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A GENERAL REPRESENTATION FORMULA FOR BOUNDARY VOLTAGE
PERTURBATIONS CAUSED BY INTERNAL CONDUCTIVITY

INHOMOGENEITIES OF LOW VOLUME FRACTION

Yves Capdeboscq1 and Michael S. Vogelius1

Abstract. We establish an asymptotic representation formula for the steady state voltage perturba-
tions caused by low volume fraction internal conductivity inhomogeneities. This formula generalizes
and unifies earlier formulas derived for special geometries and distributions of inhomogeneities.
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1. Introduction and statement of main result

Consider a conducting object which occupies a bounded, smooth domain Ω ⊂ R
m. For simplicity we take

∂Ω to be C∞, but this assumption could be considerably weakened. Let γ0(·) denote the smooth background
conductivity, that is, the conductivity in the absence of any inhomogeneities. We suppose that

0 < c0 ≤ γ0(x) ≤ C0 <∞, x ∈ Ω

for some fixed constants c0 and C0. For simplicity, we assume that γ0 is C∞(Ω̄), but this latter assumption
could also be considerably weakened. The function ψ denotes the imposed boundary current. It suffices that
ψ ∈ H−1/2(∂Ω), with

∫
∂Ω
ψ dσ = 0. The background voltage potential, U , is the solution to the boundary value

problem

∇ · (γ0(x)∇U) = 0 in Ω , (1)

γ0(x)
∂U

∂n
= ψ on ∂Ω.

Here n denotes the unit outward normal to the domain Ω.
Let ωε denote a set of “inhomogeneities” inside Ω. The geometric assumptions about the set of “inhomo-

geneities” are very simple: we suppose the set ωε is measurable, and separated away from the boundary, (i.e.,
dist(ωε, ∂Ω) > d0 > 0). Most importantly, we suppose that 0 < |ωε| gets arbitrarily small, where |ωε| denotes
the Lebesgue measure of ωε. Let γ̂ε denote the conductivity profile in the presence of the inhomogeneities. The
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function γ̂ε is equal to γ0, except on the set of inhomogeneities; on the set of inhomogeneities we suppose that
γ̂ε equals the restriction of some other smooth function, γ1 ∈ C∞(Ω), with

0 < c1 ≤ γ1(x) ≤ C1 <∞, x ∈ Ω.

In other words

γ̂ε(x) =
{
γ0(x), x ∈ Ω \ ωε

γ1(x), x ∈ ωε.
(2)

The voltage potential in the presence of the inhomogeneities is denoted uε(x). It is the solution to

∇ · (γ̂ε(x)∇uε) = 0 in Ω , (3)

γ̂ε(x)
∂uε

∂n
= ψ on ∂Ω.

We normalize both U and uε by requiring that∫
∂Ω

U dσ = 0 , and
∫

∂Ω

uεdσ = 0.

We note that the individual voltages U and uε need not be smooth (or even continuous) on ∂Ω, however, the
difference uε −U is smooth in a neighborhood of ∂Ω, due to the regularity of γ0, and the fact that ωε is strictly
interior.

The aim of this paper is to derive a representation formula for (all possible limits of) (uε −U)|∂Ω as |ωε| → 0.
This representation formula, in a most natural way, generalizes and unifies the specific formulas already derived
for a finite set of inhomogeneities of small diameter, and for a finite set of inhomogeneities of small thickness
(cf. [9] and [5]). The exact relation to these formulas (and others) is discussed in detail in a separate section.

Explicit representation formulas for the boundary voltage perturbations caused by internal inhomogeneities
are of significant interest from an “imaging point of view”. For instance: if one has very detailed knowledge
of the “boundary signatures” of internal inhomogeneities, then it becomes possible to design very effective
numerical methods to identify the location of these inhomogeneities. We refer the reader to [3,4,7] and [13] for
examples of numerical methods based on such specific formulas.

Before stating our main theorem we shall make some preliminary observations. Let 1ωε denote the char-
acteristic function corresponding to the set ωε, i.e., the function which takes the value 1 on the set and the
value 0 outside. Since the family of functions |ωε|−11ωε is bounded in L1(Ω), it follows from a combination of
the Banach–Alaoglu Theorem and the Riesz Representation Theorem that we may find a regular, positive Borel
measure µ, and a subsequence ωεn , with |ωεn | → 0, such that

|ωεn |−11ωεn
dx→ dµ. (4)

The convergence refers to the weak* topology of the dual of C0(Ω). More precisely, for any φ ∈ C0(Ω)

|ωεn |−1

∫
ωεn

φdx→
∫

Ω

φdµ.

The measure µ satisfies
∫
Ω

dµ = 1, so it is indeed a probability measure. Due to the fact that the sets ωε stay
uniformly bounded away from the boundary, there exists a compact set K0 ⊂ Ω which strictly contains ωε, in
the sense that

ωε ⊂ K0 ⊂ Ω, and dist(ωε,Ω \K0) > δ0 > 0. (5)
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The support of µ lies inside the same compact set K0. We shall need the so called Neumann function N(x, y)
for the operator ∇ · (γ0∇). For y ∈ Ω, N(·, y) is the solution to the boundary value problem

∇x · (γ0(x)∇xN(x, y)) = δy in Ω ,

γ0(x)
∂N

∂nx
=

1
|∂Ω| on ∂Ω.

