
Mathematical Modelling and Numerical Analysis ESAIM: M2AN

Modélisation Mathématique et Analyse Numérique M2AN, Vol. 37, No 1, 2003, pp. 133–142

DOI: 10.1051/m2an:2003016

NUMERICAL STUDY OF TWO SPARSE AMG-METHODS

Janne Martikainen
1

Abstract. A sparse algebraic multigrid method is studied as a cheap and accurate way to compute
approximations of Schur complements of matrices arising from the discretization of some symmetric
and positive definite partial differential operators. The construction of such a multigrid is discussed
and numerical experiments are used to verify the properties of the method.

Mathematics Subject Classification. 65F10, 65N22.

Received: November 30, 2001. Revised: October 9, 2002.

Introduction

Lagrange multipliers [1] are used frequently in fictitious domain methods to enforce boundary conditions [7,8],
and in domain decomposition methods to connect the solutions of subdomains on the inner boundaries [2]. The
use of boundary supported Lagrange multipliers with a finite element discretization of a symmetric, positive
definite partial differential operator leads to a saddle point problem of the following form(

A BT

B 0

)(
x
p

)
=
(

f
g

)
. (0.1)

When such problems are solved iteratively, a preconditioner is often used to accelerate the convergence rate of the
iterative method. It is a well known result, originally due to Kuznetsov (1990), that an efficient preconditioner
P for the problem (0.1) is given by

P =
(
Ã 0
0 S̃

)
, (0.2)

where the matrices Ã and S̃ are close to the matrices A and S = BA−1BT [18]. The matrix Ã may be a fictitious
domain or domain decomposition preconditioner. Since the matrix B corresponds to the boundary Lagrange
multipliers, the operation A−1 has to be approximated only on a subset of the discretization nodes located in
the neighborhood of the boundary. On the other hand, such an approximation should be cheap to compute,
since preconditioning requires solving the system S̃u = v iteratively with varying v. A few approximation
schemes have been suggested for A−1 in a subspace such as K1/2 family of preconditioners [3, 6, 9, 14], sparse
BPX [13, 15, 19] and sparse algebraic multigrid methods [12]. The term “algebraic multigrid” in [12] refers to

Keywords and phrases. Algebraic multigrid, Schur complement, Lagrange multipliers.

1 University of Jyväskylä, Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40351 Jyväskylä, Finland.
e-mail: Janne.Martikainen@mit.jyu.fi

� EDP Sciences, SMAI 2003

134 J. MARTIKAINEN

a multigrid method, which is based on successive block factorizations and uses the Chebyshev method as a
smoother. In this article, the construction and the properties of sparse algebraic multigrid methods for Schur
complement approximation are studied.

The rest of the paper is organized as follows: First, the algebraic multigrid methods, considered in this paper,
are described shortly. Then, the sparse implementation is discussed and finally, the numerical examples are
explained. The results are presented to give accurate qualitative information on the properties of the method
and to compare the sparse AMG methods with the sparse BPX. In the following, the term “node” refers to a
degree of freedom in an algebraic system, not to a discretization node.

1. Algebraic multigrid methods

It is known that stationary iterative methods, known in multigrid methods as smoothers, such as Jacobi and
Gauss–Seidel, reduce effectively rapidly oscillating error components, while the reduction of slowly oscillating
error components is poor. This observation led to the invention of multigrid. In two-grid methods the slowly
converging error components are filtered out by projecting the residual on a coarser grid where the residual
equation Ae = r is solved. An update is interpolated back to the original grid and added to the approximate
solution. This procedure is known as coarse grid correction. In true multigrid methods the coarse grid correction
is used recursively until on the coarsest grid the problem is so small that one can afford to solve it accurately.
Therefore, in any multigrid method one has a series of linear problems, decreasing in size, and two operators
which can transfer the data between the problems, restriction transfers the residual to a coarser level and
prolongation transfers the coarse grid correction to a finer level. A typical structure for multigrid algorithm is
the following:

Algorithm 1.1. Multigrid cycle
1. If the current level is the coarsest level

2. Solve ALxL = fL
3. End if
4. If the current level i is not the coarsest level

5. xi ← xi + Si(fi −Aixi)
6. fi+1 = Ri(fi −Aixi)
7. xi+1 = 0
8. Call this algorithm ν times for the level i + 1
9. xi ← xi + Pxi+1

10. xi ← xi + Si(fi −Aixi)
11. End if.

