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FINITE VOLUME SCHEME FOR MULTI-DIMENSIONAL
DRIFT-DIFFUSION EQUATIONS AND CONVERGENCE ANALYSIS

Claire Chainais-Hillairet1, Jian-Guo Liu2 and Yue-Jun Peng1

Abstract. We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such
equations arise from the theory of semiconductors and are composed of two continuity equations coupled
with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the
convergence of the scheme and then the existence of solutions to the problem. The key point of the
proof relies on the construction of an approximate gradient of the electric potential which allows us to
deal with coupled terms in the continuity equations. Finally, a numerical example is given to show the
efficiency of the scheme.
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1. Introduction

In the mathematical modeling and numerical simulation of semiconductor devices, the drift-diffusion system
is widely used [19]. This system consists of the continuity equations for particle densities and a Poisson equation
for electrostatic potential. It can be derived from the Euler–Poisson equations when the relaxation time goes
to 0. The mathematical justification of this zero-relaxation-time limit has been rigorously performed in [16,17].
In the numerical context, it is much simpler to deal with the elliptic-parabolic coupled system of drift-diffusion
equations than the Euler–Poisson hyperbolic system. Since these equations are of elliptic-parabolic type, it is
natural to consider them in a bounded domain with initial and boundary conditions. The existence of solutions
to these equations has been proved under natural assumptions. In some situation, the uniqueness of solutions
is also obtained, see [2, 12, 13, 15].

Let Ω ⊂ R
d (d ≥ 1) be an open and bounded domain with boundary Γ = ∂Ω. We suppose throughout this

paper that Ω is a polygon. For general domain with smooth boundary, an approximation of the domain will be
involved, see [9]. For T > 0, we denote by ΩT = (0, T ) × Ω. If we neglect the recombination-generation rate,
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the drift-diffusion system reads:

∂tN − div(∇rN (N) −N∇V ) = 0, (1.1)

∂tP − div(∇rP (P ) + P∇V ) = 0, (1.2)

−∆V = P −N + C, (1.3)

in ΩT . Here N and P are the electron density and the positively charged holes density, rN and rP are the
corresponding pressures and V is the electrostatic potential. The function C = C(x) is the prescribed doping
profile characterizing the device under consideration. Equations (1.1)–(1.3) are supplemented by the following
initial and Dirichlet boundary conditions:

t = 0 : N = N0, P = P 0 in Ω, (1.4)

N = N, P = P , V = V on Σ, (1.5)

where Σ = (0, T )× Γ, N , P and V are given functions defined in ΩT .
We want to point out that in general the mixed Dirichlet–Neumann problem with homogeneous Neumann

boundary conditions are used. However, in our numerical scheme, it is easier to treat the Neumann boundary
conditions than the Dirichlet boundary conditions. Indeed, the homogeneous Neumann boundary condition
for V implies that dV n

σ = 0 (see (2.13) for the definition of dV n
σ ). Thus some boundary terms disappear in the

numerical scheme (2.10)–(2.12) and the convergence analysis of the scheme becomes simpler. For the sake of
simplicity, we only use the Dirichlet boundary conditions in this paper.

There exists a wide literature on numerical schemes for the drift-diffusion equations. In the linear pressure
case, a mixed exponential fitting finite element scheme has been successfully developed in [4,5]. The adaptation
of this scheme to the nonlinear pressure case has been considered in [1, 14] and [18] where numerical results
are given in 1-D and 2-D respectively. The convergence of a finite volume scheme to (1.1)–(1.5) in one space
dimension is given in [6].

The purpose of this paper is to prove the convergence of the finite volume scheme to (1.1)–(1.5) in several
space dimensions. To this end, we suppose that the initial and boundary conditions are away from the vacuum
sets where N = 0 or P = 0, and we show that this property is conserved for all time t > 0. Thus the continuity
equations (1.1) and (1.2) are non degenerate parabolic which allows us to perform the convergence analysis of
the scheme for general pressure functions instead of γ-laws in one space dimension, see [6]. It turns out that
there are serious difficulties to prove the convergence of the scheme in the case that the system (1.1)–(1.3) may
be degenerate, since the continuity equations (1.1) and (1.2) change type from parabolic to hyperbolic at the
degenerate points. Among them the main difficulty is to establish weak-BV estimates. In one space dimension,
these estimates are obtained due to the regularity of the electric potential in L∞(0, T ;W 1,∞(Ω)) which is
no longer true in multi-dimensional case. Nevertheless, it is possible to prove the convergence of the finite
volume scheme to the degenerate drift-diffusion equations subjected to the homogeneous Neumann boundary
conditions. We refer to [11] for the weak-BV estimates to a nonlinear degenerate parabolic equations with
coefficients satisfying a similar condition to the homogeneous Neumann boundary conditions. The convergence
of the scheme for the degenerate drift-diffusion equations with less general pressure functions is analyzed in [8].

It should be pointed out that our analysis is close to that of [11]. However, there are at least two main
differences between the analysis in [11] and our paper. First of all, the L∞ estimates are not so obvious as
that of [11] since we deal with a system of equations instead of a scalar equation. Secondly, there are some
coupled (convection) terms in the continuity equations (1.1)–(1.2) which are not involved in the problem in [11].
To treat them, we have to introduce an approximate gradient of the electric potential and prove its weak-∗
convergence in L∞(0, T ;L2(Ω)). This step is crucial in the proof of convergence and it seems that this step
cannot be avoided. Up to our knowledge, this is the first time that such an approximation is introduced in the
finite volume scheme in several space dimensions. See [6] for that approximation in one-dimensional case.
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This paper is organized as follows. In the next section, we construct the approximate solution to (1.1)–(1.5)
by the finite volume scheme and give the main result of the paper. Section 3 is devoted to the well-posedness of
the approximate solution. We show the L∞ stability, the existence and uniqueness of the approximate solutions
of the scheme. In Section 4, we establish the compactness of the approximate solutions based on the energy
estimates in L2(0, T ;H1(Ω)) for the electric potential and the densities. The convergence of the scheme will be
proved in Section 5. Finally, we give a numerical example in the last section. More numerical results can be
found in [6, 7] and [8] in one and two space dimensions respectively.

2. Numerical scheme and main result

In order to define our finite volume scheme and prove its convergence to a weak solution of the problem (1.1)–
(1.5), we need the following hypotheses:
(H1) N0, P 0 ∈ L∞(Ω), N , P ∈ L∞(ΩT ) ∩H1(ΩT ), V ∈ L∞(0, T ;H1(Ω));
(H2) there exist two constants m > 0 and M > 0 such that

m ≤ N0, P 0 ≤M in Ω and m ≤ N,P ≤M in ΩT ;

(H3) rN , rP ∈ C2([0,+∞)) are strictly increasing on (0,+∞);
(H4) C ∈ L∞(Ω).
Conditions (H2) and (H3) imply that the system (1.1)–(1.3) is not degenerate at the initial time and on the
boundary. This property will be conserved for all time, since r′N and r′P never vanish in the problem (see
Lem. 3.1). Under assumptions (H1)–(H4), the function (N,P, V ) is called a solution of the problem (1.1)–(1.5)
if it satisfies: N,P ∈ L∞(ΩT ),

rN (N) − rN (N), rP (P ) − rP (P ), V − V ∈ L∞(0, T ;H1
0(Ω)), (2.1)

and for all test functions φ ∈ C∞
0 ([0, T ) × Ω) and ψ ∈ D(ΩT )∫∫

ΩT

(N∂tφ−∇rN (N).∇φ+N∇V.∇φ) dxdt +
∫

Ω

N0(x)φ(0, x) dx = 0, (2.2)∫∫
ΩT

(P∂tφ−∇rP (P ).∇φ− P∇V.∇φ) dxdt +
∫

Ω

P 0(x)φ(0, x) dx = 0, (2.3)∫∫
ΩT

∇V.∇ψ dxdt =
∫∫

ΩT

(P −N + C)ψ dxdt. (2.4)

Since the problem is not degenerate, it is easy to see that condition (2.1) is equivalent to

N −N, P − P, V − V ∈ L2(0, T ;H1
0(Ω)).