The function N(x, y) may be extended by continuity to y ∈ Ω. For y ∈ ∂Ω the function N(·, y) may also be
interpreted as the solution to the boundary value problem

∇x · (γ0(x)∇xN(x, y)) = 0 in Ω ,

γ0(x)
∂N

∂nx
= −δy +

1
|∂Ω| on ∂Ω.

Theorem 1. Let ωεn be a sequence of measurable subsets, with |ωεn | → 0, for which (4) and (5) holds. Given
any ψ ∈ H−1/2(∂Ω), with

∫
∂Ω ψ dσ = 0, let U and uεn denote the solutions to (1) and (3), respectively. There

exists a subsequence, also denoted ωεn, and a matrix valued function M ∈ L2(Ω, dµ) such that

(uεn − U)(y) = |ωεn |
∫

Ω

(γ1 − γ0)(x)Mij(x)
∂U

∂xi

∂N

∂xj
(x, y) dµ(x) + o(|ωεn |) y ∈ ∂Ω.

The values of the function M(·) are symmetric, positive definite matrices in the sense that

Mij(x) = Mji(x), and

min
{

1,
γ0(x)
γ1(x)

}
|ξ|2 ≤Mij(x)ξiξj ≤ max

{
1,
γ0(x)
γ1(x)

}
|ξ|2, (6)

ξ ∈ R
m, µ almost everywhere in the set {x : γ0(x) �= γ1(x)}·

The subsequence ωεn and the matrix valued function M ∈ L2(Ω, dµ) are independent of the boundary flux ψ.
The term o(|ωεn |) is such that ‖o(|ωεn |)‖L∞(∂Ω)/|ωεn| converges to 0 for any fixed ψ ∈ H−1/2, and uniformly
on {ψ :

∫
∂Ω
ψ dσ = 0, ‖ψ‖L2(∂Ω) ≤ 1}.

Remark 1.

The variational formulations of the problems (1) and (3) yield∫
Ω

γ0∇(U − uε) · ∇v dx =
∫

ωε

(γ1 − γ0)∇uε · ∇v dx, (7)

for any v ∈ H1(Ω). Let y be a fixed point on ∂Ω, and let vm ∈ C1(Ω) be a sequence that converges to N(·, y)
in W 1,1(Ω), and in C1(K0) (K0 being as in (5)). Using the fact that U − uε is smooth near ∂Ω, and the fact
that ωε ⊂ K0, we may now, by insertion of vm into (7), and passage to the limit, conclude that∫

Ω

γ0∇(U − uε) · ∇xN(x, y) dx =
∫

ωε

(γ1 − γ0)∇uε · ∇xN(x, y) dx.

After integration by parts this yields

(uε − U)(y) =
∫

ωε

(γ1 − γ0)(x)∇uε · ∇xN(x, y) dx

= |ωε|
∫

Ω

(γ1 − γ0)(x)|ωε|−11ωε∇uε · ∇xN(x, y) dx. (8)
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Theorem 1 characterizes all possible limit points for the integral

∫
Ω

(γ1 − γ0)(x)|ωε|−11ωε∇uε · ∇xN(x, y)dx, as |ωε| → 0.

Note that the functions uε converge to U in H1(Ω), and thus ∇uε converge to ∇U in L2(Ω); it is the fact
that these gradients do not converge in L∞(Ω) which makes Theorem 1 non trivial, and which accounts for the
introduction of the polarization tensor M . The calculation of all possible limit points of the above integral shows
a lot of similarity to the calculation of limiting (effective) energy expressions by the technique of H-convergence.
At the center of our calculation is a variation of the compensated compactness technique developed by Murat
and Tartar [14].

Remark 2.

We note that the asymptotic formula in Theorem 1 is actually valid for all y in Ω \ K0, and not just for y
on ∂Ω. The remainder term in the asymptotic formula in Theorem 1 is not o(|ωε|) uniformly with respect to
the ellipticity constants ci and Ci. Take for example 0 < c0 < C0 < ∞ to be fixed, but let c1 approach 0,
or let C1 approach ∞. In this case it is easy to see that there exist ωε, with |ωε| → 0 for which uε converge
to a limit different from the background potential U , i.e., the remainder term is not even o(1) uniformly in c1
and C1. The bounds established for the polarization tensor M are optimal, they are “achieved” for instance by
inhomogeneities in the shape of thin “sheets”. For the inverse conductivity problem these polarization tensor
bounds immediately lead to optimal (small volume) inhomogeneity size estimates in terms of a single (integral)
boundary measurement, see [8]. Related size estimates have been derived, without any assumption of smallness,
in [1] and [12].

As formulated here, Theorem 1 applies only to isotropic conductivities γ0 and γ1. The representation part
immediately generalizes to anisotropic γ’s, with the corresponding asymptotic formula reading

(uεn − U)(y) = |ωεn |
∫

Ω

Mij(x)(γ1 − γ0)ik(x)
∂U

∂xk

∂N

∂xj
(x, y) dµ(x) + o(|ωεn |) y ∈ ∂Ω (or y ∈ Ω \K0).

Remark 3.

Suppose the background conductivity γ0 is a constant, and let Φ(x, y) denote the standard “free-space” Green’s
function for the operator ∇ · (γ0∇ ) = γ0∆

Φ(x, y) =
1

2πγ0
log |x− y|, m = 2,

Φ(x, y) =
1

(2 −m)Amγ0
|x− y|2−m, m ≥ 3.

