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1. Introduction

Kinetic equations (in particular those in which appears a collision kernel) are usually derived (at the formal
level) from Hamiltonian systems. While for linear equations it is in general possible to give a rigorous proof
of those derivations (cf. for example [9] for the linear Boltzmann equation, [6] and [8] for the linear Landau
equation), nonlinear equations give rise to very difficult problems, and rigorous results exist only for special
regimes (local (in time) solutions for the Boltzmann equation (cf. [4,14]), or global (in time) small solutions of
the Boltzmann equation (cf. [12,13])). When singular (nonlinear) kernels are concerned (non cutoff Boltzmann
kernel, or Landau kernel), the derivation of the corresponding kinetic equation seems completely open, though
the equations themselves have been extensively studied (cf. for example [1, 2, 7] and the references therein for
recent results on these equations).

We wish to derive here such singular nonlinear kernels by solving a quite different (and much simpler) problem.
We look for kernels satisfying given properties such as Galilean invariance and existence of equilibrium states,
and prove that they have to be the kernels we wish to derive (such as cutoff or non cutoff Boltzmann or Landau
kernels). In other terms we derive the kernels of the kinetic equations but not the equations themselves.

This line of ideas has already been followed in [3, 15]. We propose here a systematic treatment for binary
collisions in a mono-atomic (non quantum and non relativistic) rarefied gas.

Let Q be the kernel under investigation. The requirements for Q will be the following: Q is continuous (in
a sense to be specified), bilinear, invariant with respect to Galilean transformations, it takes the value 0 on
the set of Maxwellian (that is, Gaussian) functions, and it preserves the non-negativity of the solutions of the
corresponding evolution equation.

In order to show how our method works on a more tractable problem, we shall also consider the case of a
kernel L (in a periodic 1D context) which is linear, continuous, invariant under translations and parity, taking
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2 Università degli Studi di Pavia, Dipartimento di Matematica, Via Ferrata, 1, 27100 Pavia, Italy.
e-mail: salvarani@dimat.unipv.it

c© EDP Sciences, SMAI 2003



346 L. DESVILLETTES AND F. SALVARANI

the value 0 on the constant functions, and conserving the non-negativity (of the solution of the related evolution
equation).

The assumptions of the nonlinear case and the corresponding conclusions are given in a precise way in the
following theorem:

Theorem 1. Let

Q : S(Rn) × S(Rn) → C∞
temp(Rn) = C∞(Rn) ∩ S′(Rn)

be an operator such that:

(1) Q is bilinear and continuous from S(Rn) × S(Rn) to C∞
temp(Rn);

(2) Q is invariant under translations, that is Q ◦ τh = τh ◦Q for all h ∈ R
n (where τhϕ(x) = ϕ(x+ h));

(3) Q is invariant under rotations (and orthogonal symmetries), that is Q ◦ ΓR = ΓR ◦Q, where ΓRϕ(x) =
ϕ(Rx), for all R ∈ O(n,R);

(4) Q(Mu,T ,Mu,T ) = 0, where Mu,T is the Maxwellian function of arbitrary mean velocity u ∈ R
n and

temperature T > 0:

Mu,T (v) =
1

(2πT )n/2
e−|v−u|2/2T ;

(5) for all f, g ∈ S(Rn), v0 ∈ R
n, such that f, g ≥ 0 on R

n and f(v0) = 0, one has Q(f, g)(v0) ≥ 0.

Then the operator Q is a Boltzmann–Landau operator in the following sense:

Q(f, g)(v) = 〈K(x, y, v), f(x)g(y)〉x,y ,

where K is a distribution of the form

K(x, y, v) = δ|x−y|=|x+y−2v| Pf


µ

(
|x+y2 − v|, arccos

(
x+y−2v
|x+y−2v| · x−y

|x−y|
))

1 − x+y−2v
|x+y−2v| · x−y

|x−y|


 , (1)

and where µ is a positive measure which is even and 2π-periodic in the second variable.

Note that the standard form of the Boltzmann–Landau operator (that is, the sum of a (non-cutoff) Boltzmann
operator and a Landau operator, cf. [5] and the references therein for example) is easily obtained from equa-
tion (1) by making changes of variables.