Now we define the finite volume scheme to the problem (1.1)–(1.5). Let T be a regular and admissible mesh
of the domain Ω (see [10]), constituting of open and convex polygons called control volumes with maximum size
(diameter) h. For a control volume K ∈ T , we denote by NK the set of neighbours of K and Eext,K the set of
edges of K on the boundary Γ. We denote also σKL = K ∩ L for all L ∈ NK . The admissibility of T implies
that Ω = ∪K∈TK, K ∩ L = ∅ if K,L ∈ T and K �= L, and there exists a finite sequence of points (xK)K∈T
such that xK ∈ K and the straight line xKxL is orthogonal to the edge σKL. Finally, we define

τK,L =
m(σKL)
d(xK , xL)

if K,L ∈ T and τσ =
m(σ)

d(xK ,Γ)
if σ ∈ Eext,K , (2.5)
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where m(σ) stands for the measure of σ and d(a, b) is the distance between a and b. Let k be the time step and
tn = nk. For T > 0, we denote by MT = E(T/k) the integer part of T/k and δ = max(k, h).

The initial and boundary conditions are approximated as their L2 projections. More precisely,

N0
K =

1
m(K)

∫
K

N0(x)dx, P 0
K =

1
m(K)

∫
K

P 0(x)dx, (2.6)

Nn+1
σ =

1
km(σ)

∫ tn+1

tn

∫
σ

N(t, s)ds dt, Pn+1
σ =

1
km(σ)

∫ tn+1

tn

∫
σ

P (t, s)ds dt, (2.7)

V n
σ =

1
km(σ)

∫ tn+1

tn

∫
σ

V (t, s)ds dt, (2.8)

for all K ∈ T , σ ∈ Eext,K and 0 ≤ n ≤MT . Similarly, the doping profile is approximated by

CK =
1

m(K)

∫
K

C(x)dx, K ∈ T . (2.9)

The finite volume scheme for the continuity equations (1.1)–(1.2) and the Poisson equation is defined respec-
tively by:

m(K)
Nn+1

K −Nn
K

k
+
∑

L∈NK

τK,L

[
rN
(
Nn+1

K

)
− rN

(
Nn+1

L

)]
+

∑
σ∈Eext,K

τσ
[
rN
(
Nn+1

K

)
− rN

(
Nn+1

σ

)]
+
∑

L∈NK

[
(dV n

K,L)+Nn+1
K + (dV n

K,L)−Nn+1
L

]
+

∑
σ∈Eext,K

[
(dV n

σ )+Nn+1
K + (dV n

σ )−Nn+1
σ

]
= 0, (2.10)

m(K)
Pn+1

K − Pn
K

k
+
∑

L∈NK

τK,L

[
rP
(
Pn+1

K

)
− rP

(
Pn+1

L

)]
+

∑
σ∈Eext,K

τσ
[
rP
(
Pn+1

K

)
− rP

(
Pn+1

σ

)]
+
∑

L∈NK

[
(−dV n

K,L)+Pn+1
K + (−dV n

K,L)−Pn+1
L

]
+

∑
σ∈Eext,K

[
(−dV n

σ )+Pn+1
K + (−dV n

σ )−Pn+1
σ

]
= 0, (2.11)

−
∑

L∈NK

dV n
K,L −

∑
σ∈Eext,K

dV n
σ = m(K)(Pn

K −Nn
K + CK), (2.12)

for all K ∈ T and 0 ≤ n ≤MT , where x+ = max(x, 0), x− = min(x, 0) and

dV n
K,L = τK,L(V n

L − V n
K) and dV n

σ = τσ(V n
σ − V n

K) if σ ∈ Eext,K . (2.13)

Here the scheme (2.10)–(2.11) for N and P are Euler implicit in time which avoid the restriction of the time
step of the form k = O(h2) in the explicit scheme. In (2.10)–(2.11), the convection term ∆V is treated semi
implicit to avoid coupling between the dynamic equations and the kinetic equation to gain the efficiency in the
computation. This treatment arises some new difficulty which was not discussed in [11]. In our Lemma 3.1,
however, it is shown that this semi implicit treatment does not impose any stability constraint in the time step.
Finally, the approximate solution (Nδ, Pδ, Vδ) to the problem (1.1)–(1.5) associated to the mesh T is defined as
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piecewise constant function by:

Nδ(t, x) = Nn+1
K , Pδ(t, x) = Pn+1

K , Vδ(t, x) = V n
K ∀ (t, x) ∈ [tn, tn+1) ×K, (2.14)

where {(Nn
K , P

n
K , V

n
K), K ∈ T , 0 ≤ n ≤MT } is given by the scheme (2.5)–(2.13).

Now the definition of the scheme is finished. The purpose of this paper is to prove the following result.

Theorem 2.1. Let (H1)–(H4) hold and T be an admissible mesh of Ω. Then there exists a unique approximate
solution (Nδ, Pδ, Vδ) to the scheme (2.5)–(2.13), which converges (up to a subsequence) to (N,P, V ) as δ → 0,
where (N,P, V ) is a solution to the problem (1.1)–(1.5) in the sense of (2.1)–(2.4).

3. Well-posedness of the scheme

Since the finite volume scheme (2.5)–(2.13) is semi implicit in time, the existence and uniqueness of approx-
imate solution should be shown. The aim of this section is to prove such a result. The proof of the existence is
based on an L∞ estimate for Nδ and Pδ. In the case C = 0, this estimate has been obtained in one space di-
mension by means of the matrix analysis [6]. It is possible to apply the same technique to the multi dimensional
case to prove the L∞ estimate. Here we give a direct proof of this result in the general case where C ∈ L∞(Ω).
Note that we don’t need the assumption (H2) in the following results. This means that the L∞ stability and
the existence and uniqueness of solutions are also valid for the degenerate drift-diffusion equations.