The constant Am is the area of the unit sphere in R
m. Straightforward integration by parts shows that

∂N

∂xj
(x, z) = γ0

∂

∂xj

∫
∂Ω

N(x, y)
∂Φ
∂ny

(y, z) dσy +
∂Φ
∂xj

(x, z)
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(x, z) ∈ Ω × Ω, x �= z. Based on the asymptotic formula in Theorem 1 we now calculate

γ0

∫
∂Ω

(uεn − U)(y)
∂Φ
∂ny

(y, z) dσy = |ωεn |
∫

Ω

(γ1(x) − γ0)Mij(x)
∂U

∂xi
γ0

× ∂

∂xj

(∫
∂Ω

N(x, y)
∂Φ
∂ny

(y, z) dσy

)
dµ(x) + o(|ωεn |)

= |ωεn |
∫

Ω

(γ1(x) − γ0)Mij(x)
∂U

∂xi

∂N

∂xj
(x, z) dµ(x)

−|ωεn |
∫

Ω

(γ1(x) − γ0)Mij(x)
∂U

∂xi

∂Φ
∂xj

(x, z) dµ(x) + o(|ωεn |)

= (uεn − U)(z) − |ωεn |
∫

Ω

(γ1(x) − γ0)Mij(x)
∂U

∂xi

∂Φ
∂xj

(x, z) dµ(x) + o(|ωεn |)

for any z ∈ Ω \K0. By rearranging terms we get

(uεn − U)(z) − γ0

∫
∂Ω

(uεn − U)(y)
∂Φ
∂ny

(y, z) dσy = |ωεn |
∫

Ω

(γ1(x) − γ0)Mij(x)
∂U

∂xi

∂Φ
∂xj

(x, z)dµ(x) + o(|ωεn |),

z ∈ Ω \K0, and by letting z tend to a point on ∂Ω we now obtain

(uεn − U)(z) − 2γ0

∫
∂Ω

(uεn − U)(y)
∂Φ
∂ny

(y, z) dσy = 2|ωεn |
∫

Ω

(γ1(x) − γ0)Mij(x)
∂U

∂xi

∂Φ
∂xj

(x, z) dµ(x) + o(|ωεn |),

z ∈ ∂Ω, as an alternate asymptotic formula relating boundary data of (uεn − U) to data characterizing the
location of the internal inhomogeneities. The integral on the left-hand side should be interpreted as a standard
double layer potential.

2. Preliminary convergence estimates

In this section we shall examine exactly how the uε converge to U . As mentioned earlier this convergence
does not take place in W 1,∞(Ω), however, it does take place in H1(Ω), as well as in C0,β(Ω), for some β > 0.
We shall consider functions that are defined slightly more generally than uε and U . Given F ∈ H−1(Ω) (here
interpreted as the dual of H1(Ω)) and f ∈ H−1/2(∂Ω), with

∫
Ω F dx =

∫
∂Ω f dσ, let V and vε denote the

(variational) solutions to

∇ · (γ0(x)∇V ) = F in Ω, (9)

γ0(x)
∂V

∂n
= f on ∂Ω,

and

∇ · (γ̂ε(x)∇vε) = F in Ω, (10)

γ̂ε(x)
∂vε

∂n
= f on ∂Ω,

respectively. The functions V and vε are normalized by
∫

∂Ω V dσ = 0 and
∫

∂Ω vε dσ = 0.

Lemma 1. Let V and vε be as introduced above, let K0 ⊂ Ω be a compact set that strictly contains all ωε, as
in (5), and let α be any positive number. There exists a constant C such that

‖vε − V ‖H1(Ω) ≤ C|ωε|1/2
(‖F‖C0,α(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
.
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Furthermore, given any η > 0, there exists a constant Cη such that

‖vε − V ‖L2(Ω) ≤ Cη|ωε| 12 + 1
m∗ −η

(‖F‖C0,α(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
.

The integer m∗ is defined by m∗ = max{m, 2}, where m is the dimension of the ambient space.

Proof. By simple manipulation of the variational formulations of (9) and (10), and the use of interior estimates
for V (cf. [11], Cor. 6.3 and Th. 8.24)∣∣∣∣

∫
Ω

γ̂ε∇(vε − V ) · ∇w dx
∣∣∣∣ =

∣∣∣∣
∫

Ω

(γ0 − γ̂ε)∇V · ∇w dx
∣∣∣∣

≤ C|ωε|1/2‖∇V ‖L∞(ωε)‖∇w‖L2(Ω)

≤ C|ωε|1/2
(‖F‖C0,α(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

) ‖∇w‖L2(Ω),

so that ‖vε −V ‖H1(Ω) ≤ C|ωε|1/2
(‖F‖C0,α(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
, as asserted by the first statement

in this lemma. We also have∫
Ω

γ0∇(vε − V ) · ∇w dx =
∫

Ω

(γ0 − γ̂ε)∇vε · ∇w dx, w ∈ H1(Ω). (11)

Select w as the solution to

∇ · (γ0∇w) = V − vε in Ω,

γ0
∂w

∂n
=

1
|∂Ω|

∫
Ω

(V − vε) dx on ∂Ω,

normalized by
∫

∂Ω w dσ = 0. Elliptic estimates show that ‖w‖H2(Ω) ≤ C‖vε − V ‖L2(Ω), and after insertion of
this w into (11) we now obtain∫

