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PERSISTENCE AND BIFURCATION ANALYSIS ON A PREDATOR–PREY
SYSTEM OF HOLLING TYPE

Debasis Mukherjee1

Abstract. We present a Gause type predator–prey model incorporating delay due to response of
prey population growth to density and gestation. The functional response of predator is assumed to
be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient
criterion for uniform persistence is derived. Conditions are found out for which system undergoes a
Hopf–bifurcation.
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1. Introduction

The dynamic relationship between predators and their prey create major interest to many investigators due
to universal existence and importance [3]. These problems looks simple as it stands, sometimes it becomes quite
complicated to answer the question of survival and oscillation. These theory made a rapid progress in the last
few years, still some problems remain unsolved (Berryman [3], Kuang and Freedman [14], Kuang [9–12], Beretta
and Kuang [2]).

It is widely known that past history as well as present conditions can influence population dynamics and such
interactions has motivated the introduction of delays in population growth models. Sometimes delay can change
the dynamics. In delay models with complicated dynamics, the question of persistence (long term survival of
the population) and stability switching are important. Modelling of interacting species with time delay is being
dealt recently by Kuang [13], Freedman and Rao [7], Cao and Freedman [4], Mukherjee and Roy [16]. Cao
and Freedman [4] considered a general class of models of prey–predator interactions with time delay due to
gestation only. They derived criteria for uniform persistence and global attractivity of a positive equilibrium.
Wang and Ma [20] derived conditions for uniform persistence for Lotka–Volterra prey–predator system with
finite number of discrete delays. Farkas and Freedman [6] obtained criteria for global stability of general model
of two–predator–one prey system in terms of restrictions on the growth functions. The conditions seem to be
difficult to check. Mukherjee and Roy [16] obtained sufficient conditions for uniform persistence and global
stability of interior equilibrium of a delayed ecological model involving a resource and two predators.
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In general it has been found that incorporating time delays is a destabilizing process, and that increasing the
lag could cause a stable equilibrium to become unstable and/or cause populations to oscillate (see May [15],
Taylor and Sokal [18], Veilleux [19], Adams et al. [1]).

In this paper we are interested to study the effect of delays on prey–predator system with Holling type II func-
tional response. This type of situation is investigated by Dale et al. [5]. In [5], Dale et al. studied the predatory
behaviour of Wolves (Canis lupus) in Gates of Arctic National Park and Preserve in the Central Brookes Range
of Alaska, a wilderness area inside the Arctic Circle. Wolves prey primarily on Caribou (Rangifer tarandas),
although they will also take Dall sheep (Ovics dalli) and moose (Alces alces). Dale and coworkers estimated
the functional response of wolves to caribou abundance, which varies substantially, by four wolf packs for a
period of 30 days in the winter of 1990 and counting the number of kills per wolf are the number of caribou
available on each day. When the number of kills per wolf per day was plotted against the estimated number
of caribou per km2, the data fit the Holling type II functional response curve. For details see Ricklefs and
Miller [17]. We utilize two types of delays in our model. One for the growth equation of prey and another for
gestation. We address two questions in this paper (1) under what conditions the populations will survive in long
run (ii) it is already known that single delay in the growth equation of prey lead oscillation, will this behaviour
will be reflected for two delay terms also?

The paper is organized as follows. In Section 2, we present our model and discuss the boundedness of solutions
and uniform persistence. Bifurcation analysis is given in Section 3. A brief discussion concludes in Section 4.

2. The model

We consider the response of prey population growth to density is time–delayed, that is, when effect of
density dependence reflects the density of population τ1 time units in the past. Another time delay τ2 is taken
for gestation. The model is described by the following:

dx

dt
= x(t)

[
1 − x(t − τ1)

k
− y

1 + x

]
dy

dt
= y(t)

[
−d +

hx(t − τ2)
1 + x(t − τ2)

− fy

]
(1)

with initial conditions

x(t) = x0(t) ≥ 0, t ∈ [−τ, 0], τ = max(τ1, τ2), y(0) = y0 ≥ 0.

x0 : [−τ, 0] → [0,∞) is assumed to be continuous function.
Hence x represents the density of the prey and y that of predator. k denotes the carrying capacity of

environment. d is the death rate of predator, f is the intraspecific competition coefficient of the predator, h is
the conversion of biomass constant. All the parameters in system (1) are positive.

The following result shows that solutions of system (1) are bounded.

Theorem 1. Suppose hk > d. Then solutions of (1) are uniformly bounded.

Proof. From the first equation in (1), we have

lim
t→∞ sup x(t) ≤ keτ1 = k1 (say).