We first show the L∞ stability of the scheme given by Lemma 3.1. It implies in particular that the continuity
equations (1.1)–(1.2) are not degenerate for all time (see (3.6) below). The existence and uniqueness of solutions
are stated in Theorem 3.1. Let

A = max

(
sup
x∈Ω

N0(x), sup
x∈Ω

P 0(x), sup
(t,s)∈Σ

N(t, s), sup
(t,s)∈Σ

P (t, s)

)
, (3.1)

a = min
(

inf
x∈Ω

N0(x), inf
x∈Ω

P 0(x), inf
(t,s)∈Σ

N(t, s), inf
(t,s)∈Σ

P (t, s)
)
, (3.2)

C =||C ||L∞(Ω), DT = A exp(CT ) + C. (3.3)

Lemma 3.1. Assume (H1), (H3)–(H4) hold and a ≥ 0. Then for all K ∈ T and all n = 0, 1, ...,MT , we have

a exp(−CT ) ≤ Nn
K , P

n
K ≤ A exp(CT ), (3.4)

provided that k < D−1
T . In particular, if C = 0, the maximum principle holds for Nδ and Pδ, i.e. (3.4) becomes

a ≤ Nn
K , P

n
K ≤ A. (3.5)

If in addition, (H2) holds, then Nδ and Pδ are strictly positive and (3.4) can be replaced by

0 < N1
def= m exp(−CT ) ≤ Nn

K , P
n
K ≤M exp(CT ) def= N2. (3.6)

Proof. It suffices to show (3.4). It will be carried out by induction on n. To this end, let us define for
n = 0, 1, ...,MT :

an = min
(

min
K∈T

Nn
K , min

σ∈Eext
Nn

σ

)
, An = max

(
max
K∈T

Nn
K , max

σ∈Eext
Nn

σ

)
and

bn = min
(

min
K∈T

Pn
K , min

σ∈Eext
Pn

σ

)
, Bn = max

(
max
K∈T

Pn
K , max

σ∈Eext
Pn

σ

)
,
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where Eext = ∪K∈T Eext,K . Then (3.4) is a consequence of the following inequalities:

a(1 + kC)−n ≤ an, An ≤ A(1 − kC)−n, (3.7)

a(1 + kC)−n ≤ bn, Bn ≤ A(1 − kC)−n, (3.8)

since for all K ∈ T and n = 0, 1, ...,MT , an ≤ Nn
K ≤ An, bn ≤ Pn

K ≤ Bn and

exp(−CT ) ≤ (1 + kC)−n, (1 − kC)−n ≤ exp(CT ).

The inequalities (3.7) and (3.8) are obvious for n = 0 due to the definition of a, A, an, bn, An and Bn.
Suppose (3.7) and (3.8) hold for some n > 0 and we want to show them for n+ 1.

We only show (3.7) for n + 1 since the proof of (3.8) for n + 1 is similar. Using the scheme (2.12) and the
equality

(dV n
K,L)+Nn+1

K + (dV n
K,L)−Nn+1

L = dV n
K,LN

n+1
K + (−dV n

K,L)+
(
Nn+1

K −Nn+1
L

)
,

the scheme (2.10) can be rewritten as:

Nn+1
K = Nn

K +
k

m(K)

∑
L∈NK

(
τK,L

[
rN
(
Nn+1

L

)
− rN

(
Nn+1

K

)]
+ (−dV n

K,L)+
[
Nn+1

L −Nn+1
K

])

+
k

m(K)

∑
σ∈Eext,K

(
τσ
[
rN
(
Nn+1

σ

)
− rN

(
Nn+1

K

)]
+ (−dV n

σ )+
[
Nn+1

σ −Nn+1
K

])
+k(Pn

K −Nn
K + CK)Nn+1

K . (3.9)

We have to distinguish the following cases:
(i) If both an+1 and An+1 are reached on the boundary Γ, from the definition of a, A and An, we have

a(1 + kC)−(n+1) ≤ a ≤ an+1, An+1 ≤ A ≤ A(1 − kC)−(n+1),

which is (3.7) for n+ 1.
(ii) If both an+1 and An+1 are reached in T , there exist K0, K1 ∈ T such that

Nn+1
K0

= An+1 and Nn+1
K1

= an+1.

Since rN and rP are increasing, from (3.9), we obtain

Nn+1
K1

≥ Nn
K1

+ kNn+1
K1

(Pn
K1

−Nn
K1

+ CK1),

Nn+1
K0

≤ Nn
K0

+ kNn+1
K0

(Pn
K0

−Nn
K0

+ CK0),

or equivalently [
1 − k(Pn

K1
+ CK1)

]
Nn+1

K1
≥ Nn

K1

(
1 − kNn+1

K1

)
, (3.10)[

1 − k(Pn
K0

+ CK0)
]
Nn+1

K0
≤ Nn

K0

(
1 − kNn+1

K0

)
. (3.11)

From k < D−1
T and the assumption of induction, we have for all K ∈ T ,

1 − k(Pn
K + CK) ≥ 1 − k(Bn + C) ≥ 1 − kDT > 0.

Therefore, (3.11) implies that
1 − kNn+1

K1
≥ 1 − kNn+1

K0
> 0.
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Since [
1 − k(Pn

K1
+ CK1)

]
Nn+1

K1
≤ (1 − kan + kC)Nn+1

K1

and (
1 − kNn+1

K1

)
Nn

K1
≥ an

(
1 − kNn+1

K1

)
,

we obtain from (3.10) that
an ≤ (1 + kC)Nn+1

K1
.

Hence, by the assumption of induction,

an+1 = Nn+1
K1

≥ a(1 + kC)−(n+1).

Similarly, we have [
1 − k(Pn

K0
+ CK0)

]
Nn+1

K0
≥
[
1 − k(An + C)

]
Nn+1

K0

and
Nn

K0

(
1 − kNn+1

K0

)
≤ An

(
1 − kNn+1

K0

)
,

which gives, together with (3.11)
An ≥ (1 − kC)Nn+1

K0
.

Hence, from (3.7)
An+1 = Nn+1

K0
≤ A(1 − kC)−(n+1).

This shows (3.7) for n+ 1.
(iii) If an+1 is reached on the boundary Γ and An+1 is reached in T , or an+1 is reached in T and An+1 is

reached on the boundary Γ, (3.7) follows from a combination of the results in cases (i) and (ii). We
omit the detail of the proof here since the techniques used are similar to that of (i) and (ii). �

Theorem 3.1. Assume (H1), (H3)-(H4) hold, a ≥ 0 and k < D−1
T . Then the sequence (Nδ, Pδ)δ>0 is bounded in

L∞(ΩT ), and there exists a unique solution {(Nn
K , P

n
K , V

n
K), K ∈ T , 0 ≤ n ≤MT } to the scheme (2.5)–(2.13).

Proof. The existence of solutions is done by induction on n. First of all, for n = 0, (N0
K , P

0
K)K∈T is defined

by (2.6). Then we determine (V 0
K)K∈T by the equation (2.12) with the boundary conditions (2.8) for n = 0. It

is clear that this solution (V 0
K)K∈T of the linear Poisson equation is unique. Suppose now that (Nn

K , P
n
K)K∈T is

known for some n > 0. Then we obtain as above a unique solution (V n
K)K∈T from (2.12) and (2.8). Therefore,

dV n
K,L and dV n

σ are defined for all K,L ∈ T and σ ∈ Eext,K . The existence of (Nn+1
K , Pn+1

K )K∈T to the
equations (2.10)–(2.11) with the boundary conditions (2.7) is a consequence of the L∞ stability. It has been
shown in [11] by the topological degree technique.

