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APPROXIMATION OF A SEMILINEAR ELLIPTIC PROBLEM
IN AN UNBOUNDED DOMAIN
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Abstract. Let f be an odd function of a class C2 such that f(1) = 0, f ′(0) < 0, f ′(1) > 0 and
x �→ f(x)/x increases on [0, 1]. We approximate the positive solution of −∆u + f(u) = 0, on �

2
+

with homogeneous Dirichlet boundary conditions by the solution of −∆uL + f(uL) = 0, on ]0, L[2

with adequate non-homogeneous Dirichlet conditions. We show that the error uL − u tends to zero
exponentially fast, in the uniform norm.
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Introduction

Let f be a function from [−1, 1] to R, which satisfies the following assumptions:

f is twice continuously differentiable; (1)

f is odd, f(1) = 0, f ′(0) < 0, f ′(1) > 0; (2)

the function x �→ f(x)/x is strictly increasing over [0, 1]. (3)

In this article, we consider the semilinear equation

− ∆u + f(u) = 0, in R
2, (4a)

− 1 ≤ u ≤ +1, (4b)

sign(u(x, y)) = sign(xy), (4c)

and we study the approximation of the solution of (4) by problems on finite domains.
This problem has its origin in Allen and Cahn’s time dependent model, which can be written

ut − ε2∆u + f(u) = 0; (5)
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this equation has been proposed as a description of boundary motion in alloys [1]. The parameter ε is often
taken small, and one of the essential features of (5) is that after a time O(ln(1/ε)), the value of the solution
is either close to 1 or close to −1, except on thin regions of width O(ε); see [7] or [3] for an exposition of the
generation of interfacial regions. After interfaces are generated, they move and their motion is asymptotic to
motion by mean curvature on a time scale O(ε−2); see [8] or [3] for the smooth case.

Loss of regularity occurs quite often for motion by mean curvature, and a number of mathematical devices
have been invented to extend solutions beyond the onset of singularities; a Hamilton–Jacobi approach has been
described in [10]; a geometric measure theory solution has been given in [14].

The simplest kind of singular situation in the plane is the case when the initial data for (5) has the sign
structure given by (4c). If we blow up the spatial variable, we see that the sign condition (4c) is a rather natural
requirement in the neighborhood of the simplest singularities of a two-dimensional solution.

Since we consider only the local structure, the scale becomes irrelevant, and we may assume that it is equal
to 1. In order to understand the evolution of a solution having the sign structure (4c), we first need to understand
the unstable equilibria, i.e. the solutions of (4).

The existence and uniqueness of the non trivial solution of (4) has been proved by Fife et al. in [5]; this
solution is twice continuously differentiable and satisfies the symmetry conditions

∀(x, y) ∈ R
2, u(x, y) = −u(−x, y) = −u(x,−y). (6)

Moreover, u takes its values in the open interval (−1, 1) and is strictly positive on (0,∞) × (0,∞). Much
asymptotic information on this solution has been obtained in [18].

But if we want more concrete knowledge about the solution of (4), we need to approximate it numerically.
Since (4) is set in an unbounded domain, we have to approximate it by a solution on a bounded domain, after
defining appropriate boundary conditions.

In the realm of fluid mechanics and problems dominated by propagation, many authors have devised artificial
boundary conditions which enabled them to approximate in a finite domain something that takes place in an
infinite domain; in the case of linear problems with propagation properties, the seminal paper of Engquist and
Majda [9] paved the way for many further developments which are essentially unrelated to the present problem.

Before mentioning some results on artificial boundary conditions for elliptic equations, let us mention for
ordinary differential equations the work of de Hoog and Weiss [6], of Jepson and Keller [15], see also Jepson’s
thesis [16], and of Markowich [17].

Very few authors have treated absorbing boundary conditions for elliptic operators; since our problem is non
linear, the approximation method narrowly depends on the qualitative properties of the solution.

In our case, we are dealing with a second order operator, and we must think of the situation at infinity
as extremely hyperbolic, where hyperbolicity must be understood in the sense of dynamical systems. More
precisely, over odd functions, the linearized operator at the solution as y tends to infinity is of the form
∂2/∂y2 −A, where A is a positive elliptic operator in dimension 1 whose coefficients depend on x. Therefore it
has a positive square root, and the operator can be factored as

(
∂/∂y −√

A
)(

∂/∂y +
√

A
)
. The first factor

corresponds to a well posed problem in the direction of decreasing y and the second factor corresponds to a
well-posed problem in the direction of increasing y.

We can exploit this dichotomy by obtaining a stable manifold behavior at infinity, and it is this feature which
makes the construction of appropriate boundary condition possible.