We detail those changes of variables in dimension 2. Defining the variables ρ ∈ R+, θ ∈ R/2πZ and v∗ ∈ R
2 by

x =
v + v∗

2
+ ρRθ

(
v − v∗

2

)
,

y =
v + v∗

2
− ρRθ

(
v − v∗

2

)
,
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we get

Q(f, g)(v) =

〈
δρ=1Pf


µ

(
|v−v∗|

2 , θ
)

1 − cos θ


 ρ |v − v∗|2, f

(
v + v∗

2
+ ρRθ

(
v − v∗

2

))

× g

(
v + v∗

2
− ρRθ

(
v − v∗

2

))〉
ρ,θ,v∗

=

〈
Pf


µ

(
|v−v∗|

2 , θ
)

1 − cos θ


 |v − v∗|2, f

(
v + v∗

2
+Rθ

(
v − v∗

2

))

× g

(
v + v∗

2
−Rθ

(
v − v∗

2

))〉
θ,v∗

·

This is the usual form of the Boltzmann–Landau operator.
Note that the Landau part of the operator corresponds to the atomic part of µ in (·, 0), whereas if µ = θ2 ν,

one recovers the formula for the “regular” Boltzmann operator:

Q(f, g)(v) =
∫
v∗∈R2

∫
θ∈]−π,π[

[
f

(
v + v∗

2
+Rθ

(
v − v∗

2

))

× g

(
v + v∗

2
−Rθ

(
v − v∗

2

))
− f(v) g(v∗)

]
|v − v∗|2 θ2

1 − cos θ
dν

[ |v − v∗|
2

, θ

]
.

We now comment assumptions 1 to 5.
The first part of assumption 1 (bilinearity of the operator) is related to the fact that only binary collisions

are taken into account, and that no quantum effects such as Pauli’s exclusion principle are assumed.
The second part of assumption 1 is not directly related to physics. It is a very weak assumption of continuity

which allows to eliminate “pathological” kernels. Note that the continuity from Cc(Rn) × Cc(Rn) to C(Rn)
would be a much stronger assumption, which would not be satisfied by classical kernels such as Landau’s kernel
or the non cutoff Boltzmann kernel.

Assumptions 2 and 3 express the Galilean invariance. Their replacement by the invariance with respect to
the Lorentz group should lead to the relativistic collision kernels.

Assumption 4 ensures that the Maxwellian functions are equilibria for our kernel. The choice of different
functions (such as the Fermi–Dirac) could lead to different kernels (such as the Boltzmann kernel with Pauli
exclusion term).

Assumption 5 means, through the maximum principle, that for any g ≥ 0, f0 ≥ 0, the solution f of

∂tf = Q(f, g), f(0) = f0

should remain nonnegative. We use however this formulation since we want to work only on the operator and
not on the equation (which is not necessarily well posed under the rather not stringent conditions of smoothness
imposed by assumption 1).

In Section 2, we deal with a simpler problem, in a linear context. Then, we prove Theorem 1 in Section 3.
Finally, we give in Section 4 a typical counterexample.

2. The linear case

In order to show how our ideas work, we start with a brief study of a much simpler problem, namely that of
the linear Boltzmann kernel in a periodic setting.
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We prove in this section the

Theorem 2. Let C∞
p (R) be the space of C∞, 2π-periodic functions defined on R, and

L : C∞
p (R) → C∞

p (R),

be an operator such that:

(1) L is linear and continuous from C∞
p (R) to C∞

p (R);
(2) L is invariant under translation, that is L ◦ τh = τh ◦ L for all h ∈ R;
(3) L is invariant under parity, that is L ◦ P = P ◦ L, where P is the parity operator: Pϕ(x) = ϕ(−x);
(4) L1 = 0;
(5) for all f ∈ C∞

p (R) and x0 ∈ R such that f ≥ 0 and f(x0) = 0, one has (Lf)(x0) ≥ 0.

Then the operator L can be written as

Lf(x) =
∫
f(x+ y) − f(x) − sin y f ′(x)

sin2 y
dµ(y) + λ f ′′(x),

where λ ≥ 0, µ is a nonnegative 2π-periodic and even measure such that µ({0}) = 0, and the integral is taken
over a period.

The converse statement also holds: the operator L defined above satisfies assumptions 1 to 5.

Proof. We begin by writing the operator L in integral form. This can be done thanks to a variant of Schwartz’
kernel theorem (cf. [11], p. 128):

Proposition 3. To each linear continuous map L from C∞
p (R) to C∞

p (R) corresponds a (unique) kernel K ∈
D′
p(R × R) (space of 2π-periodic distributions with respect to both variables) such that

〈Lf, ϕ〉 = 〈K,ϕ⊗ f〉

for all f, ϕ ∈ C∞
p (R).