Now we turn to prove the uniqueness of solutions. By the analysis above, it suffices to show the uniqueness of
solutions to the equations (2.10)–(2.11). Still by induction on n, we suppose that (Nn

K , P
n
K)K∈T = (Ñn

K , P̃
n
K)K∈T

and (Nn+1
σ , Pn+1

σ )σ∈Eext,K = (Ñn+1
σ , P̃n+1

σ )σ∈Eext,K . Let (Nn+1
K , Pn+1

K )K∈T and (Ñn+1
K , P̃n+1

K )K∈T be two so-
lutions of (2.10)–(2.11) with (V n

K)K∈T given by (2.12) and (2.8). Multiplying by k sgn(Nn+1
K − Ñn+1

K ) the
equation obtained by subtraction of the scheme (2.10) for Nn+1

K and Ñn+1
K and noting the monotonicity of rN ,

we obtain:

m(K)
∣∣∣Nn+1

K − Ñn+1
K

∣∣∣+ k
∑

L∈NK

τK,L

(∣∣∣rN (Nn+1
K

)
− rN

(
Ñn+1

K

)∣∣∣− ∣∣∣rN (Nn+1
L

)
− rN

(
Ñn+1

L

)∣∣∣)

+ k
∑

L∈NK

[
(dV n

K,L)+
∣∣∣Nn+1

K − Ñn+1
K

∣∣∣+ (dV n
K,L)−

∣∣∣Nn+1
L − Ñn+1

L

∣∣∣]

+ k
∑

σ∈Eext,K

[
τσ

∣∣∣rN (Nn+1
K

)
− rN

(
Ñn+1

K

)∣∣∣+ (dV n
σ )+

∣∣∣Nn+1
K − Ñn+1

K

∣∣∣] ≤ 0. (3.12)
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Let us define
αK,L = (dV n

K,L)+
∣∣∣Nn+1

K − Ñn+1
K

∣∣∣+ (dV n
K,L)−

∣∣∣Nn+1
L − Ñn+1

L

∣∣∣ .
Since dV n

L,K = −dV n
K,L, we have (dV n

L,K)− = −(dV n
K,L)+, which yields αK,L = −αL,K . Therefore

∑
K∈T

∑
L∈NK

αK,L = 0.

Similarly, ∑
K∈T

∑
L∈NK

τK,L

(∣∣∣rN (Nn+1
K

)
− rN

(
Ñn+1

K

)∣∣∣− ∣∣∣rN (Nn+1
L

)
− rN

(
Ñn+1

L

)∣∣∣) = 0.

The last term on the left hand side of (3.12) is positive. Hence,

∑
K∈T

∑
L∈NK

m(K)
∣∣∣Nn+1

K − Ñn+1
K

∣∣∣ ≤ 0,

and thus Nn+1
K = Ñn+1

K for all K ∈ T . In the same way, we obtain Pn+1
K = P̃n+1

K for all K ∈ T . This shows
the uniqueness of solutions to (2.10)–(2.11). �

4. Compactness of the approximate solution

This section is devoted to the compactness of the approximate solution. Our goal is to show the strong
compactness of the sequences (Nδ)δ>0 and (Pδ)δ>0 in L2(ΩT ) and the weak-∗ compactness in L∞(0, T ;L2(Ω))
of the approximate gradient of the electric potential which will be defined below. The first one is easy. It is
based on a discrete L2(0, T ;H1(Ω)) estimate and an estimate of time translation. The second is the main task
of this section.

From now on, we denote by Dj (j = 1, 2, ...) various constants depending possibly on the given data and
independent of δ, n and K. We first show the discrete L∞(0, T ;H1(Ω)) estimate for Vδ and the L2(0, T ;H1(Ω))
estimates for Nδ and Pδ. They are given by (4.1) and (4.2)–(4.3) respectively.

Lemma 4.1. Assume (H1)–(H4) hold and k < D−1
T . Then there exist two constants D1 > 0 and D2 > 0 such

that for all n = 1, 2, ...,MT ,

||Vδ ||21,n,Ω=
∑
K∈T


1

2

∑
L∈NK

τK,L (V n
K − V n

L )2 +
∑

σ∈Eext,K

τσ (V n
K − V n

σ )2

 ≤ D1, (4.1)

and

||Nδ ||21,ΩT
=

MT∑
n=0

k
∑
K∈T


1

2

∑
L∈NK

τK,L

(
Nn+1

K −Nn+1
L

)2
+

∑
σ∈Eext,K

τσ
(
Nn+1

K −Nn+1
σ

)2 ≤ D2, (4.2)

and similarly

||Pδ ||21,ΩT
=

MT∑
n=0

k
∑
K∈T


1

2

∑
L∈NK

τK,L

(
Pn+1

K − Pn+1
L

)2
+

∑
σ∈Eext,K

τσ
(
Pn+1

K − Pn+1
σ

)2 ≤ D2. (4.3)
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Proof. We first show (4.1). Let us define the discrete function V δ of V in ΩT by V δ(t, x) = V
n

K , ∀ (t, x) ∈
[tn, tn+1) ×K, where

V
n

K =
1

km(K)

∫ tn+1

tn

∫
K

V (t, x) dxdt, ∀ K ∈ T , n = 0, 1, ...,MT .

Let fn
K = m(K)(Pn

K −Nn
K +CK). Multiplying the scheme (2.12) by V n

K − V
n

K and summing over T , we obtain

−
∑
K∈T


 ∑

L∈NK

dV n
K,L +

∑
σ∈Eext,K

dV n
σ


(V n

K − V
n

K

)
=
∑
K∈T

fn
K

(
V n

K − V
n

K

)
.

Noting that V
n

σ = V n
σ , it is easy to see from the L∞ estimates for Nδ and Pδ and Young inequality that

−
∑
K∈T

∑
L∈NK

dV n
K,L

(
V n

K − V
n

K

)
−
∑
K∈T

∑
σ∈Eext,K

dV n
σ

(
V n

K − V
n

K

)
=

1
2

∑
K∈T

∑
L∈NK

τK,L (V n
K − V n

L )
[
(V n

K − V n
L ) −

(
V

n

K − V
n

L

)]

+
∑
K∈T

∑
σ∈Eext,K

τσ(V n
K − V n

σ )
[
(V n

K − V n
σ ) −

(
V

n

K − V
n

σ

)]

≥ 1
2
|| Vδ ||21,n,Ω −1

2
|| V δ ||21,n,Ω (4.4)

and ∣∣∣fn
K

(
V n

K − V
n

K

)∣∣∣ ≤ (2N2 + C)
[

1
4ε
m(K) + εm(K)

(
V n

K − V
n

K

)2
]
,

where ε > 0 is a real number, C and N2 are defined by (3.3) and (3.6) respectively. Therefore

1
2
|| Vδ ||21,n,Ω ≤ 1

2
|| V δ ||21,n,Ω +

(2N2 + C)m(Ω)
4ε

+ ε
(
2N2 + C

) ∑
K∈T

m(K)
(
V n

K − V
n

K

)2

.

By choosing ε small enough, we obtain (4.1) from V ∈ L∞(0, T ;H1(Ω)) and the discrete Poincaré inequality
(see Lem. 3.1 of [10]).

The proof of (4.2) and (4.3) is almost the same. Hence, we only show (4.2). For simplicity, the subscript
N in rN will be omitted in the proof. As above, let us define the discrete function N δ of N in ΩT by
N δ(t, x) = N

n+1

K , ∀ (t, x) ∈ [tn, tn+1) ×K, where

N
n+1

K =
1

km(K)

∫ tn+1

tn

∫
K

N(t, x) dxdt, ∀ K ∈ T , n = 0, 1, ...,MT .