In this respect, our philosophy is essentially the same as that of Hagstrom and Keller [12] and [13]; of course,
none of their conditions holds in our case, and thus, we have to do quite a bit of analysis to reach the conclusion.
However, the prize is well worth the effort, since we obtain finally that the error tends to 0 exponentially fast
in uniform norm as the size of the domain tends to infinity.

We need more detailed information about the asymptotics obtained in [18]. The proof that Fife et al.’s
solution is linearly unstable was based on a very precise study of the behavior at infinity of the solution; let
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indeed Θ denote the unique odd bounded and increasing non trivial solution of

−Θ′′(x) + f(Θ(x)) = 0, x ∈ R. (7)

This function Θ converges exponentially fast to its limits ±1 at ±∞; the existence of Θ is a straightforward
application of the maximum principle, Θ is of class C4; as (1, 0) and (−1, 0) are hyperbolic points for the
associated system of first order equations, we may apply the stable and unstable manifold theory described for
instance in [4] (Chap. 3, Th. 8.1); the absolute value of the eigenvalues of the linearized problem is

β =
√

f ′(1), (8)

so that the following estimates hold:

∀x ∈ R,

4∑
k=0

∣∣∣∣ ∂k

∂xk
(1 − Θ(x))

∣∣∣∣ ≤ Ce−β|x|. (9)

It has been proved in [18], that there exist two strictly positive constants µ and Cµ such that

∀(x, y) ∈ R
2,

∑
α1+α2≤3

sup
(x,y)∈R2

∣∣∣∣ ∂α1

∂xα1

∂α2

∂yα2
(u(x, y) − Θ(x))

∣∣∣∣ ≤ Cµe−µ|y|. (10)

The symmetric condition holds when x and y are exchanged.
In this article, we show that it is possible to approximate the solution of (4) by solving a problem on the

square

ΩL = (0, L) × (0, L)

with appropriate boundary conditions.
First, the symmetry conditions (6) enable us to work in a quarter-plane; we show in Section 1 that the

problem

− Θ′′
L + f(ΘL) = 0, in the sense of distributions on (0, L), (11a)

Θ(0) = 0, Θ(L) = 1, (11b)

0 ≤ Θ ≤ 1 (11c)

possesses a unique solution. Our approximation of the solution of (4) uses a boundary condition defined with
the help of a function gL given by

gL(x, y) = ΘL(x)ΘL(y). (12)

The two dimensional problem will then be

− ∆uL + f(uL) = 0, in the sense of distributions on ΩL, (13a)

(uL − g)
∣∣
∂ΩL

= 0, (13b)

0 ≤ uL ≤ 1. (13c)

Let us outline now the organization of this article. In Section 2, we show that (13) possesses a unique solution
for all strictly positive L; in Section 3 we show that the sequence of solutions (uL) converges in an appropriate
sense to u, solution of (4), as L tends to infinity; in both sections we use repeatedly the maximum principle. We
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show first the uniform convergence using the maximum principle; then we refine the spectral study performed
in [5], to show a spectral result which builds on results from that article. More precisely, let B be the linearized
operator of (4) at u; call Bσ the restriction of B to the space of functions possessing the symmetry property (6);
then the lower bound of the spectrum of Bσ is strictly positive. This information enables us to conclude that
the mean square norm of the error is exponentially small; this estimate, together with elliptic estimates shows
the exponentially fast convergence of the maximum norm as L tends to infinity.

1. The one-dimensional problem

Let us start by an easy regularity result:

Lemma 1.1. Let v be a measurable function on (0, L) taking its values in [0, 1] and satisfying

−v′′ + f(v) = 0, in the sense of distributions. (14)

Then v is of class C4.

Proof. Relation (14) implies that v′′ is essentially bounded; therefore, v′ is Lipschitz continuous over [0, L], v is
of class C1, and f(v) is of class C1; but then, v is of class C3, f(v) is of class C2 and the result is proved.

Let us start by proving the uniqueness of the solutions to (11):

Lemma 1.2. Problem (11) has at most one solution.

Proof. We argue by contradiction. Assume that there exist two solutions v1 and v2; since they are continuous
and they satisfy the same Dirichlet conditions,

U = {x ∈ [0, L] : v1(x) �= v2(x)} (15)

is an open subset of (0, L); let (a, b) be a connected component of U ; without loss of generality,

v1 > v2 over (a, b); (16)

we multiply respectively the equation for v1 by v2 and the equation for v2 by v1, we subtract the second from
the first, and we integrate over (a, b):

∫ b

a

(−v′′1v2 + v′′2 v1

)
dt +

∫ b

a

(f(v1)
v1

− f(v2)
v2

)
v1v2 dt = 0. (17)

By integration by parts the first integral in (17) is equal to

−v′1(b)v2(b) + v′1(a)v2(a) + v′2(b)v1(b) − v′2(a)v1(a). (18)

By definition of (a, b), v1 and v2 coincide at the end points of that interval. But the inequality condition (17)
implies that v′1(b) ≤ v′2(b) and similarly v′2(a) ≤ v′1(a); therefore, the expression (18) is non negative; in virtue
of assumption (3), the second integral in (17) is strictly positive, and we have a contradiction.