Ω

(vε − V )2 dx =
∫

Ω

γ0∇(vε − V ) · ∇w dx

=
∣∣∣∣
∫

Ω

(γ0 − γ̂ε)∇vε · ∇w dx
∣∣∣∣

≤ C

(∫
ωε

|∇vε|q dx
)1/q (∫

Ω

|∇w|p dx
)1/p

≤ Cq

(∫
ωε

|∇vε|q dx
)1/q

‖w‖H2(Ω)

≤ Cq

(∫
ωε

|∇vε|q dx
)1/q

‖vε − V ‖L2(Ω), (12)

provided p and q are related by 1
q + 1

p = 1, and provided we require that q > 2m∗
m∗+2 (so that 1 < p < 2m∗

m∗−2 ,

and therefore, by Sobolev’s Imbedding Theorem
(∫

Ω |∇w|p dx
)1/p ≤ Cp‖w‖H2(Ω), cf. [11], p. 155). For any

1 < q < 2

‖∇vε‖Lq(ωε) ≤ ‖∇(vε − V )‖Lq(ωε) + ‖∇V ‖Lq(ωε)

≤
(∫

ωε

1 dx
)s

‖∇(vε − V )‖L2(ωε) + |ωε|1/q‖∇V ‖L∞(ωε)

≤ C
(
|ωε|(s+1/2) + |ωε|1/q

) (‖F‖C0,α(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
(13)
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with s = 1
q − 1

2 . A combination of (12) and (13) yields

‖vε − V ‖L2(Ω) ≤ Cq

(∫
ωε

|∇vε|q dx
)1/q

≤ Cq|ωε|1/q
(‖F‖C0,α(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
,

for any 2m∗
m∗+2 < q < 2. We note that 1

q approaches m∗+2
2m∗ = 1

m∗ + 1
2 from below as q approaches 2m∗

m∗+2 from
above. The previous estimate now immediately implies that, given any η > 0, there exists a constant Cη such
that

‖vε − V ‖L2(Ω) ≤ Cη|ωε| 12 + 1
m∗ −η

(‖F‖C0,α(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
,

the second statement of this lemma. �

Remark 4.

Let K0 be a compact subset of Ω that strictly contains all ωε, in the sense of (5). A combination of the
L2-estimate in Lemma 1 with the interior estimate (of De Giorgi–Nash–Moser type) found in [11] (Th. 8.24),
yields

‖vε − V ‖C0,β(Ω) ≤ Cη|ωε| 1
m−η

(‖F‖C0,β(K0) + ‖F‖H−1(Ω) + ‖f‖H−1/2(∂Ω)

)
,

for some β > 0. For this estimate we have also used the fact that ∇ · (γ0∇(vε − V )) = 0 away from ωε, and the
fact that ∂

∂n (vε −V ) = 0 on ∂Ω, to ensure that the L2-norm of vε −V “bounds” the C0,β norm (appropriately)
away from ωε.

3. Proof of main result

We shall use the notation V (j) and v
(j)
ε for the solutions to the problems (9) and (10) in the special case

when F = ∂γ0
∂xj

, f = γ0nj , nj being the j′th coordinate of the outward normal vector to ∂Ω. Notice that V (j) is

given by a simple formula: V (j) = xj − 1
|∂Ω|

∫
∂Ω xj dσ. Due to Lemma 1 we may estimate

∥∥∥| ωε|−11ωε∇v(j)
ε

∥∥∥
L1(Ω)

=
∫

ωε

|ωε|−1
∣∣∣∇v(j)

ε

∣∣∣ dx

≤
∫

ωε

|ωε|−1
∣∣∣∇(v(j)

ε − V (j))
∣∣∣ dx+

∫
ωε

|ωε|−1
∣∣∣∇V (j)

∣∣∣ dx

≤ |ωε|−1

(∫
ωε

1 dx
)1/2(∫

Ω

∣∣∣∇(v(j)
ε − V (j))

∣∣∣2 dx
)1/2

+ 1

≤ C. (14)

By extracting a subsequence, also referred to as ωεn , from the sequence given in Theorem 1, we may thus
suppose that

|ωεn |−11ωεn
dx→ dµ, and,

|ωεn |−11ωεn

∂

∂xi
v(j)

εn
dx→ dMij .
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The convergence in both cases refers to the weak* topology of the dual of C0(Ω), and Mij (as well as µ) are
regular Borel measures with support inside K0. Let φ ∈ C0(Ω), then by the very definition of the measure Mij∣∣∣∣

∫
Ω

φdMij

∣∣∣∣ =
∣∣∣∣ lim |ωεn |−1

∫
Ω

1ωεn

∂

∂xi
v(j)

εn
φdx

∣∣∣∣
≤ lim |ωεn |−1

∫
Ω

1ωεn

∣∣∣∣ ∂∂xi
(v(j)

εn
− V (j))

∣∣∣∣ |φ| dx
+ lim |ωεn |−1

∫
Ω

1ωεn

∣∣∣∣ ∂∂xi
V (j)

∣∣∣∣ |φ| dx
≤ lim |ωεn |−1/2

(∫
Ω

∣∣∣∣ ∂∂xi
(v(j)

εn
− V (j))

∣∣∣∣
2

dx

)1/2 (∫
Ω

|ωεn |−11ωεn
|φ|2 dx

)1/2

+
∫

Ω

∣∣∣∣ ∂∂xi
V (j)

∣∣∣∣ |φ| dµ
≤ C

(∫
Ω

|φ|2 dµ
)1/2

.