Multiplying the scheme (2.10) by k
(
Nn+1

K −N
n+1

K

)
and summing for K ∈ T and n = 0, 1, ...,MT , we obtain

E1(δ) + E2(δ) + E3(δ) = 0, (4.5)
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with

E1(δ) =
MT∑
n=0

∑
K∈T

m(K)
(
Nn+1

K −Nn
K

) (
Nn+1

K −N
n+1

K

)
,

E2(δ) =
MT∑
n=0

k
∑
K∈T

∑
L∈NK

τK,L

(
r(Nn+1

K ) − r(Nn+1
L )

) (
Nn+1

K −N
n+1

K

)

+
MT∑
n=0

k
∑
K∈T

∑
σ∈Eext,K

τσ
(
r
(
Nn+1

K

)
− r

(
Nn+1

σ

)) (
Nn+1

K −N
n+1

K

)
,

E3(δ) =
MT∑
n=0

k
∑
K∈T

∑
L∈NK

[
(dV n

K,L)+Nn+1
K + (dV n

K,L)−Nn+1
L

] (
Nn+1

K −N
n+1

K

)

+
MT∑
n=0

k
∑
K∈T

∑
σ∈Eext,K

[
(dV n

σ )+Nn+1
K + (dV n

σ )−Nn+1
σ

] (
Nn+1

K −N
n+1

K

)
.

For the term E1(δ), we write E1(δ) = E11(δ) + E12(δ) where,

E11(δ) =
MT∑
n=0

∑
K∈T

m(K)
(
Nn+1

K −Nn
K

)
Nn+1

K ,

E12(δ) =
MT∑
n=0

∑
K∈T

m(K)
(
Nn+1

K −Nn
K

)
N

n+1

K .

From the inequality t(t− s) ≥ 1
2 (t2 − s2), t, s ∈ R, we have

E11(δ) ≥ 1
2

MT∑
n=0

∑
K∈T

m(K)
[(
Nn+1

K

)2 − (Nn
K)2

]

≥ −1
2

∑
K∈T

m(K)(N0
K)2

≥ −1
2
m(Ω) ||N0 ||2L∞(Ω)

and a straightforward computation gives

E12(δ) =
MT∑
n=0

∑
K∈T

m(K)Nn
K

(
N

n+1

K −N
n

K

)
+
∑
K∈T

m(K)
(
NMT +1

K N
MT +1

K −N0
KN

1

K

)

≥ − ||Nδ ||L∞(ΩT )

MT∑
n=0

∑
K∈T

m(K)
∣∣∣N n+1

K −N
n

K

∣∣∣−m(Ω) ||Nδ ||L∞(ΩT )||N δ ||L∞(ΩT ) .

From the assumption N ∈ L∞(ΩT ) ∩ H1(ΩT ), we obtain E1(δ) ≥ −D3. For the term E2(δ), we denote by
rm = minN∈[N1,N2] r

′(N), where N1 and N2 are defined by (3.6). Since r is strictly increasing on (0,+∞) and
N1 > 0, we have rm > 0. Hence, the estimate for E2(δ) can be obtained in the similar way as (4.4). It is:

E2(δ) ≥ 1
2
rm ||Nδ ||21,ΩT

−D4. (4.6)
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Now we control the coupled term E3. For this purpose, noting that dV n
K,L = −dV n

L,K and N
n+1

σ = Nn+1
σ ,

we obtain

E3(δ) =
1
2

MT∑
n=0

k
∑
K∈T

∑
L∈NK

[
(dV n

K,L)+Nn+1
K + (dV n

K,L)−Nn+1
L

][(
Nn+1

K −Nn+1
L

)
−
(
N

n+1

K −N
n+1

L

)]

+
MT∑
n=0

k
∑
K∈T

∑
σ∈Eext,K

[
(dV n

σ )+Nn+1
K + (dV n

σ )−Nn+1
σ

][(
Nn+1

K −Nn+1
σ

)
−
(
N

n+1

K −N
n+1

σ

)]
.

From the definition of dV n
K,L, we have

|E3(δ) | ≤
1
2
||Nδ ||L∞(ΩT )

MT∑
n=0

k
∑
K∈T

∑
L∈NK

τK,L |V n
L − V n

K |
(∣∣N n+1

K −N n+1
L

∣∣+ ∣∣∣N n+1

K −N
n+1

L

∣∣∣)

+ ||Nδ ||L∞(ΩT )

MT∑
n=0

k
∑
K∈T

∑
σ∈Eext,K

τσ |V n
σ − V n

K |
(∣∣N n+1

K −Nn+1
σ

∣∣+ ∣∣∣N n+1

K −N
n+1

σ

∣∣∣) .
It follows from Young and Cauchy–Schwarz inequality and (4.1) that

E3(δ) ≥ − ||Nδ ||L∞(ΩT )

(
ε ||Nδ ||21,ΩT

+
1
4ε
TD1

)
− ||Nδ ||L∞(ΩT )

√
TD1 ||N δ ||1,ΩT , (4.7)

where ε > 0 is an arbitrary real number. Let us choose ε such that 2ε ||Nδ ||L∞(ΩT )< rm. Then the first term
on the right hand side of (4.7) can be controlled by 1

2 rm ||Nδ ||21,ΩT
in (4.6). Thus (4.2) follows from (4.5)–(4.7)

and E1(δ) ≥ −D3. �

Lemma 4.2. Let ξ ∈ (0, T ) and η ∈ Ω. Under the assumptions of Lemma 4.1, there is a constant D5 > 0
independent of δ, ξ and η such that

||Nδ(.+ ξ, .+ η) −Nδ(., .) ||2L2((0,T−ξ)×ω) ≤ D5[ξ+ |η | (|η | +h+ 1)], (4.8)

||Pδ(.+ ξ, .+ η) − Pδ(., .) ||2L2((0,T−ξ)×ω) ≤ D5[ξ+ |η | (|η | +h+ 1)], (4.9)

where ω is an open subdomain of Ω satisfying x+ η ∈ Ω for all x ∈ ω.

Lemma 4.2 is a consequence of Lemma 4.1 and the estimates of time translation for Nδ and Pδ obtained
from the scheme (2.10)–(2.12). Its proof will be omitted here since it is similar to that of Lemma 4.3 and
Lemma 4.6 in [10]. We refer to that book for the detail of the proof. See also [6] for the one-dimensional case.
By Riesz–Fréchet–Kolmogorov criterion of strong compactness [3] together with (4.8)–(4.9), we obtain

Lemma 4.3. There exists a subsequence of (Nδ, Pδ)δ>0, still denoted by (Nδ, Pδ)δ>0, and a function (N,P ) ∈
L∞(ΩT ) such that as δ → 0,

Nδ −→ N and Pδ −→ P in L2(ΩT ) strongly. (4.10)

Now we study the compactness of the sequence (Vδ)δ>0. To this end, we have to define an approximation
of the gradient of the electric potential V . Following the notations in Section 2, let K ∈ T and L ∈ NK with
common vertexes (yj

K,L)1≤j≤J (J ∈ IN∗). Let TK,L (TK,σ respectively, σ ∈ Eext,K) be the open and convex
polygon with vertexes (xK , xL) (xK respectively) and (yj

K,L)1≤j≤J . Then the domain Ω can be decomposed as:

Ω = ∪K∈T
((
∪L∈NKTK,L

)
∪
(
∪σ∈Eext,KTK,σ

))
.
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The approximation dVδ of ∇V is defined as piecewise constants in ΩT by:

dVδ(t, x) =



m(σKL)(V n

L − V n
K)

m(TK,L)
νK,L if (t, x) ∈

(
tn, tn+1

)
× TK,L,

m(σ)(V n
σ − V n

K)
m(TK,σ)

νK,Γ if (t, x) ∈
(
tn, tn+1

)
× TK,σ,

(4.11)

for all K ∈ T and 0 ≤ n ≤MT , where νK,L (νK,Γ respectively) stands for the normal unit vector of σKL (νK,Γ

respectively) oriented from K to L (from K to Γ respectively). Similarly, we define drN (Nδ) and drP (Pδ) by

drN (Nδ)(t, x) =



m(σKL)(rN (Nn

L) − rN (Nn
K))

m(TK,L)
νK,L if (t, x) ∈

(
tn, tn+1

)
×TK,L,

m(σ)(rN (Nn
σ ) − rN (Nn

K))
m(TK,σ)

νK,Γ if (t, x) ∈
(
tn, tn+1

)
×TK,σ,

(4.12)

drP (Pδ)(t, x) =



m(σKL)(rP (Pn

L ) − rP (Pn
K))

m(TK,L)
νK,L if (t, x) ∈

(
tn, tn+1

)
× TK,L,

m(σ)(rP (Pn
σ ) − rP (Pn

K))
m(TK,σ)

νK,Γ if (t, x) ∈
(
tn, tn+1

)
× TK,σ.

(4.13)

Then we have:

Lemma 4.4. There exists a function V ∈ L∞(0, T ;H1(Ω)) such that, up to subsequences of (Vδ)δ>0 and
(dVδ)δ>0,

Vδ −⇀ V in L∞(0, T ;L2(Ω)) weakly − ∗ as δ → 0 (4.14)

and

dVδ −⇀ ∇V in (L∞(0, T ;L2(Ω)))d weakly − ∗ as δ → 0. (4.15)

Proof. Since the straight line xKxL is orthogonal to the edge σKL for all L ∈ NK and the mesh T is regular,
there is a constant D6 > 0 depending only on the dimension of the domain and the geometry of T such that

d(xK , xL)m(σKL) ≤ D6m(TK,L). (4.16)

It follows from the definition of dVδ and Lemma 4.1, the sequence (dVδ)δ>0 is bounded in (L∞(0, T ;L2(Ω)))d

and by the discrete Poincaré inequality, the sequence (Vδ)δ>0 is bounded in L∞(0, T ;L2(Ω)). Therefore, there
exist two functions V ∈ L∞(0, T ;L2(Ω)) and χ ∈ (L∞(0, T ;L2(Ω)))d such that (4.14) holds and

dVδ −⇀ χ in
(
L∞ (0, T ;L2(Ω)

))d
weakly− ∗ as δ → 0.

It remains to show that χ = ∇V in the sense of distributions, which is a consequence of the following limit:

∀φ ∈ (D(ΩT ))d, Eδ
def=
∫∫

ΩT

dVδ .φdxdt+
∫∫

ΩT

Vδ divφdxdt −→ 0 as δ → 0.
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Let δ > 0 be small enough such that suppφ ∈ (0, T ) × {x ∈ Ω; d(x,Γ) > δ}. This implies that φ vanishes
in TK,σ for all σ ∈ Eext,K and K ∈ T . In view of νK,L = −νL,K , we obtain for all t ∈ (tn, tn+1),∫

Ω

Vδ(t, x) divφ(t, x) dx =
∑
K∈T

∫
K

Vδ(t, x) divφ(t, x) dx

=
∑
K∈T

∑
L∈NK

V n
K

∫
σKL

φ(t, s).νK,L ds

=
1
2

∑
K∈T

∑
L∈NK

(V n
K − V n

L )
∫

σKL

φ(t, s).νK,L ds

and from the definition of dVδ,∫
Ω

dVδ(t, x)φ(t, x) dx =
1
2

∑
K∈T

∑
L∈NK

∫
TK,L

dVδ(t, x).φ(t, x) dx

=
1
2

∑
K∈T

∑
L∈NK

(V n
L − V n

K)
m(σKL)
m(TK,L)

∫
TK,L

φ(t, x).νK,L dx.

Since φ is smooth, it is easy to see that for all t ∈ (0, T ),∣∣∣∣∣ 1
m(TK,L)

∫
TK,L

φ(t, x).νK,L dx− 1
m(σKL)

∫
σKL

φ(t, s).νK,L ds

∣∣∣∣∣ ≤ h ||φ ||C1(ΩT ) .

Therefore, by Cauchy–Schwarz inequality and (4.1)

2 |Eδ | ≤ h ||φ ||C1(ΩT )

MT∑
n=0

k
∑
K∈T

∑
L∈NK

|V n
K − V n

L | m(σKL)

≤ h
√
TD1 ||φ ||C1(ΩT )

(
MT∑
n=0

k
∑
K∈T

∑
L∈NK

d(xK , xL)m(σKL)

)1/2

.

Noting that ∑
K∈T

∑
L∈NK

m(TK,L) = 2m(Ω), (4.17)

we obtain from (4.16) and Lemma 4.1 that

|Eδ | ≤
1
2
hT ||φ ||C1(ΩT )

√
2D1D6m(Ω),

and the result follows. �

Corollary 4.1. There exist subsequences of (drN (Nδ))δ>0 and (drP (Pδ))δ>0 such that, as δ → 0,

drN (Nδ) −⇀ ∇rN (N), drP (Pδ) −⇀ ∇rP (P ) in
(
L2(ΩT )

)d
weakly. (4.18)

Proof. From the strong compactness of the sequence (Nδ)δ>0 in L2(ΩT ), we have, up to a subsequence
of (Nδ)δ>0, limδ→0 rN (Nδ) = rN (N) in L2(ΩT ). Since the sequence (drN (Nδ))δ>0 is bounded in L2(ΩT ),
the proof of Lemma 4.4 can be applied to the sequence (drN (Nδ))δ>0. The proof for the sequence (drP (Pδ))δ>0

is similar. �
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5. Convergence of the scheme

In this section, we show the convergence of the approximate solutions (Nδ, Pδ, Vδ) to a global solution (N,P, V )
of the problem (1.1)–(1.5). The key point is to treat the nonlinear diffusion terms and the convection terms.
The strong compactness of the sequence (Nδ, Pδ)δ>0 and the weak-∗ convergence of the sequence (dVδ)δ>0 allow
to pass to the limit in the nonlinear diffusion terms and the convection terms. Therefore, the convergence of
the scheme is the main task of this section. It will be achieved for the Poisson equation and the continuity
equations in Theorem 5.1 and Theorem 5.2 separately. In particular, it implies the results of Theorem 2.1. Note
that the convergence proof is simpler than those of [10] and [11] due to the introduction of the quantity dVδ in
Section 4. Moreover, we don’t need the condition of type k = O(

√
h) used for the degenerate problem in one

space dimension [6].