We build ΘL by a supersolution algorithm; recall the classical definition:

Definition 1.3. A function z whose derivative is Lipschitz continuous is a supersolution for (11) if it satisfies
the following inequalities { −z′′ + f(z) ≥ 0, in the sense of measures

and almost everywhere on (0, 1), z(0) ≥ 0, z(1) ≥ 1.
(19)

It is a subsolution if all the inequalities in (19) are reversed.
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Let κ be a positive constant satisfying the following inequality:

κ ≥ sup
x∈[0,1]

f ′(x). (20)

We define a sequence of functions (Θj)j inductively by

Θ0 ≡ 1, (21a)

and for j ≥ 0, Θj+1 is the unique solution of

− Θ′′
j+1(x) + κΘj+1(x) = κΘj(x) − f(Θj(x)), x ∈]0, L[, (21b)

Θj+1(0) = 0, Θj+1(L) = 1. (21c)

Lemma 1.4. The sequence (Θj)j≥0 has the following properties:

(i) For all j ≥ 1, Θj takes its values in [0, 1] and more precisely

∀x ∈ (0, L), 0 < Θj(x) < 1. (22)

(ii) The sequence (Θj)j≥0 is strictly decreasing:

∀x ∈ (0, L), ∀j ≥ 0, Θj+1(x) < Θj(x). (23)

(iii) For all j ≥ 0, Θj is estimated from below by Θ:

∀x ∈ (0, L), Θ(x) < Θj(x). (24)

(iv) If ΘL is a solution of (11), then it is estimated from above by Θj:

∀j ≥ 0, ∀x ∈]0, L[, Θj(x) > ΘL(x). (25)

Proof. We use several times the strong maximum principle, which can be found for instance in Brezis’ course
book [2] (Cor. IX. 37) or in the classical book of Gilbarg and Trudinger [11].

(i) For j = 1, Θ1 is the unique solution of −Θ′′
1 + κΘ1 = κ; since one of the boundary values of Θ1 is strictly

positive, the strong maximum principle implies that Θ1 is strictly positive over (0, L); as 1 − Θ1 satisfies the
equation −(1 − Θ1)′′ + κ(1 − Θ1), the strong maximum principle implies that 1 − Θ1 is also strictly positive
over (0, L), and (22) holds for j = 1. Assume now that (22) is true for some index j; then, by definition of
κ, the right-hand side of (21b) is well defined and non negative. By the strong maximum principle, Θj+1 and
1 − Θj+1 are strictly positive over (0, L).

(ii) According to (i), Θ1 < Θ0 over (0, L). If for some index j, Θj < Θj−1, we subtract equation (21b) for
Θj from equation (21b) for Θj+1 and we find that the difference z = Θj+1 − Θj satisfies

−z′′ + κz = κ(Θj−1 − Θj) + f(Θj) − f(Θj−1) over (0, L);

the right-hand side of this equation is non negative, and therefore, by the strong maximum principle, z is strictly
positive over (0, L), proving thus (ii).
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(iii) Inequality (24) holds for j = 0. If it is true for a certain index j, then z = Θj+1 − Θ is positive at the
boundary of (0, L) and it satisfies

−z′′ + κz = κ(Θj − Θ) + f(Θ) − f(Θj) over (0, L);

as the right-hand side of the above equation is non negative, the strong maximum principle gives the conclusion.

(iv) The proof is completely analogous to that of (iii), and left to the reader.

We can conclude now the existence proof:

Theorem 1.5. The sequence of functions Θj converges in C2([0, L]) to the unique solution ΘL of (11).

Proof. For all x ∈ [0, L], the sequence (Θj(x))j≥0 is decreasing and non negative; therefore, it converges, and
its limit is denoted by ΘL. Therefore, the sequence (f(Θj))j≥0 converges everywhere and in L1 to f(ΘL) as j
tends to infinity; we can pass to the limit in the sense of distributions in (21b); thanks to Lemma 1.1, ΘL is a
classical solution. The uniqueness has been proved at Lemma 1.2.

Remark 1.6. The convergence of the sequence Θj is uniform: relation (21b) gives a uniform bound on the
second derivative of Θj , and Ascoli–Arzela’s theorem applies.