Again from the second equation in (1), we have

dy

dt
≤ y(t)[−d + hk1 − fy].
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Applying the same arguments as before, we have

lim
t→∞ sup y(t) ≤ hk1 − d

f
·

This completes the proof. �

Our next theorem shows that system (1) is uniformly persistent.

Theorem 2. Let hk
1+k > d. Then system (1) is uniformly persistent.

In order to prove Theorem 2, we require uniform persistence theory for infinite dimensional systems from [8].
Let X be a complete metric space. Suppose that X◦ is open, dense in X and X◦ ∪ X◦ = X, X◦ ∩ X◦ = φ.
Assume that T (x) is a C◦ semigroup on X satisfying

T (t) : X◦ → X◦ (∗)
T (t) : X◦ → X◦.

Let Tb(t) = T (t)|X◦ and let Ab be the global attractor for Tb(t).

Lemma 1. Suppose that T (t) satisfies (∗) and we have the following:

(i) there is a t0 ≥ 0 such that T (t) is compact for t ≥ t0;
(ii) T (t) is point dissipative in X;
(iii) Ab = ∪x∈Ab is isolated and has an acyclic covering M where

M = {M1, M2, . . . , Mn}

(iv) W s(Mi) ∩ X◦ = φ for i = 1, 2, . . . , n.

Then Xo is a uniform repellor with respect to X◦, i.e., there is an ∈> 0 such that for any x ∈ X◦, lim
t→∞ inf d(T (t)x,

X◦) ≥∈, where d is the distance of T (t)x from X◦.

We are now able to state the Proof of Theorem 2.

Proof of Theorem 2. The condition in Theorem 2 implies that hk > d and hence by Theorem 1 it follows
that T (t) is point dissipative. We know that E0(0, 0) and E1(k, 0) are the only boundary equilibria of system (1).
The origin is clearly unstable. We linearize around E1 and obtain the characteristic equation.

(
λ − hk

1 + k
+ d

) (
λ + eλτ1

)
= 0.

The eigenvalues of λ+eλτ1 = 0 all have negative real parts. There is a unique positive eigenvalue λ =
hk

1 + k
−d.

Thus the stable set of E1 does not intersect the positive cone. E0 and E1 are isolated invariant sets on the
boundary. Since E0 is unstable, Ab is just the union of the two steady states. Taking Mi to be these steady
states, there are no cycles on the boundary. Therefore, the result follows by Lemma 1. �

Theorem 3. If
hk

1 + k
< d then E1 is locally asymptotically stable.

Proof. Proof is obvious. �



342 D. MUKHERJEE

3. Bifurcation analysis

In this section we derive criteria for Hopf–bifurcation. An interior rest point E∗ = (x∗, y∗) is determined by
the following equations:

1 − x∗

k
− y∗

1 + x∗ = 0,

−d +
hx∗

1 + x∗ − fy∗ = 0.

The above two equations yield

fx∗3 − f(k − 2)x∗2 − (2fk − f − hk + dh)x∗ − k(f + d) = 0. (2)

Clearly equation (2) has one positive root which lies between 0 and k, if
hk

1 + k
> d. We linearize system (1)

around E∗ when τ1 = τ2 = τ and obtain the characteristic equation

λ2 + a1λ + a2λe−λτ + a3 + a4e−λτ = 0 (3)

where

a1 = y∗
(

f − x∗

(1 + x∗)2

)
,

a2 =
x∗

k
,

a3 = − fy∗2x∗

(1 + x∗)2
(3a)

a4 = x∗y∗
[

h

(1 + x∗)3
+

f

k

]
·

Suppose λ = iσ, σ > 0 is a root of (3) for some τ .
Assume a3 + a4 	= 0.
This assumption implies that σ 	= 0. We have

a3 − σ2 + a2σ sin στ + a4 cosστ = 0, (4)

a1σ + a2σ cosστ − a4 sin στ = 0. (5)

Thus (
σ2 − a3

)2
+ a2

1σ
2 = a2

2σ
2 + a2

4. (6)

Hence
σ4 +

(
a2
1 − a2

2 − 2a3

)
σ2 + a2

3 − a2
4 = 0. (7)

Its roots are:

σ2
± =

1
2

{(
a2
2 + 2a3 − a2

1

) ± √
(a2

2 + 2a3 − a2
1)

2 − 4 (a2
3 − a2

4)
}
·

If a2
3 ≤ a2

4, then there is only one imaginary solution λ = iσ+, σ+ > 0. If a2
3 > a2

4, there are two imaginary
solutions λ± = iσ± with σ+ > σ− > 0, provided that the following are true:

(i) a2
2 + 2a3 − a2

1 > 0 and (ii) (a2
2 + 2a3 − a2

1)2 > 4(a2
3 − a2

4) and no such solutions otherwise.
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Now,

sign
{

d(Reλ)
dτ

}
λ=iσ

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iσ

= sign
{

Re
[ − (2λ + a1)
λ(λ2 + a1λ + a3)

]
λ=iσ

+ Re
[

a2

λ(a2λ + a4)

]
λ=iσ

}

= sign
{

a2
1 − 2(a3 − σ2)

(a3 − σ2)2 + a2
1σ

2
− a2

2

a2
4 + a2

2σ
2

}
= sign

{
a2
1 − 2a3 − a2

2 + 2σ2
} ·

By inserting the expression for σ2
±, it is seen that the sign is positive for σ2

+ and negative for σ2
−. In the case

of a2
3 < a2

4, only one imaginary roof exists, λ = iσ+; therefore, the only crossing of the imaginary axis is from
left to right as τ increases and stability of the positive equilibrium can only be lost and not regained. In the
case of a2

3 > a2
4, crossing from left to right with increasing τ occurs whenever τ assumes a value corresponding

to σ+ and crossing from right to left occurs for values of τ corresponding to σ−. From equations (4) and (5),
we obtain the following two sets of values of τ for which there are imaginary roots:

τn,1 =
θ1

σ+
+

2nπ

σ+
(8)

where 0 ≤ θ1 < 2π and

cos θ1 =
a1a2σ

2
+ + a4(a3 − σ2

+)
σ2

+a2
2 + a2

4

, (9)

sin θ1 =
a4a1σ+ − a2σ+(a3 − σ2

+)
a2
2σ

2
+ + a2

4

(10)

and

τn,2 =
θ2

σ−
+

2nπ

σ−
(11)

where 0 ≤ θ2 < 2π and

cos θ2 =
a1a2σ

2
− + a3(a3 − σ2

−)a4

a2
2σ

2− + a2
4

, (12)

sin θ2 =
a4a1σ− − a2σ−(a3 − σ2

−)
a2
2σ

2− + a2
4

(13)

where n = 0, 1, 2, . . .
In the case that a2

3 < a2
4, only τ0,1 need be considered, since if E∗ is asymptotically stable for τ = 0, then

it remains asymptotically stable until τ0,1 and it is unstable thereafter. At the value of τ = τ0,1, (3) has pure
imaginary roots, ±σ+. In the case that a2

3 > a2
4, if E∗ is table for τ = 0, then it must follow that τ0,1 < τ0,2,

since multiplicity of roots with positive real parts cannot become negative. We note that

τn+1,1 − τn,1 =
2π

σ+
<

2π

σ−
= τn+1,2 − τn,2.

Therefore, there can be only a finite number of switches between stability and instability.
Thus we have the following theorem.
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Theorem 4. If a3 + a4 > 0 then the unstable equilibrium of (1) becomes stable for any τ ≥ 0. If E∗ is
asymptotically stable for τ = 0, then it is uniformly asymptotically stable for τ < τ0,1 and it becomes unstable
for τ > τ0,1.

If (i) a3 + a4 < 0, (ii) a2
2 + 2a3 − a2

1 > 0 and (iii) (a2
2 + 2a3 − a2

1) > 4(a2
3 − a2

4) then the stability of E∗ can
change a finite number of times at most as τ is increased, and eventually it becomes unstable.

The condition a3 + a4 > 0 can be written in the form

fx∗2 + 3fx∗2 + (3f + kd − kh)x∗ + hk + f + kd > 0.

If the conversion of biomass constant remains below a certain threshold value then above condition is satisfied.
Similarly conditions a3 + a4 < 0 requires that conversion of biomass constant exceeds sufficiently a certain
threshold value.

4. Discussion

In this paper we have considered a prey–predator model of Holling type functional response. We have
incorporated delays on prey growth response and in predator intake rate. It has been shown that the system is
uniformly bounded as long as carrying capacity of the environment exceeds a certain threshold value. For long
term survival of the populations, the death rate of predator must be below a certain threshold value. Clearly
the result shows that delay is harmless for persistence. Theorem 4 shows that if conversion of biomass constant
remains below a certain threshold value then delay has stabilizing effect on the system. If delay is increased
then stability of the equilibrium is lost. Again if conversion of biomass constant exceeds a certain threshold
value then stability switches finite number of times.
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