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Abstract. The numerical solution of the elliptic Monge-Ampère Partial Differential Equation has
been a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial
and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155–192; Oliker and Prussner, Numer.
Math. 54 (1988) 271–293; Oberman, Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 221–238; Dean and
Glowinski, in Partial differential equations, Comput. Methods Appl. Sci. 16 (2008) 43–63; Glowinski
et al., Japan J. Indust. Appl. Math. 25 (2008) 1–63; Dean and Glowinski, Electron. Trans. Numer.
Anal. 22 (2006) 71–96; Dean and Glowinski, Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344–
1386; Dean et al., in Control and boundary analysis, Lect. Notes Pure Appl. Math. 240 (2005) 1–27;
Feng and Neilan, SIAM J. Numer. Anal. 47 (2009) 1226–1250; Feng and Neilan, J. Sci. Comput. 38
(2009) 74–98; Feng and Neilan, http://arxiv.org/abs/0712.1240v1; G. Loeper and F. Rapetti, C. R.
Math. Acad. Sci. Paris 340 (2005) 319–324]. There are already two methods available [Oliker and
Prussner, Numer. Math. 54 (1988) 271–293; Oberman, Discrete Contin. Dyn. Syst. Ser. B 10 (2008)
221–238] which converge even for singular solutions. However, many of the newly proposed methods
lack numerical evidence of convergence on singular solutions, or are known to break down in this case.
In this article we present and study the performance of two methods. The first method, which is simply
the natural finite difference discretization of the equation, is demonstrated to be the best performing
method (in terms of convergence and solution time) currently available for generic (possibly singular)
problems, in particular when the right hand side touches zero. The second method, which involves the
iterative solution of a Poisson equation involving the Hessian of the solution, is demonstrated to be the
best performing (in terms of solution time) when the solution is regular, which occurs when the right
hand side is strictly positive.
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1. Introduction

The Monge-Ampère equation is a geometric fully nonlinear elliptic Partial Differential Equation (PDE) [17].
Applications of the Monge-Ampère equation appear in the classical problem of prescribed Gauss curvature and
in the problem of optimal mass transportation (with quadratic cost), among others [4,11].

The numerical solution of the elliptic Monge-Ampère PDE has been a subject of increasing interest [7–10,12–
14,16,18,21,22], including an invited lecture at 2007 ICIAM [15].

Two cases must be distinguished: when the right hand side is strictly positive (and bounded) the operator
is uniformly elliptic and solutions are regular (assuming the domain is strictly convex, see below). When the
right hand side touches zero, the operator is degenerate elliptic and solutions can be singular. Naturally, it is
more challenging to solve the equation in the degenerate elliptic case.

Many of the newly proposed methods lack numerical evidence of convergence on singular solutions, or are
known to break down in this case.

While one of the authors has previously introduced a convergent finite difference method [21], the increased
attention by the numerical PDE community has prompted us to write this paper. This work has two main
goals:

(1) To present a simple (nine point stencil) finite difference method which performs just as well as the
provably convergent (wide stencil) method of [21] in robust numerical experiments.

(2) To present a simple method which models (and outperforms) the other methods in the regular/uniformly
elliptic case, and demonstrates the dramatically decreasing performance on singular solutions.

The PDE we study is
det(D2u(x)) = f(x),

where D2u is the Hessian of the function u. Since we will be restricting to domains Ω ⊂ R
2, we can rewrite the

PDE as (
∂2u

∂x2

∂2u

∂y2
−
(

∂2u

∂x∂y

)2
)

(x, y) = f(x, y) in Ω ⊂ R
2. (MA)

The PDE comes with Dirichlet boundary conditions

u = g, on ∂Ω (D)

and the additional convexity constraint
u is convex, (C)

which is required for the equation to be elliptic. Here Ω ⊂ R
n is a bounded domain with boundary ∂Ω and

the source term f : Ω → R is a non-negative function (or, later, measure). The PDE (MA) (along with the
conditions (D, C)) is challenging to solve numerically for the following reasons:

• The equation is fully nonlinear, so the correct notion of weak solutions is either geometric solutions [1]
or viscosity solutions [6]. While the two-dimensional equation can be written in divergence form (see
below), it still involves the Hessian of the solution. This restricts the applicability of the Finite Element
Method (FEM) or general Galerkin projection methods to more regular solutions.

• The weak solutions of the equation can be quite singular. Specifically, if the source function f is not
strictly positive, then solutions need not be in H2(Ω) (see, for example, Sect. 5.4). When f is a Dirac
measure, solutions can be only Lipschitz continuous (see Sect. 6.1).

• The convexity constraint: The solution u must be convex in order for the equation to be elliptic.
Without the convexity constraint, this equation does not have a unique solution. (For example, taking
boundary data g = 0, if u is a solution then −u is also a solution, in R

2.)
The equation can be written in divergence form in two dimensions:

det(D2u) =
1
2
div
((

uyy −uxy

−uxy uxx

)
(ux, uy)T

)
.
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1.1. Regularity

Regularity results can be used to determine when solutions are smooth, and thereby determine the method
of choice. For strictly convex domains and smooth, strictly positive data, the solution is smooth [5]. However,
as soon as f approaches zero, regularity breaks down; see [17] for W 2,p estimates on solutions.