We summarize some properties of the solution ΘL in next statement:

Theorem 1.7. The function ΘL has the following properties:

ΘL is strictly increasing over (0, L); (26)

ΘL > Θ over (0, L); (27)

If v �= ΘL is a sub(super)solution, then v < ΘL (respectively v > ΘL). (28)

Proof. As x �→ f(x)/x is strictly increasing over [0, 1], and f(1) vanishes, f is negative over (0, 1); therefore, ΘL

is a strictly concave function over (0, L) which is at most equal to 1; if it attained a maximum at x0 ∈ (0, L),
this maximum would be equal to 1 and ΘL would be identically equal to 1 over [x0, L], contradicting the strict
concavity and proving thus (26).

We infer from (24) that Θ ≤ ΘL over [0, L]; but the difference z = ΘL − Θ verifies

−z′′ + κz = κz + f(Θ) − f(ΘL)

whose right-hand side is non negative; as z(L) is strictly positive, the strong maximum principle enables us to
conclude that (27) holds.

Finally, if v �= ΘL is a supersolution, we put Θ0 = v in algorithm (21), and we use the uniqueness of the
solution, proving thus (28); if v is a subsolution, the argument can be modified appropriately.

2. The bidimensional problem

The construction of a solution of (13) is completely parallel to the construction of a solution of (11).
We start with a regularity result:

Lemma 2.1. Let v be a measurable solution of (13); then u belongs to C1,α(ΩL).

Proof. The function gL defined by (12) is of class C4; the difference w = v − gL satisfies the equation

− ∆w = f(v) + ∆gL, over ΩL, (29)

w
∣∣
∂ΩL

= 0 on ∂ΩL; (30)
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the right-hand side φ = f(v) + ∆gL of (29) belongs to L∞(ΩL); we extend v as a periodic functions over all
of R

2, according to the following symmetry conditions

∀(x, y) ∈ R
2 :

{
v(2L − x, y) = −v(x, y), v(x, 2L − y) = −v(x, y),

v(x + 2L, y) = v(x, y), v(x, y + 2L) = v(x, y).

With a similar extension for φ, equation (29) holds over all of R
2, and thanks to the classical Agmon–Douglis–

Nirenberg estimates, v belongs to the Sobolev space W 2,p
loc (R2) and therefore to the Hölder space C1,α

loc (R2); the
conclusion is clear.

Theorem 2.2. Problem (13) has at least one solution, which is constructed by a supersolution algorithm similar
to (21). Moreover, the solution constructed in this fashion is the maximal solution of (13).

Proof. For the existence, we define a sequence of functions (uj)j by the algorithm

u0 ≡ 1, (31a)

for j ≥ 0, uj+1 is the unique solution of

− ∆uj+1 + κuj+1 = κuj − f(uj), in ΩL, (31b)

(uj+1 − gL)
∣∣
∂ΩL

(x, y) = 0. (31c)

Lemma 1.4 still holds if we replace Θj by uj , Θ by u, ΘL by uL and the interval (0, L) by the square ΩL.
Letting

uL(x, y) = lim
j �→+∞

uj(x, y), ∀(x, y) ∈ ΩL, (32)

the reader will check that, as in the one-dimensional case, uL is a measurable solution of (13).

Let us prove now the uniqueness:

Theorem 2.3. The solution defined at Theorem 2.2 is the unique solution of (13).

Proof. Let v be another solution of (13); we know from Lemma 2.1 that v is of class C1,α for all α ∈ (0, 1) and
that it is at most equal to uL; we multiply the equation for v by uL and the equation for uL by v, we subtract
the first equation from the second, we integrate over ΩL, we integrate by parts and we find the identity

∫
∂ΩL

∂(v − uL)
∂ν

gL dσ +
∫

ΩL

(
f(uL)

uL
− f(v)

v

)
dxdy = 0. (33)

Since uL is a maximal solution, the outer normal derivative of v − uL, which is a classical derivative, thanks
to Lemma 2.1, is non negative. The second integral in (33) is strictly positive as soon as uL is not identically
equal to v; we obtain a contradiction.

Finally, we will need the following properties uL:

Theorem 2.4. The solution uL of (13) has the following properties:

If v �= uL is a sub(super)solution, then v < uL (respectively v > uL); (34)

∀(x, y) ∈ ΩL, u(x, y) < uL(x, y) < min(ΘL(x), ΘL(y)). (35)
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Proof. The proof of (34) is identical to the proof given in the one-dimensional case; details are left to the reader.
In [5], it is proved that the solution u of (4) is estimated from above on (0,∞)× (0,∞) by min(Θ(x), Θ(y));

as Θ < ΘL on (0, L), the restriction of u to ΩL is a subsolution for problem (13), and property (34) implies
the first inequality in (35). On the other hand, (x, y) �→ ΘL(x) is a supersolution for (13) and we use (34) once
again.

