ∈ (0, 1/2).

Similarly (9) and the smoothness of θ imply that

r([u])
(
t�Dθ t

) ∈ Hε− 1
2 (σ), ∀ε ∈ (0, 1/2).

In the same way the growth condition (2) on r1 yields (see the proof of (9))

r1([u]) ∈ Hε− 1
2 (σ), ∀ε ∈ (0, 1/2).

All together this means that u1 may be seen as a solution of a Neumann problem in a neighbourhood ω of σ
with interior datum in H−1+ε(ω \ σ), for all ε ∈ (0, 1/2) and Neumann data in Hε−1/2(σ). Consequently by
Theorem 23.3 of [11] we deduce the announced regularity for u1. �

Remark 4.3. Following [8], local Lipschitz stability is achieved if one can prove that

u1 �≡ 0 on M.

Indeed, this means the measured data are sensitive “at the first order” to the local crack and impedance
moves. On the other hand, h is the parameter “measuring” the magnitude of the unknowns moves in prescribed
directions θ and r1, and we have

u1 = lim
h→0

uh − u0

h
·

Therefore, for h small enough, and provided u1 does not vanish on the whole of M , we get

h ≤ c|uh − u0|0,M (26)

with c = 2/|u1|0,M for example. Equation (26) is the expected local (h needs to be small) and directional (u1

is a directional derivative) Lipschitz stability result.

There is no ambiguity for what regards the impedance virtual moves. As for the crack, we shall need to
distinguish the stability with respect to the length (extensions or contractions), from the transverse one, for
they are not exactly proved the same way.

4.2. Stability with respect to the length

Longitudinal virtual moves of the crack will be described by taking a direction θ verifying θ · n = 0 on σ.
Actually, only the values of θ at the crack tips are meaningful (see Fig. 4).

Let us first start with a useful identity that we shall need later on.
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Figure 4. Longitudinal virtual moves of the crack.

Lemma 4.4. Let u and u1 be the respective solution of (5) and (14). Assume that u1 is identically equal to
zero on Γ. Then for all v ∈ H1(Ω) such that

∆v = 0 in Ω,

it holds ∫
σ

{([u1] − θ · t[∂tu]) ∂nv + θ · n[∂tu] ∂tv}ds = 0. (27)

Proof. Taking test functions v as in the statement of the Lemma in the identity (14) we get

lim
δ→0

{∫
Ωσ,δ

∇u1 · ∇v dx +
∫

σδ

r′([u(x)])[u1(x)] [v(x)] ds

−
∫

Ωσ,δ

{(
Dθ + Dθ�

)∇u
} · ∇v dx +

∫
Ωσ,δ

(∇u · ∇v) div θ dx

+
∫

σδ

(
r1([u]) + r([u])

(
t�Dθ t

))
[v] ds

}
= 0,

where we have set Ωσ,δ = Ωσ \
⋃

i=1,2

B(Si, δ) and σδ = σ \
⋃

i=1,2

σ ∩ B(Si, δ) (see Fig. 5). Some integrations by

parts in Ωσ,δ and the harmonicity of u and v in Ωσ,δ as well as the nullity of u1 on Γ lead to

lim
δ→0

{∫
σ+

δ ∪σ−
δ

{u1∂nv − (θ · ∇u) ∂nv − (θ · ∇v) ∂nu + (∇u · ∇v) θ · n} ds

−Iδ +
∫

σδ

(
r′([u]) [u1] + r1([u]) + r([u])(t�Dθt)

)
[v] ds

}
= 0, (28)

where σ+ (resp. σ−) is the “upper part” (resp. “lower part”) of σ; on σ+ (resp. σ−), n means the normal
vector directed from σ+ to σ− (resp. σ− to σ+) and

Iδ :=
∑

i=1,2

∫
∂B(Si,δ)

{u1∂nv − (θ · ∇u) ∂nv − (θ · ∇v) ∂nu + (∇u · ∇v) θ · n} δ dφ,

where n means here the outward normal vector on ∂B(Si, δ).
As v is regular near Si, i = 1, 2, the regularity of u from Theorem 2.2 and the boundedness of u1 near Si

(Lem. 4.2) allow to conclude that

Iδ → 0 as δ → 0.
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Figure 5

Consequently taking the limit as δ → 0 in the above identity (28) we get

∫
σ+∪σ−

{u1∂nv − (θ · ∇u) ∂nv − (θ · ∇v) ∂nu + (∇u · ∇v) θ · n} ds

+
∫

σ

(
r′([u]) [u1] + r1([u]) + r([u])

(
t�Dθt

))
[v] ds = 0.