Above, the level index i ranges from 1 to L such that level 1 is the finest and L is the coarsest level. The
system matrices are denoted by Ai, the smoothers (assumed to be stationary) by Si, the restrictions by Ri and
the prolongations by Pi. This algorithm is called V-cycle, when ν = 1 and W-cycle, when ν = 2.

In geometric multigrid methods, a hierarchy of discretization meshes is required for obtaining the linear
systems and transfer operators, whereas in algebraic multigrid methods they are created by the method itself.
Algebraic multigrids use often the transpose of the restriction as a prolongation, and the coarse systems matrices
are calculated using the Galerkin formula Ai+1 = RiAiPi.

It has been proved in [16] that the Algorithm 1.1 defines a symmetric and positive definite operator, if A1

and Si are symmetric and positive definite, the Galerkin formula is used to define the coarse system matrices
and the following condition is satisfied on each multigrid level

λmin(I−AiSi) > −1, (1.1)

where λmin(·) denotes the smallest eigenvalue of a given matrix. It should be noted that the inequality (1.1)
can be easily ensured by underrelaxing the smoothers Si properly.

NUMERICAL STUDY OF TWO SPARSE AMG-METHODS 135

5

8

9

7

6

3

41

2

Figure 1. An example graph with selected coarse nodes.

Nowadays, there is a vast literature on algebraic multigrid methods starting from [17]. Since, the method of
Ruge and Stüben is well documented and readily available, it will be the first algebraic multigrid to be tested
here. Its coarsening strategy is based on the notion of a strong connection. Two nodes i and j in a linear
system are strongly connected if the system matrix entry Aij satisfies Aij ≤ θ mink �=i Aik, where θ ∈]0, 1[is a
parameter given by the user. Note, that the codiagonals of the matrix A are assumed to be negative. In the
coarsening process, the aim is to select nodes into the coarse system in such a way that the system does not
contain any strongly connected pairs and that every eliminated node has a strong connection to at least one
node that has been selected to the coarse system. The restriction operator is constructed using the values of
the system matrix and the coarse system matrices are calculated using the Galerkin formula. The coarsening
process is continued until the size of the coarse linear system is smaller than a given threshold. In the current
implementation, the definition of the strong connection has been modified to include positive elements of the
system matrix. This has been proposed, for example, in [5]. This algebraic multigrid will be later referred as
AMG 1.

The second algebraic multigrid method which is tested here was proposed in [11]. It was chosen because it has
many properties in common with geometric multigrid methods and thus, it is expected to give a computationally
cheap sparse implementation. Instead of using the actual values stored in the system matrix, this multigrid uses
the graph related to the system matrix. The method can be easily implemented to use any given graph related
to the problem. The coarsening process operates in a geometric fashion by sequentially choosing a coarse node
and eliminating the neighboring nodes of the graph. The criterion for selecting the next coarse grid node is to
follow the original numbering.

The selection process for the graph presented in Figure 1 proceeds as follows: First, node number one is
selected as a coarse node and nodes two, three and four are eliminated. Next, the node five is selected and
nodes six and eight are eliminated. Finally, the node seven is selected and node nine eliminated. The graphs
can be constructed for all the levels prior to calculating the coarse system matrices.

The restriction operator of the second method is generated also using the information of the given graph as
follows:

(R)ij =




1 for a fine grid point j which is a coarse grid point i,
1
k

for a fine grid point j which is a neighbor of coarse grid point i

and has k neighboring coarse grid points,
0 otherwise.