3. Convergence as L tends to infinity

In this section we prove the exponentially fast convergence of ΘL to Θ and hence the convergence of uL to u.

Lemma 3.1. Recall that β is defined by (8). There exists a constant C > 0 such that for all L > 0 the following
inequality holds:

max
[0,L]

|ΘL(x) − Θ(x)| ≤ Ce−βL. (36)

Proof. We multiply the two equations

− Θ′′
L + f(ΘL) = 0,

− Θ′′ + f(Θ) = 0
(37)

respectively by Θ and ΘL, and for all x ∈ [0, L], we integrate the difference over [0, x]; we obtain∫ x

0

(Θ′′ΘL − ΘΘ′′
L) dt +

∫ x

0

(
f(ΘL)

ΘL
− f(Θ)

Θ

)
ΘLΘ dt = 0. (38)

The first integral in the above expression is equal to Θ′(x)ΘL(x) − Θ′
L(x)Θ(x) and the second one is strictly

positive. Therefore, we have the inequality

∀x ∈ (0, L], Θ′(x)ΘL(x) < Θ′
L(x)Θ(x).

We infer from this inequality that the function ln(ΘL/Θ) is strictly increasing, and therefore if 1−CΘe−βL > 0,
i.e. if L is larger than some L0,

max
[0,L]

ΘL(x)
Θ(x)

=
ΘL(1)
Θ(1)

≤ 1
1 − Ce−βL

·

We infer from (27) that

Θ < ΘL <
(
1 − Ce−βL

)−1
.

If L ≤ L0, we use the inequality |Θ − ΘL| ≤ 1, and the conclusion is clear.

Lemma 3.1 also implies estimates on the difference between the derivatives of Θ and those of ΘL:

Corollary 3.2. There exists C > 0 such that for all L > 0 we have the estimate:

∑
k≤4

sup
[0,L]

∣∣∣D(k) (ΘL − Θ) (x)
∣∣∣ ≤ Ce−βL. (39)

Proof. If v = ΘL − Θ, v satisfies the ordinary differential equation

v′′ = f(ΘL) − f(Θ), (40)



APPROXIMATION IN AN UNBOUNDED DOMAIN 125

with the boundary conditions

v(0) = 0, v(L) = ΘL(L) − Θ(L).

Thanks to (36), we obtain immediately the estimate

max
(

max
[0,L]

|Θ′
L(x) − Θ′(x)| , max

[0,L]
|Θ′′

L(x) − Θ′′(x)|
)

≤ Ce−βL. (41)

In order to obtain estimates on higher derivatives, we differentiate (40) twice, and with the help of (41) we get
the desired conclusion.

Let us deal now with the convergence of uL to u; we introduce the notation Q = (0,∞)× (0,∞) for the open
quarter-plane and we define extensions of ΘL and uL respectively to R

+ and to Q̄:

Θ̃L(x) =

{
ΘL(x) if x ∈ [0, L],
1 if x ≥ L

and

ũL(x, y) =




uL(x, y) if (x, y) ∈ ΩL,

min
{
Θ̃L(x), Θ̃L(y)

}
otherwise.

Lemma 3.3. The sequence ũL converges uniformly to u as L tends to infinity.

Proof. The first step of the proof consists in checking that the sequences (Θ̃L)L and (ũL)L are decreasing with
respect to L. Indeed, for M > L, the restriction of ΘM to (0, L) is a subsolution for (11) and the restriction of
uM to ΩL is a subsolution for (13); therefore, thanks to property (28), we have the inequality Θ̃M ≤ Θ̃L and
thanks to property (34), we have also ũM ≤ ũL; on the other hand, Θ̃L is bounded from below by Θ, and ũL is
bounded from below by u.

Therefore, the sequence ũL has the point-wise limit ũ ≥ u; it is plain that this convergence also holds in
Lp

loc(Q) and that in the limit (4a) holds on Q with Dirichlet boundary conditions; moreover, ũ takes its values
in [0, 1]. Together with this bound, the partial differential equation (4a) together with the bound implies that
in fact ũ belongs to W 2,p

loc (R2) and hence is of class C1,α for all α ∈ (0, 1); by bootstrapping, ũ is of class C3,α

for all α ∈ (0, 1); by uniqueness of the solutions of (4), ũ must be equal to u.
Let us partition now Q into three regions, as depicted at Figure 1:

R1 = [0, L) × [L,∞), R2 = [L,∞) × [0, L),

R3 = [L,∞) × [L,∞), R4 = [0, L) × [0, L).