As a consequence of this estimate it follows that the functional

φ→
∫

Ω

φdMij

may be extended to a bounded linear functional on L2(Ω, dµ). Therefore, by Riesz’s Representation Theorem,
it is given by ∫

Ω

φdMij =
∫

Ω

φMij dµ,

for some function Mij ∈ L2(Ω, dµ). In other words

|ωεn |−11ωεn

∂

∂xi
v(j)

εn
dx→ dMij = Mij dµ. (15)

The following central lemma establishes the constitutive relationship between lim |ωεn |−11ωεn

∂
∂xj

uεn dx and
the gradient of the background potential. Its proof is based on a variation of the clever “integration by parts
technique” originally developed by Murat and Tartar in the context of H-convergence (the Div–Curl Lemma)
cf. [14].

Lemma 2. Let U and uε denote the solutions to (1) and (3) for some ψ ∈ H−1/2(Ω), with
∫

∂Ω
ψ dσ = 0. Let

ωεn, with |ωεn | → 0, be a sequence for which (4), (5) and (15) hold. Then (γ1 − γ0)|ωεn |−11ωεn

∂
∂xj

uεn dx is

convergent in the weak* topology of the dual of C0(Ω), with

lim (γ1 − γ0)|ωεn |−11ωεn

∂

∂xj
uεn dx = (γ1 − γ0)Mij

∂U

∂xi
dµ. (16)

Proof. It suffices to prove that we may extract a subsequence such that

(γ1 − γ0)|ωεn |−11ωεn

∂

∂xj
uεn dx
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converges to the limit given by the right-hand side in (16). The fact that the limit is independent of the particular
subsequence then guarantees that the entire sequence will be convergent. We may repeat the argument which
led to (14), in order to conclude that

‖ |ωε|−11ωε∇uε ‖L1(Ω) ≤ C‖ψ‖H−1/2(∂Ω),

so that, upon extraction of a subsequence

|ωεn |−11ωεn

∂

∂xj
uεn dx→ dνj

in the weak* topology of the dual of C0(Ω). In order to complete the proof of this lemma we must show that∫
Ω

φ(γ1 − γ0) dνj =
∫

Ω

φ(γ1 − γ0)
∂U

∂xi
dMij , (17)

for all φ sufficiently smooth (e.g. φ ∈ C1(Ω)). We first observe that∫
Ω

γ̂ε∇(uε − U) · ∇(v(j)
ε φ)dx =

∫
Ω

(γ0 − γ̂ε)∇U · ∇(v(j)
ε φ)dx, (18)

and ∫
Ω

γ0∇(uε − U) · ∇(V (j)φ) dx =
∫

Ω

(γ0 − γ̂ε)∇uε · ∇(V (j)φ) dx. (19)

We then calculate∫
Ω

γ̂ε∇(uε − U) · ∇(v(j)
ε φ) dx =

∫
Ω

γ̂ε∇(uε − U) ·
(
∇v(j)

ε

)
φdx+

∫
Ω

γ̂ε∇(uε − U) · (∇φ)v(j)
ε dx

=
∫

Ω

γ̂ε∇(uε − U) ·
(
∇v(j)

ε

)
φdx+

∫
Ω

γ̂ε∇(uε − U) · (∇φ)V (j) dx

+O
(
‖uε − U‖H1(Ω)‖v(j)

ε − V (j)‖L2(Ω)

)
=
∫

Ω

γ̂ε∇(uε − U) ·
(
∇v(j)

ε

)
φdx+

∫
Ω

γ0∇(uε − U) · (∇φ)V (j) dx

+
∫

Ω

(γ̂ε − γ0)∇(uε − U) · (∇φ)V (j) dx+ o (|ωε|)

= −
∫

Ω

γ̂ε(uε − U)∇v(j)
ε · ∇φdx −

∫
Ω

(uε − U)
∂γ0

∂xj
φdx

+
∫

∂Ω

(uε − U)γ0njφdσ +
∫

Ω

γ0∇(uε − U) · (∇φ)V (j) dx

+
∫

ωε

(γ1 − γ0)∇(uε − U) · (∇φ)V (j) dx+ o (|ωε|)

= −
∫

Ω

γ̂ε(uε − U)∇V (j) · ∇φdx−
∫

Ω

(uε − U)
∂γ0

∂xj
φdx (20)

+
∫

∂Ω

(uε − U)γ0njφdσ +
∫

Ω

γ0∇(uε − U) · (∇φ)V (j) dx

+
∫

ωε

(γ1 − γ0)∇(uε − U) · (∇φ)V (j) dx+ o (|ωε|) .
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Here we have used Lemma 1 to estimate the difference v(j)
ε − V (j), as well as the difference uε − U . We also

calculate∫
Ω

γ0∇(uε − U) · ∇(V (j)φ) dx =
∫

Ω

γ0∇(uε − U) ·
(
∇V (j)

)
φdx+

∫
Ω

γ0∇(uε − U) · (∇φ)V (j) dx

= −
∫

Ω

γ0(uε − U)∇V (j) · ∇φdx −
∫

Ω

(uε − U)
∂γ0

∂xj
φdx (21)

+
∫

∂Ω

(uε − U)γ0njφdσ +
∫

Ω

γ0∇(uε − U) · (∇φ)V (j) dx.