Again, Galerkin formula is used in order to get the coarse system matrices. For a finite element discretization
it can be equivalently defined that a coarse grid basis function φi

C is φi
C =

∑t
j=1(R)ijφ

j
F, where φj

F is a fine
grid basis function, j = 1, . . . , t. In order to achieve exactly the geometric multigrid the initial graph must be
hierarchical, the coarse grid points must be picked up systematically and the Dirichlet boundary conditions must
be eliminated after the coarsening process. This algebraic multigrid can be used directly for some PDE systems.

136 J. MARTIKAINEN

When the initial graph has disjoint subgraphs corresponding to different type of unknowns, the structure of the
original system is preserved on coarse levels. This algebraic multigrid will be later called AMG 2.

The BPX method [4], also known as the nodal basis method, is also a multilevel method, but it does not
require a smoother or system matrices. It gives a spectrally optimal approximation for the Laplace operator.
The method follows the Algorithm 1.2 given below.

Algorithm 1.2. The BPX method
1. If the current level i is not the coarsest level

2. fi+1 = Rifi
3. Call this algorithm for the level i + 1
4. fi ← fi + Pifi+1

5. End if.

Algorithm 1.2 replaces the vector f1 with an approximation for L−1f1, where L is the discretized Laplace
operator.

2. Sparse implementation of the AMG

The matrix vector product with the inverse of the Schur complement has to be approximated in order to
construct the preconditioner (0.2). We are going to do this by iteratively solving systems of the form Ŝv = y,
where Ŝ is an approximation of S. The multiplication of a vector v by the Schur complement S can be evaluated
in three steps: u1 = Bv, Au2 = u1 and u3 = BTu2, where vector u3 contains the result of the evaluation.
Note that the middle step corresponds to a system solve with the matrix A. The actual solution process can
be approximated by, for example, a few cycles of multigrid method.

Let us study more closely the linear system (0.1). After a rearrangement of the variables, the system matrix
has the block representation


A11 A12 B1

A21 A22 0
BT

1 0 0


 , (2.1)

where the variables restricted by the Lagrange multipliers are numbered first. Thus, in the first evaluation
phase u1 = (u1

1,0) and in the middle step we actually solve

(
A11 A12

A21 A22

)(
u2

1

u2
2

)
=
(
u1

1

0

)
.

The final result u3 = BT
1 u2

1 + 0u2
2 is independent of the vector block u2

2. Now, we want to create a special
implementation of the algebraic multigrid method cycle in which the vector blocks u1

2 and u2
2 are not used

since the first of them is zero vector and the second one is irrelevant for the evaluation. We call this special
implementation a sparse algebraic multigrid.

For our model problem, we assume that the matrix A corresponds to a quasiuniform discretization mesh and
the degrees of freedom corresponding to the first block row of (2.1) represent a lower dimensional plane with
sufficient smoothness inside or on the boundary of a computational domain. Then, the number of components
to be approximated is at most O(n(d−1)/d), where n is the total number of discretization nodes and d is the
space dimension of the continuous problem.

Since the optimal computational complexity O(n) of the preconditioner for the problem (0.1) is wanted, the
application of the sparse AMG should require at most O(n(d−1)/d) floating point operations. This is due to the
fact that solving iteratively systems in which sparse AMG is used to perform matrix-vector multiplication, takes
at most O(log 1

ε n1/d) iterations to the relative accuracy ε using, for example, conjugate gradient or Chebyshev

NUMERICAL STUDY OF TWO SPARSE AMG-METHODS 137

method [15]. For this reason the multigrid cycle has to be performed in a subspace, whose dimension does not
exceed O(n(d−1)/d).