We now translate assumptions 2 to 5 in this formalism. It is clear that K satisfies

2’.
K(x+ h, y + h) = K(x, y) for all h ∈ R,

3’.
K(−x,−y) = K(x, y),

4’.
〈K,ϕ⊗ 1〉 = 0 for all ϕ ∈ C∞

p (R),

5’.
(sin(y − x0))2K(x0, y) ≥ 0.

Note that for 5’, we use the fact that (sin(· − x0))2 ϕ is a nonnegative function taking the value 0 at point x0

as soon as ϕ is nonnegative.
Thanks to assumption 2’, we can find k in D′

p(R) such that

K(x, y) = k(x− y),
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and assumptions 3’ to 5’ become

3”.
k(−x) = k(x),

4”.
〈k, 1〉 = 0,

5”.
(sin(·))2 k ≥ 0.

We then use the (classical)

Proposition 4. Let k ∈ D′
p(R) be such that (sin(·))2 k ≥ 0. Then

k(x) = Pf

(
µ(x)

(sinx)2

)
+ a δ0(x) + b δ′0(x),

where µ is a nonnegative 2π-periodic measure, and a, b ∈ R.
Here, since we are in the context of 2π-periodic distributions, δ0, δ′0 denote the 2π-periodicized versions of the

Dirac mass at 0 and its derivative. Moreover, the finite part Pf
(

µ(x)
(sin x)2

)
is defined by the formula

〈
Pf

(
µ(x)

(sinx)2

)
, ϕ

〉
=

∫
ϕ(x) − ϕ(0) − sinxϕ′(0)

(sinx)2
dµ(x),

the integral being taken on one period.

Proof. We use the decomposition

〈k, ϕ〉 = 〈k, 1〉 ϕ(0) + 〈k, sinx〉 ϕ′(0) +
〈

(sinx)2 k(x),
ϕ(x) − ϕ(0) − sinxϕ′(0)

(sinx)2

〉
,

and denote µ(x) = (sinx)2 k(x), a = 〈k, 1〉 and b = −〈k, sinx〉. But this is a nonnegative distribution, and
therefore a nonnegative measure. �

Using Proposition 4, we get

k(x) = Pf

(
µ(x)

(sinx)2

)
+ a δ0(x) + b δ′0(x).

Assumption 4” ensures that a = 0.
Then, assumption 3” gives b = 0 and µ(x) = µ(−x). Indeed, assumption 3” implies that for all ϕ ∈ C∞

p (R),

∫
ϕ(x) − ϕ(0) − sinxϕ′(0)

(sinx)2
[dµ(x) − dµ(−x)] = 2 b ϕ′(0).

Then, for any ψ ∈ C∞
p (R), we use ϕ(x) = (sinx)2 ψ(x), and get∫

ψ(x) [dµ(x) − dµ(−x)] = 0.

Therefore, µ(x) = µ(−x) and b = 0.
Writing µ = 2λ δ0 + ν with ν({0}) = 0, we get the final form of operator L:

Lf(x) =
∫
f(x+ y) − f(x) − sin y f ′(x)

(sin y)2
dν(y) + λ f ′′(x). �
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3. Proof of the main theorem

We now turn to the proof of Theorem 1. We follow the guidelines of the linear case. Since we are interested
in quadratic operators, we need a characterization theorem for such objects. The following lemma is a direct
consequence of [10] (Chap. 1, Th. 7, p. 17):

Lemma 1. Let Q be a continuous bilinear operator from S(Rn) × S(Rn) to C∞
temp(Rn). Then, there exists a

(unique) kernel K ∈ S′(Rn × R
n × R

n) such that for all f, g, ϕ ∈ S(Rn),

〈Q(f, g), ϕ〉 = 〈K, f ⊗ g ⊗ ϕ〉 · (2)

We now use assumptions 2 to 5 of Theorem 1 and Lemma 1. They imply that

2’.
K(x+ h, y + h, v + h) = K(x, y, v) for all h ∈ R

n,

3’.
K(Rx,Ry,Rv) = K(x, y, v) for all R ∈ O(n,R),

4’.
〈K(x, y, v),Mu,T (x)Mu,T (y)〉x,y = 0,

5’.
|x− v|2K(x, y, v) ≥ 0.

In order to get 5’, it is enough to observe that thanks to 5, for all nonnegative functions f, g of S(Rn) and all
v ∈ R

n, one has 〈
K(x, y, v), |x− v|2f(x)g(y)

〉
x,y

≥ 0.