The function uL − u is given by:

ũL − u =




ΘL(x) − u(x, y) on R1,
ΘL(y) − u(x, y) on R2,
1 − u(x, y) on R3,
uL(x, y) − u(x, y) on R4.

On R1, we have the inequality

ΘL(x) − u(x, y) ≤ ΘL(x) − Θ(x) + Θ(x) − u(x, y);
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Figure 1. The regions R1, R2, R3 and R4.

there is an analogous inequality in R2; in R3, we use directly estimate (10). If γ denotes the minimum of β and
of the number µ appearing in (10), estimates (36) and (9) together with (10) imply that there exists a constant
such that for all L > 0,

∀(x, y) ∈ R1 ∪ R2 ∪ R3, 0 ≤ ũL(x, y) − u(x, y) ≤ Ce−γL.

Given ε, we choose L such that

sup
R1∪R2∪R3

ũL(x, y) − u(x, y) ≤ ε;

then, for all M ≥ L, we have also

sup{ũM(x, y) − u(x, y) : (x, y) ∈ R1 ∪ R2 ∪ R3} ≤ ε.

As the sequence ũM decreases when M tends to infinity to ũ, it converges uniformly to u over R1; therefore,
we may choose M so large that

sup
R4

uM (x, y) − u(x, y) ≤ ε;

thus we have proved the uniform convergence on Q of ũL to u.

However, we can prove now a much stronger result, namely that the sequence uL converges exponentially
fast to u. This statement is is based on a result concerning the spectrum of the operator BQ defined by

D(BQ) = H2(Q) ∩ H1
0 (Q), BQv = −∆v + f ′(u)v, (42)

and it is stated as a theorem:

Theorem 3.4. The lower bound of the spectrum of BQ is strictly positive.
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Figure 2. The regions DL, DL,1/2 and the squares Q(x̄, ȳ, 1) and Q(x̄, ȳ, 1/2).

With this theorem, whose proof will be given at the end of the article, we can now show the following
proposition:

Proposition 3.5. For all δ < γ, there exists a constant C such that for all L > 0:

sup
ΩL

max
α1+α2≤2

∣∣∣∣∂α1+α2(uL(x, y) − u(x, y))
∂xα1∂yα2

∣∣∣∣ ≤ Ce−δL. (43)

Proof. It is an immediate consequence of Theorem 3.4 that there exists a number α > 0 such that

∀v ∈ H2(Q) ∩ H1
0 (Q), (BQv, v) ≥ α‖v‖2

L2(Q). (44)

It would be tempting to write the partial differential equation satisfied by ũL, subtract from it the equation
satisfied by u and hope for the best; however, this does not come so easily, since the Laplacian of ũL has masses
along the sets [0, L] × {L}, {L} × [0, L] and {(x, x) : x ≥ L}. Therefore, we have to modify ũL into something
smoother.

Assume L ≥ 2 and let DL and DL,1/2 be the regions

DL = {(x, y) ∈ Q̄ : L − 2 ≤ max(x, y) ≤ L},
DL,1/2 = {(x, y) ∈ Q̄ : L − 3/2 ≤ max(x, y) ≤ L − 1/2.

These regions are pictured in Figure 2. Estimates (10) and (35) imply that there exists a constant C such that

∀(x, y) ∈ DL, 0 ≤ uL(x, y) − u(x, y) ≤ Ce−γL.

This implies that on DL we have the estimates

|∆(u − uL)| ≤ Ce−γL.

Let now Q(x̄, ȳ, r) be the square centered at (x̄, ȳ) with sides parallel to the axes and half side r; by interior
Agmon–Douglis–Nirenberg estimates, for all p ∈ [1,∞), and all r < 1 there exists a constant C such that

‖w‖W 2,p(Q(x̄,ȳ,r)) ≤ C
(‖w‖Lp(Q(x̄,ȳ,1)) + ‖w‖Lp(Q(x̄,ȳ,1))

)
;
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we choose (x̄, ȳ) in [0, L− 1]×{L− 1} or in the symmetric set {L− 1}× [0, L− 1]; then, by Sobolev injections,
we see that there exists a constant C such that for all L ≥ 2,

sup
1≤x̄≤L−1

‖u − uL‖C1,α(Q(x̄,L−1,r)) ≤ Ce−γL;

if we bootstrap with interior Schauder estimates, we find that

sup
1≤x̄≤L−1

‖u − uL‖C2,α(Q(x̄,L−1,1/2)) ≤ Ce−γL.