Since v satisfies
[v] = [∂nv] = 0 on σ,

the above identity becomes ∫
σ

{[u1] ∂nv − (θ · [∇u]) ∂nv + ([∇u] · ∇v) θ · n} ds = 0,

which is equivalent to (27) by expressing the gradient in the basis (t, n) and using the fact that ∂nu is continuous
across σ. �

We are now ready to prove the stability with respect to the length:

Theorem 4.5. Let θ satisfy the above assumptions as well as θ · n = 0 on σ and (θ · t)(Si) �= 0 for i = 1 or 2.
Then, under the assumption that one coefficient ci of the singularity of u related to the extremity Si is different
from 0, u1 is not identically equal to zero on M .

Proof. Assume that u1 is identically equal to zero on M . Then as ∂nu1 ≡ 0 on M and the fact that u1 is
harmonic in a neighbourhood of Γ, by Holmgren’s unique continuation theorem u1 vanishes in a neighbourhood
of Γ.

By Lemma 4.4 the identity (27) here becomes

∫
σ

(
[u1] − θ · t [∂tu]

)
∂nv ds = 0,

for all v ∈ H1(Ω) harmonic in Ω.
Choosing as test functions the fundamental solution at some point y �∈ Ω̄

v(x) = ln |x − y|, y �∈ Ω̄

we get ∫
σ

(
[u1] − θ · t [∂tu]

) (x − y) · nx

|x − y|2 dsx = 0, ∀ y �∈ Ω̄.

The left-hand side in the above equation is a double layer potential with
(
[u1] − θ · t [∂tu]

)
as dipole density, and

it is thus an harmonic function in the whole of R
2 \σ. Since it vanishes in Ω̄c, it also does in the whole of R

2 \σ,
and is thus continuous across σ. Being a double layer potential, its jump across σ at any point x0 internal to



254 M. JAOUA ET AL.

Figure 6. Transversal virtual moves of the crack.

σ – where the density is smooth – is nothing else than a multiple of that density (see Lem. 4.8 below). This
yields:

[u1(x)] − θ(x) · tx [∂tu(x)] = 0 for all x ∈ ◦
σ .

This identity and Lemma 4.2 mean that θ · t [∂tu] is bounded near Si, which is impossible since θ · t [∂tu] behaves

like 2θ · t ci r
− 1

2
i near Si, where ri is the distance to Si. �

4.3. Transverse stability

We are now going to investigate the stability with respect to virtual transverse moves, which are described
by directions θ verifying θ · t = 0 on σ. These directions may picture rotations (θ · n(S1) θ · n(S2) < 0) or
translations (θ ·n is constant on σ), or any flexion deformation, provided at least one crack tip is concerned (see
Fig. 6).

Theorem 4.6. Let θ satisfy the above assumptions as well as θ · t = 0 on σ and there exists a neighbourhood
of Si where (θ · n) does not vanish except eventually at Si for i = 1 or 2. Then, under the assumption that the
coefficient ci of the singularity related to the extremity Si of u is different from 0, u1 is not identically equal to
zero on M .

Proof. We argue as in Theorem 4.5 by assuming that u1 is identically equal to zero on M . Then by Holmgren’s
unique continuation theorem u1 vanishes in a neighbourhood of Γ. Therefore Lemma 4.4 yields here∫

σ

{[u1] ∂nv + θ · n[∂tu] ∂tv} ds = 0, (29)

for all v ∈ H1(Ω) harmonic in Ω. Lemma 4.7 below shows that this implies

θ · n [∂tu] ≡ 0 on σ.

By the assumption on θ this means that
[∂tu] ≡ 0 on ωi ∩ σ,

where ωi is a sufficiently small neighbourhood of Si. Consequently

[u] ≡ κ on ωi ∩ σ,

for some constant κ but since [u](Si) = 0, we conclude that

[u] ≡ 0 on ωi ∩ σ,

which is impossible since the singular part of [u] is not identically equal to zero. �
Let us now prove the lemma used to derive the above result.
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Lemma 4.7. Let αt ∈ Lp(σ) ∩ C0,ε
loc(σ) for some p > 1 and αn ∈ C(σ̄) ∩ C0,ε

loc(σ) for some ε > 0 satisfy∫
σ

{αn ∂nv + αt ∂tv} ds = 0, (30)

for all v ∈ H1(Ω) harmonic in Ω. Then
αn = αt ≡ 0 on σ. (31)

Proof. Restricting ourselves as above to the fundamental solution at some y ∈ Ω̄c as test functions

v(x) = ln |x − y| for y �∈ Ω̄

we get

∂nv(x) =
(x − y) · nx

|x − y|2

∂tv(x) =
(x − y) · tx
|x − y|2 ∀y �∈ Ω̄

and the identity (30) becomes
∫

σ

{
αn(x)

(x − y) · nx

|x − y|2 + αt(x)
(x − y) · tx
|x − y|2

}
ds(x) = 0, for all y �∈ Ω̄.