Thanks to assumption 2’, there exists k ∈ S′(Rn × R
n) such that

K(x, y, v) = k(x− v, y − v).

Then, assumptions 3’ to 5’ become

3”.
k(Rx,Ry) = k(x, y) for all R ∈ O(n,R),

4”.
〈k,Mu,T ⊗Mu,T 〉 = 0,

5”.
|x|2 k(x, y) ≥ 0.

We now can perform the change of variables (of Jacobian 2n):

C : (a, b) → (a− b, a+ b),

and consider the distribution k1 = k ◦ C. Assumptions 3” to 5” become
3”’.

k1(Ra,Rb) = k1(a, b) for all R ∈ O(n,R),

4”’. 〈
k1(a, b), e−λ |b|2−λ|a−u|2

〉
= 0 for all λ > 0, u ∈ R

n,

5”’.
|a− b|2 k1(a, b) ≥ 0.
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Lemma 2. If F ∈ S′(Rn) and 〈
F, e−β|·−u|

2
〉

= 0

for all β > 0 and u ∈ R
n, then F = 0.

Proof. We note that 〈
F ∗ e−β|·−u|

2
〉

=
(
F ∗ e−β|·|

2
)

(u),

so that for all β > 0, F ∗ e−β|·|
2

= 0. We conclude by letting β go to infinity. �

Lemma 3. If F ∈ S′(Rn) and 〈
F, e−β |x|2

〉
= 0

for all β > 0, then 〈F, φ〉 = 0 for all radial function φ in S(Rn).

Proof. Note that it is enough to prove this result for F ∈ S(Rn), since the property verified by F is stable by
convolution and multiplication by any (centered) Gaussian function.

Then, we take the derivative of the formula
〈
F, e−β |x|2

〉
= 0 with respect to β, and get that for all k ∈ N,

β > 0,
〈
F, |x|2k e−β |x|2

〉
= 0. It remains to use the density of polynomials in L2(R+) with respect to the

measure rn−1e−β r
2
dr to conclude. �

We denote in the sequel by (R/2πZ)e the space corresponding to a variable which gives rise to 2π-periodic
even functions or distributions on R. We now define the distribution l ∈ D′(R+

∗ × R
+
∗ × (R/2πZ)e) by the

formula
〈l, ψ〉 = 〈k1, φ〉 ,

where

φ(a, b) = |a|1−n |b|1−n ψ
(
|a|, |b|, arccos

(
a

|a| ·
b

|b|
) )

· (3)

Thanks to assumption 3”’, it is possible to recover k1 from l. Namely,

〈k1, φ〉 = 〈l, ψ〉 ,

with
ψ(α, β, θ) = |α|n−1 |β|n−1

∫ ∫
|ω|=1,|σ|=1,ω·σ=cos θ

φ(αω, β σ).

Note that, by taking this definition, we just gave a precise characterization of a distribution l verifying k1(a, b) =

l

(
|a|, |b|, arccos

(
a
|a| · b

|b|
) )

.

Assumptions 4”’ and 5”’ now imply that
4””.

〈l(ρ1, ρ2, θ), 1〉θ = 0,
5””. (

ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ
)
l(ρ1, ρ2, θ) ≥ 0.

In order to get 4””, we note that thanks to Lemmas 2 and 3, 〈k1, φ〉 = 0 for all functions φ of S(Rn×R
n) which

are radially symmetric with respect to the second variable. Then, thanks to formula (3), we get that 〈l, ψ〉 = 0
for all functions ψ of D(R+∗ × R

+∗ × (R/2πZ)e) which do not depend on the last (angular) variable. But this
exactly means 4””. As for 5””, it is directly obtained by setting ρ1 = |a|; ρ2 = |b|; θ = arccos

(
a
|a| · b

|b|
)
.

We then define L1 on D′(R+∗ × R
+∗ × (R/2πZ)e) by

L1(ρ1, ρ, θ) = l(ρ1, ρ1 ρ, θ).
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Properties 4”” and 5”” become
4””’.

〈L1(ρ1, ρ, θ), 1〉θ = 0,
5””’. (

1 + ρ2 − 2 ρ cos θ
)
L1(ρ1, ρ, θ) ≥ 0.