A direct combination of (20) and (21) (and Lemma 1) gives

∫
Ω

γ̂ε∇(uε − U) · ∇(v(j)
ε φ) dx =

∫
Ω

γ0∇(uε − U) · ∇(V (j)φ) dx +
∫

ωε

(γ1 − γ0)∇(uε − U) · (∇φ)V (j) dx

+ o (|ωε|) ,

so that, due to (18) and (19),
∫

ωε

(γ0 − γ1)∇U · ∇(v(j)
ε φ) dx =

∫
ωε

(γ0 − γ1)∇uε · ∇(V (j)φ) dx −
∫

ωε

(γ0 − γ1)∇uε · (∇φ)V (j) dx

+
∫

ωε

(γ0 − γ1)∇U · (∇φ)V (j) dx+ o (|ωε|)

=
∫

ωε

(γ0 − γ1)∇uε · ∇V (j) φdx +
∫

ωε

(γ0 − γ1)∇U · (∇φ)v(j)
ε dx

+O
(
‖V (j) − v(j)

ε ‖L2(Ω)|ωε|1/2‖∇U‖L∞(ωε)

)
+ o (|ωε|)

=
∫

ωε

(γ0 − γ1)∇uε · ∇V (j) φdx +
∫

ωε

(γ0 − γ1)∇U · (∇φ)v(j)
ε dx+ o (|ωε|) .

After rearrangement and a rescaling this yields∫
Ω

(γ0 − γ1)∇U · |ωε|−11ωε∇v(j)
ε φdx =

∫
Ω

(γ0 − γ1)|ωε|−11ωε∇uε · ∇V (j) φdx+ o(1). (22)

Passing to the limit along the subsequence ωεn (using that ∇U is smooth inside Ω, and that dMij has compact
support) we now obtain

∫
Ω

φ(γ0 − γ1)
∂

∂xi
U dMij =

∫
Ω

φ(γ0 − γ1)
∂

∂xi
V (j) dνi =

∫
Ω

φ(γ0 − γ1) dνj ,

which is the desired identity (17). This completes the proof of Lemma 2. �
We are presently ready for:

Proof of Theorem 1. Let ωεn be a subsequence for which (4), (5) and (15) hold. Clearly such a subsequence
exists, and it is completely independent of the boundary flux ψ. We recall the identity (8), which asserts that

(uεn − U)(y) = |ωεn |
∫

Ω

(γ1 − γ0)(x)|ωεn |−11ωεn
∇uεn · ∇xN(x, y)dx, y ∈ ∂Ω.
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Let K0 ⊂ Ω denote a compact set that strictly contains the sets ωεn . Given any y ∈ ∂Ω, it is possible to find a
vector valued function φy ∈ C0(Ω) such that

φy(x) = ∇xN(x, y), ∀x ∈ K0.

Using Lemma 2 we now get

(uεn − U)(y) = |ωεn |
∫

Ω

(γ1 − γ0)(x)|ωεn |−11ωεn
∇uεn · φy(x) dx

= |ωεn |
∫

Ω

(γ1 − γ0)(x)|ωεn |−11ωεn

∂

∂xj
uεn (φy(x))j dx

= |ωεn |
∫

Ω

(γ1 − γ0)Mij
∂U

∂xi
(φy)j dµ+ o(|ωεn |)

= |ωεn |
∫

Ω

(γ1 − γ0)Mij
∂U

∂xi

∂N

∂xj
(x, y)dµ(x) + o(|ωεn |),

which verifies the asymptotic statement in Theorem 1. By (equi-)continuity and compactness it follows im-
mediately that ‖o(|ωεn |)‖L∞(∂Ω)/|ωεn| → 0 for any fixed ψ ∈ H−1/2(∂Ω), and uniformly on {ψ :

∫
∂Ω ψ dσ =

0, ‖ψ‖L2(∂Ω) ≤ 1}. In the following section we show that the tensor Mij has the stated symmetry- and positivity
properties.

�

4. Properties of the polarization tensor

The identity (22) immediately extends to the case when U and uε are replaced by V and vε, satisfying (9)
and (10) (F ∈ C0,α(K0)). In particular we may insert V = V (i), and vε = v

(i)
ε , to arrive at

∫
Ω

(γ0 − γ1)∇V (i) · |ωε|−11ωε∇v(j)
ε φdx =

∫
Ω

(γ0 − γ1)|ωε|−11ωε∇v(i)
ε · ∇V (j) φdx+ o(1).