As the function of this left-hand side is harmonic in R
2 \ σ, we finally obtain

∫
σ

{
αn(x)

(x − y) · nx

|x − y|2 + αt(x)
(x − y) · tx
|x − y|2

}
ds(x) = 0, ∀y �∈ σ. (32)

For the sake of shortness let us now introduce the following (integral) operators:

K1α(y) :=
∫

σ

α(x)
(x − y) · nx

|x − y|2 ds(x),

K2α(y) :=
∫

σ

α(x)
(x − y) · tx
|x − y|2 ds(x), ∀y �∈ σ.

The first one is a double layer potential. With these notations the identity (32) is equivalent to

K1αn(y) + K2αt(y) = 0, ∀y �∈ σ. (33)

By Lemma 4.8 below K2αt is continuous across σ while K1αn has a jump across σ equal to −2παn, therefore
the above identity (33) directly implies

−2παn = 0 on σ.

This proves the first assertion of the lemma.
For the second assertion, we take as test functions in (30)

w(x) = arg(x − y),

for y ∈ Ω̄c, the branch cut being chosen outside Ω. Since w is the harmonic conjugate of v(x) = ln |x − y|,
we get

∂nw = −∂tv, ∂tw = ∂nv.
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Therefore (30) implies
K2αt(y) = 0, ∀y �∈ Ω̄,

and the above arguments lead to αt = 0 on σ. �

Lemma 4.8. Let α ∈ Lp(σ) ∩ C0,ε
loc(σ) for some p > 1 and some ε > 0. Then for all x0 ∈ ◦

σ, we have

K1α(y) → −πα(x0) + K1α(x0) as y → x0, y ∈ Ω+, (34)
K1α(y) → πα(x0) + K1α(x0) as y → x0, y ∈ Ω−, (35)

K2α(y) → ln
|x0 − S2|
|x0 − S1|α(x0) +

∫
σ

(α(x) − α(x0))
(x − x0) · tx
|x − x0|2 ds(x) as y → x0. (36)

Proof. The proof of (34) and (35) is quite standard and consists in extending σ into an appropriate closed C2

curve (see for instance [9,19,20]). More precisely for (34) (resp. (35)) we extend σ into σ+
1 (resp. σ−

1 ) closed C2

curve so that σ+
1 (resp. σ−

1 ) is the boundary of a bounded domain Λ+ (resp. Λ−). In both cases, when y tends
to x0 in Ω+ (resp. in Ω−), y will be inside Λ+ (resp. Λ−). Therefore a standard property of the double layer
potential on σ+

1 (resp. σ−
1 ) yields (see Sect. 26.3 of [21])

∫
σ±
1

α(x)
(x − y) · n±

x

|x − y|2 ds(x) → −πα(x0) +
∫

σ±
1

α(x)
(x − x0) · n±

x

|x − x0|2 ds(x) as y → x0, y ∈ Ω±, (37)

where n±
x means the normal vector at x ∈ Λ± directed towards the exterior of Λ±. Since for x ∈ σ±

1 \ σ̄ and
y in a sufficiently small neighbourhood of x0, the distance from x to y is uniformly bounded from below, we
clearly have

∫
σ±
1 \σ̄

α(x)
(x − y) · n±

x

|x − y|2 ds(x) →
∫

σ±
1 \σ̄

α(x)
(x − x0) · n±

x

|x − x0|2 ds(x), as y → x0, y ∈ Ω±. (38)

The difference between (37) and (38) yields (34) and (35) since n±
x = ±nx on σ.

For the property (36), we use the splitting

K2α(y) = I(y)α(x0) +
∫

σ

(α(x) − α(x0))
(x − y) · tx
|x − y|2 ds(x), (39)

where we have set

I(y) =
∫

σ

(x − y) · tx
|x − y|2 ds(x).

The second term of the identity (39) tends to the second term of (39) due to Lebesgue’s bounded convergence
theorem. For the first term we remark that

I(y) =
∫

σ

∂t ln |x − y| ds(x) = ln |S2 − y| − ln |S1 − y|.

We conclude since x0 is different from S1 and S2. �

5. Conclusion

In this paper, we have proved identifiability on cracks submitted to a non linear impedance condition. Except
for the restriction on the direction of the cracks, the obtained result seems close to optimal: the assumption
on the identifying fluxes is not really restrictive, and those on the impedances are also needed to ensure well
posedness of the forward problem.
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As for the local Lipschitz stability, we have somewhat adapted the usual techniques previously used [6, 7],
by dropping the explicit construction of peculiar fields, which is not easy to achieve for non flat cracks. The so
worked out proofs rely on properties of fundamental solutions, and others of single and double layer potentials,
which make them likely to extend to several linear operators of mathematical physics. Another interesting
feature is that longitudinal and transversal stabilities are processed similarly, though arguments in the proofs
may of course vary.

Both identifiability and stability results have been obtained on the crack as well as on the impedance. Further
interesting developments now regard the numerical aspect of the recovery problem.
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