We now prove the following lemma:

Lemma 4. The support of L1 is included in the set {ρ = 1}.
Proof. This lemma is fully proven if we show that 〈L1, ϕ〉 = 0 for all test-functions ϕ vanishing on a neighbour-
hood of the set {ρ = 1}. For this reason, we consider a nonnegative function Ψ(ρ1, ρ) of class C∞ such that
Ψ(ρ1, ρ) = 0 for all ρ ∈ (1 − ε, 1 + ε), ε > 0, and a nonnegative χ ∈ C∞

p . Then,

〈L1(ρ1, ρ, θ),Ψ(ρ1, ρ)χ(θ)〉ρ1,ρ,θ =
〈(

1 + ρ2 − 2ρ cos θ
)
L1(ρ1, ρ, θ),

Ψ(ρ1, ρ)
1 + ρ2 − 2ρ cos θ

χ(θ)
〉
ρ1,ρ,θ

·

Now, since Ψ(ρ1, ρ) = 0 in a neighborhood of {ρ = 1}, the function Ψ(ρ1, ρ)/(1+ρ2−2ρ cos θ) is still of class C∞

and then, by 5””’,
〈L1(ρ1, ρ, θ),Ψ(ρ1, ρ)χ(θ)〉ρ1,ρ,θ ≥ 0.

Moreover, 4””’ guarantees also that

〈L1(ρ1, ρ, θ),Ψ(ρ1, ρ) ⊗ 1θ〉ρ1,ρ,θ = 0.

If we consider the distribution of D′((R/2πZ)e):

T = 〈L1(ρ1, ρ, θ),Ψ(ρ1, ρ)〉ρ1,ρ ,

the previous conditions imply that T ≥ 0 and 〈T, 1〉θ = 0.
This implies that T = 0, since T is nonnegative and of mass 0. This in turn ensures that

〈L1(ρ1, ρ, θ),Ψ(ρ1, ρ) ⊗ χ(θ)〉 = 0

for all χ ∈ C∞
p , so that supp(L1) ⊂ {ρ = 1}. �

The previous lemma allows us to apply a variant of a theorem characterizing the distributions whose support
is contained in a plane (see [11], Th. 2.3.5).

Theorem 5. Let x = (x′, x′′) be a splitting of the variables in (R or (R/2πZ)e)n in two groups. If u is a
distribution in (R or (R/2πZ)e)n of order k (with compact support for a non periodic variable) contained in the
plane x′ = 0, then

u(φ) =
∑
|α|≤k

uα(φα)

where uα is a distribution of compact support and order k − |α| in the x′′ variables, α = (α′, 0) and

φα(x′′) = ∂αφ(x′, x′′)|x′=0.

We consider for a given nonnegative ψ ∈ D(R∗
+) the distribution Wψ(ρ, θ) = 〈L1(ρ1, ρ, θ), ψ(ρ1)〉 of D′(R∗

+ ×
(R/2πZ)e). Note that for all ψ, the distribution Wψ has a compact support in ρ (depending on ψ), so that we
can apply Theorem 5, and get

Wψ(ρ, θ) =
m∑
i=0

Wi(θ) ⊗ δ
(i)
ρ=1,
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where Wi ∈ D′((R/2πZ)e). Therefore assumptions 4””’ and 5””’ respectively become〈
m∑
i=0

Wi(θ) ⊗ δ
(i)
ρ=1, 1θ

〉
θ

= 0 (4)

and (
1 + ρ2 − 2ρ cos θ

) m∑
i=0

Wi(θ) ⊗ δ
(i)
ρ=1 ≥ 0. (5)

Thanks to equation (4), if we choose test-functions of type ψ(ρ) = (ρ−1)jΦ(ρ), where Φ is a given test function
of D(R+) which is equal to 1 in a neighborhood of ρ = 1, we obtain a triangular system of equations on the
quantities 〈Wi(θ), 1θ〉θ, whose solution is

〈Wi(θ), 1θ〉θ = 0, i = 0, . . . ,m. (6)

On the other hand, equation (5) becomes after computation (when m ≥ 2):

m−2∑
i=0

[2(1 − cos θ)Wi(θ) − 2(i+ 1)(1 − cos θ)Wi+1(θ) + (i+ 2)(i+ 1)Wi+2(θ)] ⊗ δ
(i)
ρ=1

+ [2(1 − cos θ)Wm−1(θ) − 2m(1 − cos θ)Wm(θ)] ⊗ δ
(m−1)
ρ=1

+ [2(1 − cos θ)Wm(θ)] ⊗ δ
(m)
ρ=1 ≥ 0.