In order to deal with estimates close to x = 0 or to y = 0, we observe that this is a situation in which we may
apply Agmon–Douglis–Nirenberg estimates up to the boundary; with details being left to the reader, we find
eventually that there is a constant C such that for all L ≥ 2,

sup
(x,y)∈DL,1/2

max
α1+α2≤2

∣∣∣∣∂α1+α2(u − uL)
∂xα1∂yα2

∣∣∣∣ ≤ Ce−γL. (45)

Let now ω be a non negative function of class C∞ on R
2 which is equal to 1 for max(x, y) ≤ −1/4 and to 0 for

max(x, y) ≥ 1/4; we let

ωL(x, y) = ω(x − L + 1, y − L + 1)

and we define

ūL = ũLωL + u(1 − ωL).

The function

ρL = −∆ūL + f(ūL);

is given by

ρL = 2∇(u − ūL) · ∇ωL + (u − ūL)∆ωL + f(ūLωL + (1 − ωL)u) − f(ūL)ωL − f(u)(1 − ωL). (46)

We observe on expression (46) that the support of ρL is included in DL,1/2, and we infer from estimates (45)
that

|ρL| ≤ 1D(L,1/2)Ce−γL.

Therefore, the difference vL = ūL − u satisfies the equation

−∆vL + f ′(u)vL = f ′(u)vL − f(u + vL) + f(u) + ρL. (47)

By construction, vL has compact support and therefore it belongs to H2(Q); it satisfies Dirichlet boundary
conditions, and therefore, we may apply the spectral estimate (44): we multiply scalarly (47) by vL, we integrate
over Q and we find

α‖vL‖2
L2(Q) ≤ ‖vL‖L2(Q)‖ρL‖L2(Q) + ‖f ′(u)vL − f(u + vL) + f(u)‖L2(Q)‖vL‖L2(Q).

As f is of class C2, there exists a constant C1 such that

‖f ′(u)vL − f(u + vL) + f(u)‖L2(Q) ≤ C1‖vL‖L∞(Q)‖vL‖L2(Q).
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Therefore, we have obtained the estimation

(α − C1‖vL‖L∞(Q))‖vL‖L2(Q) ≤ ‖vL‖L2(Q).

As vL is a convex combination of u and ũL, we see that there exists L0 ≥ 2 such that, for all L ≥ L0,
C1‖vL‖L∞(Q) is less than or equal to α/2, and therefore, we have shown that there exists a constant C such
that for L ≥ L0

‖vL‖L2(Q) ≤ C
√

Le−γL; (48)

but, going back to the partial differential equation satisfied by vL, we infer immediately from (48) that

‖vL‖H2(Q) ≤ C
√

Le−γL.

By the Sobolev injection of H2(Q) in L∞(Q), we see that

‖vL‖L∞(Q) ≤ Ce−γL.

Together with (45), this proves (43) for α1 = α2 = 0; but we can apply again Agmon–Douglis–Nirenberg and
Schauder estimates to the elliptic equation in Q

−∆vL = f(u) − f(u + vL)

with Dirichlet boundary conditions, and this implies (43) for α1 + α2 ≤ 2, for L ≥ L0; for L ≤ L0, it is easy to
fin an uniform bound on the derivatives of uL of order 1 and 2, and the proposition is proved.

There remains to prove the spectral theorem which played such an essential rôle in the proof of Proposition 3.5.

Proof of Theorem 3.4. Let B be the linearized operator at u given by

D(B) = H2(R2), Bv = −∆v + f ′(u)v;

this operator is self-adjoint in L2(R2), and it has been proved in [18] that the essential spectrum of B is included
in [0,∞) and that if λ is a negative eigenvalue of B, then the corresponding eigenfunction has the symmetries
of the square.

Let L2(R2, σ) denote the subspace of functions of L2(R2) which have the symmetries (6), understood in the
almost everywhere sense. Thanks to the symmetry of f ′(u), B maps a function of L2(R2, σ) ∩ H2(R2) to a
function of L2(R2, σ). Therefore, there is a self adjoint operator Aσ in L2(R2, σ) which is simply the restriction
of A to D(A) ∩ L2(R2, σ).

The spectrum of Aσ is included in [0,∞); indeed, the spectrum of Aσ is included in the spectrum of A and
the essential spectrum of Aσ is included in the essential spectrum of A, as can be seen on the characterization
of the essential spectrum by singular sequences. Therefore, if the spectrum of Aσ contained a negative number,
it would be an eigenvalue, and the corresponding eigenfunction would have all the symmetries of the square,
which contradicts the above mentioned result of [18].