In order to perform the multigrid cycle in a subspace, the iterative method for the sparse AMG must be
such that the approximate solution is updated only in the neighborhood of the nodes, where the residual before
smoothing was nonzero. This requirement excludes, for example, Gauss–Seidel smoothing. Here, the Jacobi
iteration has been chosen. Moreover, if we study an ordinary geometric multigrid with linear interpolation for
a discretized one-dimensional boundary value problem, we notice that the number of nodes on each coarser
level is approximately halved. When W-cycle is used, level i of the multigrid is visited 2i−1 times. Such a
multigrid cycle requires O(n log n) floating point operations, where n is the size of the original (level 1) linear
system. This is similar to approximating a Schur complement of a two-dimensional problem on a one-dimensional
curve. Therefore, for the sparse algebraic multigrid, only V-cycle is allowed in order to meet the complexity
requirements.

If conjugate gradient method is used to solve problems, where sparse AMG acts as a matrix vector product,
we must ensure that the sparse AMG defines a symmetric and positive definite operator. For the choices made
here this turns out to be simple. The (diagonal) iteration matrix of the Jacobi method is always symmetric
and positive definite for symmetric and positive definite problems. All that is required, is to choose suitable
relaxation parameters for Jacobi iteration on each multigrid level.

The initialization of the sparse AMG may take as much as O(n) operations. Therefore, it is possible to
construct the sparse AMG after the full AMG is initialized. The Algorithm 2.1 constructs the sparse AMG out
of the full AMG.

Algorithm 2.1. Sparse AMG initialization

1. Give a subset T1 of the nodes, where the approximate solution is required
2. Define a set S1 which includes T1 and all the nodes the smoother may update, when the residual is nonzero

for nodes in the set T1.
3. For all the levels i = 1, 2, . . . , L do

4. Pick the rows and columns of Ai, indicated by set Si, to the sparse system matrix As
i

5. Define the set Ti+1 such that j ∈ Ti+1 if (Ri)jk �= 0 for some k ∈ Si.
6. Define a set Si+1 which includes Ti+1 and all the nodes the smoother may update, when the residual

is nonzero for nodes in the set Ti+1.
7. Pick the columns of Ri, indicated by Si, and rows of Ri, indicated by Si+1 to the sparse restriction

matrix Rs
i.

8. End for.

After the initialization, the sparse system matrices As
i and the sparse restrictions Rs

i are used to perform a
single V-cycle of the multigrid with zero initial guess for a given vector.

Theorem 2.1. Let there be a hierarchy of uniformly coarsened meshes Mi, i = 1, . . . , L and a discrete partial
differential operator A discretized on the mesh M1, where the degrees of freedom corresponding to mesh Mi

are numbered before the degrees of freedom corresponding to mesh Mi−1. Moreover, let the number of degrees
of freedom for the mesh ML be at most the threshold, which is given as a stopping criterion for coarsening in
AMG 2. Then, the sparse cycle of AMG 2 corresponding to a lower dimensional plane with O(n(d−1)/d) degrees
of freedom requires at most O(n(d−1)/d) arithmetic operations and memory locations for d ≥ 2 and O(log n)
operations and memory locations for d = 1.

Proof. Due to the coarsening strategy, the number of nodes corresponding to the lower dimensional plane on
level i is O(n(d−1)/d/2(d−1)i). They are a subset of the nodes for which the solution was required on level 1.
For each node on each level, the number of neighboring nodes is at most the number of neighboring nodes for
the corresponding node on level 1, which is bounded. Thus, the required number arithmetic operations and
memory locations on level i is also O(n(d−1)/d/2(d−1)i). Summing these up over the levels gives us the estimate
presented above.

138 J. MARTIKAINEN

Note, that while the previous theorem assures the complexity of sparse AMG 2 in certain cases, the same
estimate holds for many other cases also, for example, for all the numerical tests presented in this paper.

For the initialization of the sparse BPX, the sets Si can be defined as Si = Ti and the step 4 in the
Algorithm 2.1 can be omitted.