Theorem 5.1. Assume (H1)–(H4) hold. Then the functions (N,P, V ) defined in Lemmas 4.3-4.4 satisfy the
Poisson equation in the sense of (2.4) and the boundary condition V − V ∈ L∞(0, T ;H1

0(Ω)).

Proof. Let ψ ∈ D(ΩT ) be a test function and ψn
K = ψ(tn, xK) for all K ∈ T and n = 0, 1, ...,MT . As in the

proof of Lemma 4.4, we suppose that δ > 0 is small enough such that suppψ ∈ (0, T ) × {x ∈ Ω; d(x,Γ) > δ}.
This implies that ψ vanishes in all K ∈ T when K ∩ Γ �= ∅. It follows that

∑
σ∈Eext,K

gn
Kψ

n
K = 0 for all gn

K . We
introduce:

F10(δ) =
∫∫

ΩT

dVδ.∇ψ dxdt, F20(δ) =
∫∫

ΩT

(Nδ − Pδ − Cδ)ψ dxdt,

where Cδ is defined by
Cδ(x) = CK , ∀ x ∈ K ∈ T .

Obviously, we have the strong convergence Cδ −→ C in L∞(Ω) as δ → 0. From the weak convergence of
(dVδ)δ>0 to ∇V and the strong convergence of (Nδ, Pδ)δ>0 to (N,P ) in L2(ΩT ), we have

F10(δ) + F20(δ) −→
∫∫

ΩT

∇V.∇ψ dxdt+
∫∫

ΩT

(N − P − C)ψ dxdt as δ → 0.

On the other hand, multiplying the scheme (2.12) by kψn
K and summing for K and n, we get

F1(δ) + F2(δ) = 0,

with

F1(δ) = −
MT∑
n=0

k
∑
K∈T

∑
L∈NK

dV n
K,Lψ

n
K , F2(δ) =

MT∑
n=0

k
∑
K∈T

m(K)(Nn
K − Pn

K − CK)ψn
K .

Now we prove the limits Fj(δ) − Fj0(δ) → 0 as δ → 0 for j = 1, 2, which imply that the functions (N,P, V )
satisfy the Poisson equation (2.4). We start with j = 2. A straightforward computation gives

F2(δ) − F20(δ) =
MT∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K

(Nn
K − Pn

K − CK)(ψn
K − ψ(t, x)) dxdt.

Since (Nδ)δ>0 and (Pδ)δ>0 are bounded in L∞(ΩT ) and ψ is smooth, it is easy to obtain

|F2(δ) − F20(δ) | ≤
[
Tm(Ω) ||ψ ||C1(ΩT )

(
||Nδ ||L∞(ΩT ) + ||Pδ ||L∞(ΩT ) + ||Cδ ||L∞(Ω)

)]
δ,

which yields F2(δ) − F20(δ) → 0 as δ → 0.
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Next, using the definition of dV n
K,L and the symmetry of τK,L, we have

F1(δ) =
1
2

MT∑
n=0

k
∑
K∈T

∑
L∈NK

τK,L(V n
K − V n

L )(ψn
K − ψn

L).

Let us rewrite F10(δ) as

F10(δ) =
1
2

MT∑
n=0

∑
K∈T

∑
L∈NK

∫ tn+1

tn

∫
TK,L

dVδ .∇ψ dxdt.

Therefore, by the definition of τK,L and dVδ,

F1(δ) − F10(δ) =
1
2

MT∑
n=0

∑
K∈T

∑
L∈NK

m(σKL)(V n
K − V n

L )
∫ tn+1

tn

(
ψn

K − ψn
L

d(xK , xL)
− 1
m(TK,L)

∫
TK,L

∇ψ.νL,K dx

)
dt.

Since the straight line xKxL is orthogonal to σKL, we have xK − xL = d(xK , xL)νL,K . It follows from the
regularity of ψ that

ψn
K − ψn

L

d(xK , xL)
= ∇ψ(tn, xL).νL,K +O(h)

= ∇ψ(t, x).νL,K +O(δ), ∀ (t, x) ∈
(
tn, tn+1

)
× TK,L.

By taking the mean value over TK,L, there is a constant D7 > 0 depending only on ψ such that

∣∣∣∣∣
∫ tn+1

tn

(
ψn

K − ψn
L

d(xK , xL)
− 1
m(TK,L)

∫
TK,L

∇ψ.νL,K dx

)
dt

∣∣∣∣∣ ≤ D7kδ.

On the other hand, using (4.16),

m(σKL) |V n
K − V n

L | =
√
τK,L |V n

K − V n
L |
√
d(xK , xL)m(σKL)

≤ √
τK,L |V n

K − V n
L |
√
D6m(TK,L).

Hence, by Cauchy–Schwarz inequality, the discrete L∞(0, T ;H1(Ω)) estimate (4.1) and (4.17), we obtain

|F1(δ) − F10(δ) | ≤ D8δ,

where D8 > 0 is a constant depending only on D1, D6 and D7. This shows that F1(δ) − F10(δ) → 0 as δ → 0.
Now it remains to show that V − V ∈ L∞(0, T ;H1

0 (Ω)). Let us introduce Wδ = Vδ − V δ in ΩT , where V δ is
the discrete function of V defined in the proof of Lemma 4.1. Since Wδ = 0 on Γ, we extend Wδ to the whole
space (0, T ) × R

d such that for almost all t ∈ (0, T ), Wδ(., t) = 0 in R
d \ Ω. This extension is still denoted

by Wδ. From the definition of V δ, it is easy to see that as δ → 0,

V δ −→ V in L2(ΩT ) strongly.

On the other hand, from the discrete L∞(0, T ;H1(Ω)) estimate (4.1) and Lemma 4.3 of [10], we obtain for
almost all t ∈ (0, T ) and any η ∈ R

d that,

||Wδ(t, .+ η) −Wδ(t, .) ||2L2(Rd) ≤ D9 |η | (|η | +h+ 1).
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This shows by the criterion of strong compactness [3] that for almost all t ∈ (0, T ), a subsequence of (Wδ(t, .))δ>0

converges to W (t, .) in L2
(
R

d
)

strongly as δ → 0. It is necessary that the restriction of W (., t) to Ω belongs
to H1

0 (Ω). From the uniqueness of the limit, we get that W = V − V ∈ L∞(0, T ;H1
0 (Ω)). This completes the

proof. �

Theorem 5.2. Assume (H1)–(H4) hold. Then the functions (N,P, V ) defined in Lemmas 4.3-4.4 satisfy the
continuity equations in the sense of (2.2)–(2.3). Moreover, N −N,P − P ∈ L2(0, T ;H1

0(Ω)).

Proof. The proof of N −N,P −P ∈ L2(0, T ;H1
0 (Ω)) is similar to that of V −V ∈ L∞(0, T ;H1

0 (Ω)). The proof
of (2.2) and (2.3) is almost the same. Therefore it suffices to show (2.2). As above, the subscript N in rN will
be omitted in the proof.

Let φ ∈ D([0, T )×Ω) be a test function and δ > 0 be small enough such that suppφ ∈ [0, (MT − 1)k)×{x ∈
Ω; d(x,Γ) > δ}. We define

G10(δ) = −
∫∫

ΩT

Nδ∂tφdxdt −
∫

Ω

Nδ(0, x)φ(0, x) dx,

G20(δ) =
∫∫

ΩT

dr(Nδ).∇φdxdt,

G30(δ) = −
∫∫

ΩT

NδdVδ.∇φdxdt

and
ε(δ) = −[G10(δ) +G20(δ) +G30(δ)].