Let us show now that the lower bound of the spectrum of Bσ is strictly positive: we argue basically as in
the proof of the analogous theorem in Lemmas 3.1 and 3.2 of [18] to which the reader is referred for all the
necessary details. Let indeed A be the operator defined by

D(A) = H2(R), Av = −v′′ + f ′(Θ)v;
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for this operator, the lower bound of the essential spectrum is β2, and below that limit, the spectrum consists
of simple eigenvalues

λ0 < λ1 < · · · < β2;

the parity of the eigenfunction vj corresponding to λj is the parity of j, λ0 is equal to 0, since the corresponding
eigenfunction can be taken equal to Θ′; the corresponding operator on odd functions is called Aσ, defined by

D(Aσ) = D(A) ∩ {odd functions}, Aσu = Au;

it is immediate that the lower bound of the spectrum of Aσ is equal to λ1 if such an eigenvalue exists, and
otherwise to β2; it will be convenient to abuse notation and to write also λ1 in the latter case.

Arguing as in [18], we see that the essential spectrum of Bσ is identical with the essential spectrum of
Aσ ⊗1+1⊗Aσ −β2, since the potential appearing in this Schrödinger operator has the same limit at infinity as
the potential appearing in Bσ; therefore, the essential spectrum of Bσ has the lower bound β2+λ1−β2 = λ1 > 0.

There remains to show that 0 cannot be an eigenvalue of Bσ.
Assume therefore that v belongs to the kernel of Bσ. We show first that it tends exponentially fast to 0 at

infinity. For this purpose, we recall the definition of the operator A in C0
b , the space of bounded continuous

functions over R; this operator was called M in [18]:

D(A) = C2(R) ∩ {odd functions}, Az = −z′′ + f ′(Θ)z;

it has been shown in [18] that there is a square root of A which generates an holomorphic semi-group whose
norm decreases exponentially fast at infinity; more precisely, for all µ ∈ (0,

√
λ1), there exists a constant Cµ

such that

‖e−y
√

A‖L(C0
b ) ≤ Cµe−µy. (49)

Our eigenfunction v is bounded since it belongs to H2(R2).
We see that v also solves the following Dirichlet problem in R × [0,∞):

−∆v + f ′(Θ(x))v = h, v(x, 0) = 0, (50)

with h the function given by

h(x, y) =
(
f ′(Θ(x)) − f ′(u(x, y))

)
v(x, y).

Therefore, according to Lemma 2.7 of [18], the solution of (50) is given by

v(·, y) = e−y
√

A

(
v(·, 0) +

A−1/2

2

∫ ∞

0

e−s
√

Ah(·, s) ds

)

+
A−1/2

2

∫ y

0

e−(y−s)
√

Ah(·, s) ds +
A−1/2

2

∫ ∞

y

e(y−s)
√

Ah(·, s) ds. (51)

The asymptotic estimate (10) implies that that h decays exponentially fast to 0 as x tends to infinity, uniformly
in x. Thus, the combination of (49) with formula (51) implies the exponential decay of v to 0 at infinity; an
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application of Schauder and Agmon–Douglis–Nirenberg estimates enables us to conclude that

sup
α1+α2≤2

∣∣∣∣∂α1+α2v(x, y)
∂xα1∂yα2

∣∣∣∣ ≤ Ce−νy,

for some ν ∈ (0, µ).
There is of course an analogous estimate when x tends to infinity.
As v belongs to the kernel of Bσ, it also belongs to the kernel of BQ, defined by (42); this means that the

restriction of v to Q is a ground state for the operator BQ, and in particular, it does not change sign.
We multiply the equation

−∆v + f ′(u)v = 0

by u and the equation (4a) by v, we subtract the second from the first, and we integrate over Q; as u, v and
their derivatives of order 1 tend to 0 exponentially fast at infinity, we integrate by parts safely, and we are left
with the relation ∫

Q

(
f(u)

u
− f ′(u)

)
uv dxdy = 0.

But assumption (3) implies that the factor in parentheses in the above integrand is of constant sign; therefore,
f(u) − uf ′(u) vanishes everywhere Q. As the relation

f(z) − zf ′(z) = 0

is true for all z ∈ [0, sup u], on this interval, we must have f(z) = Cz, which of course contradicts assumption (3).
Thus, we have proved that the kernel of Bσ is reduced to 0, and Theorem 3.4 is proved.

The exponential convergence obtained in this article implies that the numerical approximation of the solutions
of (4) can be safely performed in a bounded square; we can apply for that purpose any classical method: finite
elements, finite differences, spectral methods; the numerical analysis of this problem will be presented in further
work, together with the results of numerical simulations.
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[16] A. Jepson, Asymptotic boundary conditions for ordinary differential equations. Ph.D. thesis, California Institute of Technology
(1980).

[17] P.A. Markowich, A theory for the approximation of solutions of boundary value problems on infinite intervals. SIAM J. Math.
Anal. 13 (1982) 484–513.

[18] M. Schatzman, On the stability of the saddle solution of Allen-Cahn’s equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995)
1241–1275.

To access this journal online:
www.edpsciences.org