3. Model operators for numerical tests

For numerical testing, two positive definite partial differential operators are used: the diffusion operator

L(u) = −αI + ν∆u (3.1)

and the linear elasticity operator for an isotropic material

E(u) = −2µ∇ · ε(u)− λ∇(∇ · u). (3.2)

The operators are discretized with the finite element method and therefore, corresponding weak formulations
of the operators are needed. Let there be a domain Ω ⊂ R

d, d = 2, 3 such that the boundary ∂Ω = Γ0 ∪ Γ1 and
that meas(Γ0) > γ > 0. The function space V is defined by

V = {ϕ : ϕ ∈ H1(Ω), ϕ = 0 on Γ0} · (3.3)

Now, the weak bilinear form L : V × V → R corresponding to the diffusion operator (3.1) reads:

L(u, v) =
∫

Ω

αuv + ν∇u · ∇v dΩ, (3.4)

and the weak bilinear form E : V d × V d → R corresponding to the linear elasticity operators (3.2) reads:

E(u, v) =
∫

Ω


 d∑

i=1

d∑
j=1

2µεij(u) : εij(v)− λ
∂ui

∂xi

∂vj

∂xj


 dΩ. (3.5)

The finite element spaces of the discrete problems are piecewise linear and bilinear in two dimensions with
triangular and quadrilateral elements, respectively and bilinear and trilinear in three dimensions with prismatic
and brick elements, respectively. These spaces are subspaces of V . The components of the matrix block A
in (0.1) are obtained by inserting the corresponding finite elements basis functions to the bilinear forms L
and E. For the following numerical examples, the matrix B ∈ R

m×n has one nonzero element on each row
corresponding to each node on the lower dimensional plane, on which the Schur complement S = BA−1BT is
approximated, and the value of the nonzero elements is always 1.

4. Numerical results

For measuring the accuracy of a Schur complement approximation, the smallest λmin and the largest eigen-
value λmax of the generalized eigenvalue problem Su = λS̃u are computed. The quality of the approximation
is measured by the ratio of the eigenvalues, which is also the spectral condition number of the product matrix
S̃−1S. Since the complexity of the algebraic multigrid is not known exactly prior to its construction, it is useful
to measure it also. For the three compared methods, including the sparse BPX, all the required data structures
are packed into sparse matrices. Therefore, a common measure for the method complexity is the number of
sparse matrix entries used in the method. To present more illustrative information, a solution method for the
corresponding problem with Lagrange multipliers of the form (0.1) is constructed and the numbers of iterations
and CPU-times in seconds are reported. The solution method is the preconditioned MINRES [10] with the

NUMERICAL STUDY OF TWO SPARSE AMG-METHODS 139

Ω

Ω

Γ

Figure 2. Computational domain and 32× 32 mesh for the test problem 1.

Table 1. Condition numbers with respect to the mesh step size for the test problem 1.

Sparse AMG 1 Sparse AMG 2 Sparse BPX
h cond size iter time cond size iter time cond size iter time

1/16 1.13 1201 12 0.01 1.10 1054 14 0.01 1.47 125 16 0.01
1/32 1.19 4132 16 0.10 1.14 2818 14 0.07 2.06 225 22 0.04
1/64 1.24 8740 15 0.38 1.15 6452 14 0.29 2.35 541 22 0.29

1/128 1.37 27682 18 2.33 1.21 14628 16 1.67 2.25 1113 22 1.39
1/256 1.29 50119 16 8.47 1.21 29564 14 6.04 2.48 2205 22 6.17
1/512 1.41 140627 16 36.78 1.22 61524 14 27.23 2.28 4145 22 26.13

block diagonal preconditioner P = diag(Pp,Pl), where the primary variable preconditioner Pp corresponds
to one symmetric cycle of AMG 2 and the Lagrange multiplier preconditioner Pl corresponds to the method
under consideration. The initial guess is chosen to be zero and the right hand side vectors are f = 0 and each
component of vector g is one. The problem has a nontrivial solution.