Passing to the limit along the subsequence ωεn , using the limiting relationship (15), we now obtain

∫
Ω

(γ0 − γ1)Mij φdµ =
∫

Ω

(γ0 − γ1)
∂V (i)

∂xk
Mkj φdµ

=
∫

Ω

(γ0 − γ1)Mki
∂V (j)

∂xk
φdµ

=
∫

Ω

(γ0 − γ1)Mji φdµ,



170 Y. CAPDEBOSCQ AND M.S. VOGELIUS

which verifies the symmetry of M , in the sense of (6). To verify the bounds in Theorem 1 we calculate

ξiξj

∫
Ω

(γ1 − γ0)|ωε|−11ωε∇v(j)
ε · ∇V (i) φdx = ξiξj |ωε|−1

∫
ωε

(γ1 − γ0)∇V (j) · ∇V (i) φdx

+ξiξj |ωε|−1

∫
Ω

(γ̂ε − γ0)∇
[
(v(j)

ε − V (j))φ
]
· ∇V (i) dx

−ξiξj |ωε|−1

∫
ωε

(γ1 − γ0)(v(j)
ε − V (j))∇φ · ∇V (i) dx

= ξiξj |ωε|−1

∫
ωε

(γ1 − γ0)∇V (j) · ∇V (i) φdx

+ξiξj |ωε|−1

∫
Ω

(γ̂ε − γ0)∇
[
(v(j)

ε − V (j))φ
]
· ∇V (i) dx + o(1)

= ξiξj |ωε|−1

∫
ωε

(γ1 − γ0)∇V (j) · ∇V (i) φdx

+ξiξj |ωε|−1

∫
Ω

γ̂ε∇
[
(v(j)

ε − V (j))φ
]
· ∇(V (i) − v(i)

ε ) dx

+ξiξj |ωε|−1

∫
Ω

γ̂ε∇
[
(v(j)

ε − V (j))φ
]
· ∇v(i)

ε dx

−ξiξj |ωε|−1

∫
Ω

γ0∇
[
(v(j)

ε − V (j))φ
]
· ∇V (i) dx+ o(1)

= ξiξj |ωε|−1

(∫
ωε

(γ1 − γ0)∇V (j) · ∇V (i) φdx

−
∫

Ω

γ̂ε∇(V (j) − v(j)
ε ) · ∇(V (i) − v(i)

ε ) φdx

)
+ o(1). (23)

We introduce the notation

V = V (i)ξi =
(
xi − 1

|∂Ω|
∫

∂Ω

xi dσ
)
ξi, and vε = v(i)

ε ξi.

A combination of the estimate (23) with the limiting relationships, (4) and (15), that define the measure µ and
the tensor M , now yields

∫
Ω

(γ1 − γ0)Mijξiξj φdµ = |ωεn |−1

∫
ωεn

(γ1 − γ0)|∇V |2 φdx (24)

−|ωεn |−1

∫
Ω

γ̂εn |∇ (V − vεn) |2 φdx + o(1),

for any φ ∈ C1(Ω) (and the subsequence ωεn). We shall make use of the following estimate concerning the
second term of the right-hand side.

Lemma 3. Let V and vε be as introduced above. For any fixed φ ∈ C1(Ω), φ ≥ 0,

|ωε|−1

∫
Ω

γ̂ε|∇ (V − vε) |2 φdx ≤ |ωε|−1

∫
ωε

(γ1 − γ0)2

γ1
|∇V |2 φdx+ o(1).
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Proof of Lemma 3. From (23) it follows immediately that

|ωε|−1

∫
Ω

γ̂ε|∇(V − vε)|2 φdx = |ωε|−1

∫
ωε

(γ1 − γ0)|∇V |2 φdx

−|ωε|−1

∫
Ω

(γ1 − γ0)1ωε∇vε · ∇V φdx+ o(1)

= |ωε|−1

∫
ωε

(γ1 − γ0)∇(V − vε) · ∇V φdx+ o(1),

and thus

|ωε|−1

∫
Ω

γ̂ε|∇(V − vε)|2 φdx ≤ |ωε|−1

(∫
ωε

γ̂ε|∇(V − vε)|2 φdx
)1/2

×
(∫

ωε

(γ1 − γ0)2

γ1
|∇V |2 φdx

)1/2

+ o(1),

for any φ ∈ C1(Ω), φ ≥ 0. A combination of this with the fact that a2 < ab + c ⇒ a2 < b2 + 2c for a, b and c
positive, gives the desired estimate. �

We are now ready to complete the proof of the inequalities for the tensor M , as stated in Theorem 1.
According to (24) we have

∫
Ω

(γ1 − γ0)Mijξiξj φdµ ≤ |ωεn |−1

∫
ωεn

(γ1 − γ0)|∇V |2 φdx+ o(1),

and according to (24), and the estimate in Lemma 3, we also have

∫
Ω

(γ1 − γ0)Mijξiξj φdµ ≥ |ωεn |−1

∫
ωεn

(γ1 − γ0)|∇V |2 φdx

−|ωεn |−1

∫
ωεn

(γ1 − γ0)2

γ1
|∇V |2 φdx+ o(1)

= |ωεn |−1

∫
ωεn

(γ1 − γ0)
γ0

γ1
|∇V |2 φdx+ o(1),

for any φ ∈ C1(Ω), φ ≥ 0. After passage to the limit along the subsequence ωεn a combination of these two
inequalities shows that

(γ1 − γ0)(x)
γ0

γ1
(x)|ξ|2 ≤ (γ1 − γ0)(x)Mij(x)ξiξj ≤ (γ1 − γ0)(x)|ξ|2, ξ ∈ R

m,

µ almost everywhere in Ω (here we use that the rationals are dense in R
m, that the terms involved are continuous

in ξ, and that a countable union of sets of measure zero again has measure zero). By cancellation of the common
factor (γ1 − γ0)(x) we conclude that

min
{

1,
γ0

γ1
(x)
}
|ξ|2 ≤Mij(x)ξiξj ≤ max

{
1,
γ0

γ1
(x)
}
|ξ|2, ξ ∈ R

m,

µ almost everywhere in the set {x : γ0(x) �= γ1(x) }, as stated in Theorem 1.
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5. Some particular cases