Let φn
K = φ(tn, xK) for all K ∈ T and n = 0, 1, ...,MT . Multiplying the scheme (2.10) by kφn

K and summing
for K and n, we obtain

G1(δ) +G2(δ) +G3(δ) = 0,

where

G1(δ) =
MT∑
n=0

∑
K∈T

m(K)
(
Nn+1

K −Nn
K

)
φn

K ,

G2(δ) =
MT∑
n=0

k
∑
K∈T

∑
L∈NK

τK,L

[
r
(
Nn+1

K

)
− r

(
Nn+1

L

)]
φn

K ,

G3(δ) =
MT∑
n=0

k
∑
K∈T

∑
L∈NK

[
(dV n

K,L)+Nn+1
K + (dV n

K,L)−Nn+1
L

]
φn

K .

From the weak convergence of the sequences (dVδ)δ>0 to ∇V , (dr(Nδ))δ>0 to ∇r(N) and the strong convergence
of the sequence (Nδ)δ>0 to N in L2(ΩT ), it is easy to see that,

ε(δ) −→
∫∫

ΩT

(N∂tφ−∇r(N).∇φ +N∇V.∇φ) dxdt+
∫

Ω

N0(x)φ(0, x)dx as δ → 0.

Therefore, it remains to show that ε(δ) → 0 as δ → 0, which will be achieved from the limits: Gj(δ)−Gj0(δ) → 0
as δ → 0, j = 1, 2, 3. In view of the expression of G2(δ) and G20(δ), it is easy to see that the proof of
G2(δ)−G20(δ) → 0 is similar to that of F1(δ)−F10(δ) → 0 in Theorem 5.1. Hence we only showG1(δ)−G10(δ) →
0 and G3(δ) −G30(δ) → 0 as δ → 0.
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For the first limit, we have

G1(δ) =
MT∑
n=0

∑
K∈T

m(K)Nn+1
K (φn

K − φn+1
K ) −

∑
K∈T

m(K)N0
Kφ

0
K

= −
MT∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K

Nn+1
K ∂tφ(t, xK) dxdt−

∑
K∈T

∫
K

N0
Kφ(0, xK) dx,

G10(δ) = −
MT∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K

Nn+1
K ∂tφ(t, x) dxdt −

∑
K∈T

∫
K

N0
Kφ(0, x) dx.

Hence, it follows from the regularity of φ that

|G1(δ) −G10(δ) | ≤
[
(T + 1)m(Ω) ||Nδ ||L∞(ΩT )||φ ||C2(ΩT )

]
h −→ 0 as δ → 0.

For the second limit, using the relation

(dV n
K,L)+Nn+1

K + (dV n
K,L)−Nn+1

L =
1
2
|dV n

K,L |
(
Nn+1

K −Nn+1
L

)
+

1
2
dV n

K,L

(
Nn+1

K +Nn+1
L

)
,

we may write G3(δ) = G31(δ) +G32(δ), with

G31(δ) =
1
2

MT∑
n=0

k
∑
K∈T

∑
L∈NK

|dV n
K,L |

(
Nn+1

K −Nn+1
L

)
φn

K

=
1
4

MT∑
n=0

k
∑
K∈T

∑
L∈NK

|dV n
K,L |

(
Nn+1

K −Nn+1
L

)
(φn

K − φn
L),

G32(δ) =
1
2

MT∑
n=0

k
∑
K∈T

∑
L∈NK

dV n
K,L

(
Nn+1

K +Nn+1
L

)
φn

K

=
1
2

MT∑
n=0

k
∑
K∈T

∑
L∈NK

Nn+1
K dV n

K,L(φn
K − φn

L).

From the definition of Nδ, we have also

G30(δ) = −1
2

MT∑
n=0

∑
K∈T

∑
L∈NK

∫ tn+1

tn

∫
TK,L

NδdVδ.∇φdxdt

= G310(δ) +G320(δ),

with

G310(δ) = −1
2

MT∑
n=0

∑
K∈T

∑
L∈NK

∫ tn+1

tn

∫
SL,K

(
Nn+1

L −Nn+1
K

)
dVδ.∇φdxdt,

G320(δ) = −1
2

MT∑
n=0

∑
K∈T

∑
L∈NK

∫ tn+1

tn

∫
TK,L

Nn+1
K dVδ.∇φdxdt,
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where SL,K = L ∩ TK,L. Therefore, the convergence result follows if we prove that G31(δ) → 0, G310(δ) → 0
and G32(δ) −G320(δ) → 0 as δ → 0.

First of all, by Cauchy–Schwarz inequality and using (4.1)–(4.2), we obtain

|G31(δ) | ≤
h

2

√
TD1 ||φ ||C1(ΩT )||Nδ ||1,ΩT −→ 0 as δ → 0.

Next, noting that dVδ = d(xK,xL)
m(TK,L) dVK,L.νK,L in TK,L and SL,K ⊂ TK,L, we obtain again from Cauchy–Schwarz

inequality,

|G310(δ) | ≤
1
2

MT∑
n=0

k
∑
K∈T

∑
L∈NK

d(xK , xL) |dVK,L |
∣∣Nn+1

K −Nn+1
L

∣∣ ||φ ||C1(ΩT )

≤ h
√
TD1 ||φ ||C1(ΩT )||Nδ ||1,ΩT −→ 0 as δ → 0.

Finally,

G32(δ) −G320(δ) =

1
2

MT∑
n=0

∑
K∈T

∑
L∈NK

m(σKL)Nn+1
K (V n

K − V n
L )
∫ tn+1

tn

(
φn

L−φn
K

d(xK , xL)
− 1
m(TK,L)

∫
TK,L

∇φ.νK,L dx

)
dt.

Using the L∞(ΩT ) bound forNδ, we obtainG32(δ)−G320(δ) → 0 as δ → 0 similarly to that of F1(δ)−F10(δ) → 0.
This ends the proof of Theorem 5.2. �

6. Numerical example

In this last section, we give a numerical result in two space dimensions for the simulation of a reverse biased
diode. The data are picked in the paper [18], so that the results by the finite volume scheme can be compared
to those obtained by the mixed exponential fitting method.

In our example, the particle densities and the electrostatic potential are given at the ohmic contact ΓD

(Dirichlet boundary) and the remaining part of the boundary ΓN = Γ \ ΓD is insulating (Neumann boundary).
The device is made of a P -region where the preconcentration of electrons dominates (C < 0) and a N -region
where the preconcentration of holes dominates (C > 0). The dimensionless doping profile is taken as piecewise
constants:

C = −1 in the P -region and C = 1 in the N -region.
The device is assumed to be a square of size 10−3 cm. The solutions are computed with a 42 × 42 uniform
Cartesian grid for a large T in order to obtain the steady-state solution (which does not depend on the initial
conditions). Figure 1 illustrates the carrier densities and electrostatic potential with the level curves for the
carrier densities. It is easy to see that the vacuum sets occur for carrier densities. Therefore, no current flows
through the diode. Figure 1 shows that our scheme is numerical stable and well-adapted in the presence of the
vacuum sets for the carrier densities. We refer to [8] for more detail and more numerical results.
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Figure 1. Solutions computed at T = 4.
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