As the first test problem the Laplace operator ((3.4) with α = 0, ν = 1) is discretized with topologically
hierarchical finite element mesh in the unit rectangle Ω. Here, Γ0 = ∂Ω. The Schur complement is approximated
on a closed curve Γ located inside the domain as in Figure 2. The curve is composed of four pieces of parabola,
the first of which goes through points (0.3, 0.5), (0.35, 0.65) and (0.5, 0.7). The other pieces are obtained by
rotating the first around the midpoint (0.5, 0.5). Nodes have been fitted locally on the curve to achieve an
accurate representation of the curve. A mesh with 32× 32 rectangles is also shown in Figure 2. The rectangles
which have been cut by the curve have been split to two triangles. The mesh step sizes, condition numbers and
the total number of sparse matrix entries of sparse AMGs and sparse BPX are presented in Table 1 as well
as the numbers of iterations and CPU-times of the corresponding solution methods. The BPX is based on a
hierarchical mesh, in which no local fitting is used. For the finest discretization, h = 1/512, of the first test
problem, one V-cycle of the full AMG 1 took 0.661 s and had 3.26e6 sparse matrix entries, while one V-cycle
of the full AMG 2 took 0.580 s of CPU-time and had 3.15e6 sparse matrix entries. In comparison, the sparse
AMG 1 V-cycle took 1.88e-2 s, the sparse AMG 2 V-cycle 1.38e-2 s and the sparse BPX V-cycle 1.76e-4 s
of CPU-time. The data structures of the sparse BPX fit into the cache memory. This shows that for simple
problems the sparse BPX gives a good preconditioner with very quick computation. Only for some problem
sizes the sparse AMG 2 is slightly more efficient.

As the next test, the Schur complement of Laplace operator is approximated on two opposite sides, numbered
by 3 and 6, of a hexagon, while Γ0 is composed of the other four sides, as in Figure 3. The discretization mesh
is not hierarchical. In Table 2, the results are presented in a form which is similar to the first test problem.

140 J. MARTIKAINEN

1

2

3

4

5

6

Figure 3. The coarsest finite element mesh for the test problem 2.

Table 2. Condition numbers with respect to number of nodes for the test problem 2.

Sparse AMG 1 Sparse AMG 2
nodes cond size iter time cond size iter time

86 1.11 693 14 0.01 1.06 468 14 0.01
301 1.15 1343 15 0.01 1.27 909 15 0.01

1156 1.20 5182 17 0.11 1.43 2516 18 0.09
4197 1.25 14763 17 0.58 1.95 5360 19 0.45

16452 1.29 44208 18 4.43 2.49 12007 25 2.84

Table 3. Condition numbers with respect to the mesh step size for the test problem 3.

Sparse AMG 1 Sparse AMG 2 Sparse BPX
h cond size iter time cond size iter time cond size iter time

1/16 6.71 6737 38 0.40 2.18 6641 23 0.16 14.9 125 47 0.07
1/32 9.00 18536 41 1.74 2.35 14165 22 0.71 16.5 225 54 0.53
1/64 27.0 76963 51 11.5 2.56 31894 24 3.41 17.6 541 55 2.67

1/128 92.0 233328 62 58.0 2.53 64261 23 15.1 16.6 1113 53 11.3
1/256 220. 965621 71 250. 2.61 127682 23 57.6 16.6 2205 52 46.4

For these unstructured meshes, the measured condition number is much better for AMG 1 than AMG 2, but
the number of sparse matrix entries grows at greater rate in AMG 1. The condition number for AMG 2 clearly
depends on the mesh step size h. This is due to the deteriorating quality of the interpolations. Nevertheless,
the sparse AMG can be well used on unstructured meshes.