Two particular cases that have already been studied, and for which very specific information has been
derived about the measure µ and the polarization tensor Mij(x) concern (1) a finite collection of well separated,
diametrically small inhomogeneities and (2) a finite collection of well separated, thin inhomogeneities. In the
first case ωε = ∪K

l=1zl + εBl, where zl ∈ Ω, l = 1, . . . ,K, is a set of K distinct points, and each Bl ⊂ R
m is a

bounded, smooth domain containing the origin. In the second case ωε = ∪K
l=1ω

l
ε, where each ωl

ε has the form
ωl

ε = {x′ + ηn(x′) : x′ ∈ σl, |η| < ε}; σl ⊂ R
m, l = 1, . . . ,K, is a set of nonintersecting smooth surfaces, and

n(x′) denotes a smooth, unit, normal vector field to σl. Since we suppose zl, Bl and σl are fixed, no extraction
of a subsequence is necessary.

For the voltage potential corresponding to a finite collection of well separated (interior) inhomogeneities one
obtains (cf. [10] and [9])

(uε − U)(y) = εm
K∑

l=1

(γ1 − γ0)M
(l)
ij

∂U

∂xi
(zl)

∂N

∂xj
(zl, y) +O

(
εm+ 1

2

)

= |ωε|
∫

Ω

(γ1 − γ0)(x)Mij(x)
∂U

∂xi
(x)

∂N

∂xj
(x, y) dµ+ o(|ωε|),

with

µ =
1∑ |Bl|

K∑
l=1

|Bl| δzl
and Mij(zl) =

1
|Bl|M

(l)
ij =

1
|Bl|

∫
Bl

∂

∂zi
φj(z) dz.

Here φj (m ≥ 2) denotes the solution to

∇z · (γ(z)∇zφj) = 0 in R
m,

φj(z) − zj → 0 as |z| → ∞.

To include the case m = 1, the correct condition to impose is ∇zφj(z)−ej → 0 as |z| → ∞. The function γ(z)
is the rescaled conductivity, given by γ(z) = γ1 for z ∈ Bl, γ(z) = γ0 for z ∈ R

m \Bl (supposing for simplicity
that γ0 and γ1 are constants). Higher order terms of the expansion have been derived in [2].

For the voltage potential corresponding to a finite collection of well separated, thin inhomogeneities one
obtains (cf. [5] and [6])

(uε − U)(y) = 2ε
K∑

l=1

∫
σl

(γ1 − γ0)(x)M
(l)
ij (x)

∂U

∂xi
(x)

∂N

∂xj
(x, y) dσx + o(ε)

= |ωε|
∫

Ω

(γ1 − γ0)(x)Mij(x)
∂U

∂xi
(x)

∂N

∂xj
(x, y) dµ+ o(|ωε|).

Here µ = 1�
A(σl)

∑K
l=1 δσl

, with δσl
being the “Dirac measure” supported on σl, and A(σl) being the “area”

of σl. Mij(x), x ∈ σl, is a positive definite symmetric matrix whose first n − 1 eigenvectors form a basis for
the tangent space to σl, and whose last eigenvector is the normal. The eigenvalue corresponding to the normal
direction is γ0/γ1, the eigenvalues corresponding to the tangential directions are all equal to 1. Notice that these
eigenvalues are extreme, in the sense that they (simultaneously) “achieve” the bounds established in Theorem 1.

Without giving any details of the analysis we shall describe one additional special case of our general formula,
namely that corresponding to a set of inhomogeneities in the form of a “very fine scale” periodic array of small
balls. The periodic array has period ε, and the balls are centered in those period cells that fall inside some smooth
subdomain ω ⊂⊂ Ω. Each ball has radius ε(1+d) for some d > 0. The conductivity, as before, equals γ0 outside
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the balls, and equals γ1 inside the balls. As ε→ 0 the volume fraction of balls (inside ω) approaches β = cmε
md,

so the total volume of the inhomogeneities approaches cmεmd|ω|. The wellknown Maxwell–Claussius–Mossotti
formula asserts that this low volume fraction array of balls (to order β = cmε

md) behaves like an effective
medium with conductivity γ0 + (Dε − γ0)1ω, where the constant Dε is given by

Dε − γ0

Dε + (m− 1)γ0
= β

γ1 − γ0

γ1 + (m− 1)γ0
·

For y ∈ ∂Ω we may now (essentially by means of a small amplitude perturbation formula) derive that

(uε − U)(y) =
∫

ω

(Dε − γ0)∇U∇xN(x, y) dx+ o
(
εmd

)
= cmε

md

∫
ω

(γ1 − γ0)
mγ0

γ1 + (m− 1)γ0
∇U∇xN(x, y) dx+ o

(
εmd

)
= |ωε|

∫
Ω

(γ1 − γ0)Mij
∂U

∂xi

∂N

∂xj
(x, y) dµ+ o(|ωε|),

where M is the tensor Mij = mγ0
γ1+(m−1)γ0

δij , and µ is the standard Lebesque measure, restricted to ω, and
normalized by 1

|ω| .
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