We now apply the distribution defined above to functions of type

ψ∗(ρ, θ) =
(

1 −A(1 − ρ)m +
A2

4
(1 − ρ)2m

)
s(θ)

for all A ∈ R, where s is an arbitrary nonnegative function.
The function λ(ρ) = 1 −A(1 − ρ)m + (A2/4)(1 − ρ)2m has the following derivatives at ρ = 1:

λ(1) = 1, λ(i)(1) = 0 for i = 1, . . . ,m− 1 λ(m)(1) = (−1)m+1Am!.

It is clear that λ, ψ∗ ≥ 0, and therefore we get

〈2(1 − cos θ)W0(θ) − 2(1 − cos θ)W1(θ) + 2W2(θ), s(θ)〉 + (−1)2m+1 2Am! 〈(1 − cos θ)Wm(θ), s(θ)〉 ≥ 0. (7)

But this is true for all A ∈ R, so that

〈(1 − cos θ)Wm(θ), s(θ)〉 = 0. (8)

Note that (8) still holds when m = 1 although (7) is slightly different in this case (no term in W2 appears).
Since s is arbitrary (nonnegative), we get for m ≥ 1,

(1 − cos θ)Wm(θ) = 0. (9)

We now need the following lemma:

Lemma 5. Let W ∈ D′((R/2πZ)e) satisfy the equations (1 − cos θ)W = 0 and 〈W, 1〉 = 0. Then W = 0.

Proof. Since (1 − cos θ)W = 0, we know that W = a δ0 + b δ′0 (the Dirac masses here are taken in the sense of
2π-periodicized distributions). But W is even, so that b = 0. Finally, a = 0 because 〈W, 1〉 = 0. �
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Thanks to Lemma 5, (6) and (9), we see that for i ≥ 1, Wi = 0.
Then, thanks to (5), we get (1 − cos θ)Wψ = (1 − cos θ)W0 ≥ 0, so that (1 − cos θ)Wψ is a measure with

its support in {ρ = 1}. Therefore, we get (1 − cos θ)Wψ = δρ=1 µψ(θ) for some nonnegative 2π-periodic even
measure µψ . But this implies that (1−cos θ)L1(ρ1, ρ, θ) is nonnegative and has its support included in {ρ = 1},
so that

(1 − cos θ)L1(ρ1, ρ, θ) = δρ=1 µ(ρ1, θ)

for some nonnegative measure µ which is 2π-periodic and even with respect to its second variable.
As a consequence, we see that

L1(ρ1, ρ, θ) = δρ=1

{
Pf

(
µ(ρ1, θ)
1 − cos θ

)
+ α δθ=0 + β δ′θ=0

}
·

But L1 is even with respect to the third variable, so that β = 0, and 〈L1, 1〉θ = 0, so that α = 0. Finally, we get

L1(ρ1, ρ, θ) = δρ=1 Pf

(
µ(ρ1, θ)
1 − cos θ

)
·

Recalling the relation between L1 and K, we exactly get formula (1).

4. Counterexample

In this section, we discuss the choice of property 5 of Theorem 2, which deals with the positivity of the
operator.

Another natural condition would indeed be

6. for all f ∈ C∞
p (R), 〈Lf, f〉 ≤ 0.

Note however that

Lf(x) =
∫

− cos(x− y) f(y) dy (10)

defines a kernel satisfying 1, 2, 3, 4 and 6, but which is not of the form given in the conclusion of Theorem 2
(it does not satisfy condition 5).

In fact a simple Fourier analysis of the problem shows that

Lf(x) =
∫
k(x− y) f(y) dy

defines a kernel satisfying 1, 2, 3, 4 and 6 as soon as

c0(k) = 0, cm(k) = c−m(k) ≤ 0 for all m ∈ N
∗.

In the nonlinear case, the analogue of assumption 6 would be Boltzmann’s H-theorem. It seems however difficult
to produce counterexamples analogous to (10) in such a situation.

Acknowledgements. F.S. acknowledges the GNFM of the Italian National Institute of Higher Mathematics (INDAM) for
partial support. Both authors acknowledge the EU financed network No. HPRN-CT-2002-00282. We finally wish to
thank Prof. Claude Bardos and François Golse for pointing out to us the interest of the problem studied here.



CHARACTERIZATION OF COLLISION KERNELS 355

References

[1] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration.
Mech. Anal. 152 (2000) 327–355.

[2] R. Alexandre and C. Villani, On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire.
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