In the third test problem, the computational domain is the same as in the first test problem, but Γ0 is only
the bottom of the domain. The Schur complement of the linear elasticity operator (3.5) is approximated on
the same curve Γ as in test problem 1. The Young modulus of the elastic material is 100 and the Poisson
ratio 0.3 giving λ ≈ 57.7 and µ ≈ 38.5. The sparse AMG 2 is compared to the sparse BPX, which is used
for the two displacement components separately. The results are presented in Table 3. Also AMG 1 method
was tested, using the unknown-approach described in [17], but the local fitting of the discretization mesh and
underrelaxation needed to obtain the positive definiteness of the V-cycle greatly reduced the quality of the
approximation. This experiment shows that sparse AMG 2, which is suited to the original problem directly, can
give much better approximations to the Schur complement than sparse BPX, although the spectral properties
of the linear elasticity operator are comparable to those of the vector Laplacian. However, when studying the

NUMERICAL STUDY OF TWO SPARSE AMG-METHODS 141

Figure 4. The profile of the cylinder for test problem 4.

Table 4. Condition numbers with respect to the mesh step size for the test problem 4.

Sparse AMG 1 Sparse AMG 2 Sparse BPX
h cond size iter time cond size iter time cond size iter time

1/16 2.44 41734 25 2.76 2.01 34768 22 2.84 14.0 2268 32 0.87
1/32 6.81 223586 40 33.8 2.01 161198 22 22.6 17.4 5925 30 7.03
1/64 10.0 998752 47 280. 1.93 643086 20 131. 28.0 32684 30 77.3

Table 5. Condition numbers with respect to a coefficient value for the test problem 5.

Sparse AMG 1 Sparse AMG 2 Sparse BPX
s cond size iter time cond size iter time cond size iter time

100 1.37 20834 17 2.41 1.29 14628 16 1.94 5.97 1113 25 1.80
101 1.40 31980 19 3.53 1.49 14628 19 2.39 8.10 1113 36 2.58
102 1.31 54778 20 5.55 1.58 14628 20 2.56 10.2 1113 52 3.73
103 1.40 63831 20 6.04 1.60 14628 20 2.56 10.6 1113 67 4.80

execution times of the corresponding linear solver we notice that the computational time of the preconditioner
outweighs the accuracy. Using the sparse AMG to both components of the displacement separately, the efficiency
compared to the sparse BPX behaves as in the test problem 1.

In the fourth test problem, the computational domain is the unit cube]0, 1[3. The Schur complement of the
diffusion operator, (3.4) with α = 1 and ν = 1, is approximated on the surface of a cylinder with a star-shaped
cross section profile as in Figure 4. The profile is composed of four pieces of natural cubic splines, first of which
passes through points (0.5, 0.1), (0.45, 0.2), (0.4, 0.4), (0.2, 0.45) and (0.1, 0.5). The other pieces are obtained by
rotating the first around the midpoint (0.5, 0.5) in 90◦ steps. The cylinder starts at z = 0.3 and ends at z = 0.7.
The boundary Γ0 is the bottom of the cube. The finite element mesh is a Cartesian and locally fitted one with
cubic and prismatic first order elements. Some problems were encountered with AMG 1. In order to obtain a
positive definite operator, some underrelaxation was needed and this is partly responsible for the growth of the
condition number with respect to the mesh step size h.

In the fifth test problem, the approximation of the Schur complement is studied with respect to a jump in a
coefficient. The setting of the problem is the same as for the first test problem, except that the discretization
mesh is always the same, h = 1/128, and the coefficient ν of the weak diffusion operator (3.4) is ν = 1 + r,
where r is a random number of the interval [0, s] chosen elementwise. Since the random numbers are accessed
from a file, the problem for each method is exactly the same. The performance of the methods with respect
to the varying scale factor s are given in Table 5. The results show that the sparse AMG 1 can maintain a
high quality for the Schur complement approximation, but with growing expenses. This, of course, depends
on the initialization parameter which is used to define a strong connection. If the parameter is small enough,

142 J. MARTIKAINEN

the sparse AMG 1 gives the same kind of slowly degrading approximation with almost constant computational
cost as sparse AMG 2. The sparse BPX, which is not suited to this kind of problems, gives clearly the worst
approximation for the Schur complement and large number of iterations to the system solver. The solver using
the sparse BPX is slower than the one using sparse AMG 2, but due to its simple structure it is still faster than
the method using the accurate sparse AMG 1 preconditioner.

5. Conclusions

Two sparse algebraic multigrid methods that were based on algorithms presented in [11] and [17] were tested
for Schur complement approximation. They can be easily initialized if the full AMG is initialized first. For the
tested problems, one or both of the methods give very good approximations for Schur complements with respect
to condition numbers. The complexity of the sparse algebraic multigrids is considerably larger than that of the
sparse BPX, and, therefore, the sparse BPX is more efficient for Laplace-like problems on structured meshes.
For some more complex operators and problems on unstructured grids the sparse AMG method can be used for
Schur complement approximation and for boundary Lagrange multiplier preconditioning.

Acknowledgements. The author wishes to thank Erkki Heikkola, Tuomo Rossi and Jari Toivanen for comments and sug-
gestions concerning improvements of this article. The finite elements meshes for the test problem 2 were generated using
EasyMesh (homepage http://www-dinma.univ.trieste.it/˜nirftc/research/easymesh/easymesh.html), written by Bojan
Niceno. This work was financially supported by The Academy of Finland, contract/grant number #53588.

References

[1] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1972/73) 179–192.
[2] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element

method, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI, Paris (1989–
1991) 13–51. Longman Sci. Tech., Harlow (1994).

[3] J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I.
Math. Comp. 47 (1986) 103–134.

[4] J.H. Bramble, J.E. Pasciak and Jinchao Xu, Parallel multilevel preconditioners. Math. Comp. 55 (1990) 1–22.
[5] Qianshun Chang, Yau Shu Wong and Hanqing Fu, On the algebraic multigrid method. J. Comput. Phys. 125 (1996) 279–292.
[6] M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51–64.
[7] R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Periaux, Distributed Lagrange multiplier methods for particulate

flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux and
M.F. Wheeler Eds., Wiley (1997) 270–279.

[8] R. Glowinski, Tsorng-Whay Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput.
Methods Appl. Mech. Engrg. 111 (1994) 283–303.

[9] G.H. Golub and D. Mayers, The use of preconditioning over irregular regions, in Computing methods in applied sciences and
engineering VI, Versailles (1983) 3–14. North-Holland, Amsterdam (1984).

[10] A. Greenbaum, Iterative methods for solving linear systems. SIAM, Philadelphia, PA (1997).
[11] F. Kickinger, Algebraic multi-grid for discrete elliptic second-order problems, in Multigrid methods V, Stuttgart (1996) 157–

172. Springer, Berlin (1998).
[12] Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal.

Math. Modelling 10 (1995) 187–211.
[13] Yu.A. Kuznetsov, Overlapping domain decomposition with non-matching grids. East-West J. Numer. Math. 6 (1998) 299–308.
[14] R.A.E. Mäkinen, T. Rossi and J. Toivanen, A moving mesh fictitious domain approach for shape optimization problems.

ESAIM: M2AN 34 (2000) 31–45.
[15] J. Martikainen, T. Rossi and J. Toivanen, Multilevel preconditioners for Lagrange multipliers in domain imbedding. Electron.

Trans. Numer. Anal. (to appear).
[16] G. Meurant, A multilevel AINV preconditioner. Numer. Algorithms 29 (2002) 107–129.
[17] J.W. Ruge and K. Stüben, Algebraic multigrid. SIAM, Philadelphia, PA, Multigrid methods (1987) 73–130.
[18] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM

J. Numer. Anal. 31 (1994) 1352–1367.
[19] C.H. Tong, T.F. Chan, and C.-C. Jay Kuo, A domain decomposition preconditioner based on a change to a multilevel nodal

basis. SIAM J. Sci. Statist. Comput. 12 (1991) 1486–1495.