Since we work in the rectangle, which is not strictly convex, problems can occur at the boundary (see
Sect. 5.3). While smooth, strictly convex boundary data can improve this, an additional condition is needed to
avoid singularities at the corner.

1.2. Related work: provably convergent methods

Two provably convergent methods have already been presented for (MA).
The first, by Oliker and Prussner [22], uses a discretization based on the geometric interpretation of the

solutions [1]. In two dimensions this method converges to the geometric solution.
The second, by one of authors of this work [21], converges to the viscosity solution of (MA). While it is not

difficult to build consistent, stable numerical methods for (MA), this alone is not enough to prove convergence to
the viscosity solution. For convergence, another ingredient is needed, namely monotonicity of the methods [2].
Monotone methods respect the comparison principle at the discrete level [19]. However, building monotone
methods for this equation requires the use of wide stencils, which come with an additional consistency error
related to the directional resolution of the stencil.

1.3. Related work: other methods

There have been a number of other recently proposed methods.
Dean and Glowinski et al. [7–10,15,16] have investigated Lagrangian and least squares methods for the

numerical solution of Monge-Ampère. The authors are careful to be clear about the convergence behavior of
their methods. In [8] they give an example of a solution that is not in H2(Ω), for which their method diverges.
They point out in [7] “if, despite the smoothness of its data, the above problem has no solution in H2(Ω),
the above augmented Lagrangian method solves it in a least-squares sense,” and in [8], “in cases where the
Monge-Ampère equation under consideration has no smooth solution, [the methods] provide a quasi-solution”.

Böhmer [3] performs consistency and stability analysis of finite element methods for fully nonlinear equations.
However, as mentioned before, consistency and stability is not enough to prove convergence to viscosity solutions.

Loeper and Rapetti [18] solve the equation (with periodic boundary conditions) by linearization and iterate
using Newton’s method. They prove convergence of the Newton algorithm for the linearization of the continuous
problem to the solution of (MA). However, they do not address the issue of the convergence of the discretized
solution to the solution of the equation in the limit of the discretization parameter going to zero.

Feng and Neilan [12–14] solve second order equations (including the Monge-Ampère equation) by adding
a small multiple of the bilaplacian. The bilaplacian term introduces an additional discretization error and
additional boundary conditions, which may not be compatible with the solution. A proof of convergence to
viscosity solutions has been cited, but is not yet available. In [14] they compute an example where f is sometimes
negative, which they describe to be convex.

1.4. Discussion of contents

We present in Section 2 two different numerical methods for solving (MA). These methods have the advan-
tages of simplicity and performance. The methods are simple in the sense that the algorithms are fully explained
in about a page, and can be implemented in MATLAB using only basic explicit matrix operations (M1,M2)
and a linear solve (M2).

The overall and relative performance of the methods is discussed in Section 3. This performance of (M2) rela-
tive to (M1) is superior when the solutions are smooth but substantially inferior when the solutions
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are singular. In fact, (M2) appears to diverge on singular solutions. We study in detail the performance of the
two methods on solutions ranging from smooth Section 4 to moderate Section 5 to very singular Section 6.

Extensions are discussed in Section 7. Conclusions are made in Section 8.

2. The methods

In this section we present the two methods for solving the two-dimensional Monge-Ampère equation. The
first is an explicit, Gauss-Seidel iteration method that is obtained by solving a quadratic equation at each grid
point and choosing the smaller root to ensure selection of the convex solution.

The second method is an iterative method that requires the solution of a Poisson equation at each iteration.
The source term in the Poisson equation involves the source function for (MA), f , and the Hessian of the current
iterate.

2.1. Method 1: An explicit finite difference method

The first method involves simply discretizing the second derivatives in (MA) using standard central differences
on a uniform Cartesian grid. The result is

(D2
xxuij)(D2

yyuij) − (D2
xyuij)2 = fi,j (MA)h

where

D2
xxuij =

1
h2

(ui+1,j + ui−1,j − 2ui,j)

D2
yyuij =

1
h2

(ui,j+1 + ui,j−1 − 2ui,j)

D2
xyuij =

1
4h2

(ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1) .

Since we are using centered differences, this discretization is consistent with (MA), and it is second order
accurate if the solution is smooth.

Remark 2.1. The above discretization is valid in the interior of the domain. Of course, in a general (non-
rectangular) domain it may be necessary to interpolate the boundary values to obtain a first order scheme at
the boundary.

Next, introduce the notation
a1 = (ui+1,j + ui−1,j)/2

a2 = (ui,j+1 + ui,j−1)/2

a3 = (ui+1,j+1 + ui−1,j−1)/2

a4 = (ui−1,j+1 + ui+1,j−1)/2

(2.1)

and rewrite (MA)h as a quadratic equation for ui,j

4(a1 − ui,j)(a2 − ui,j) − 1
4
(a3 − a4)2 = h4fi,j.

Solving for ui,j and selecting the smaller root (in order to select the locally convex solution), we obtain Method 1:

ui,j =
1
2
(a1 + a2) − 1

2

√
(a1 − a2)2 +

1
4
(a3 − a4)2 + h4fi,j . (M1)
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We can now use Gauss-Seidel iteration to find the fixed point of (M1). The Dirichlet boundary conditions (D)
are enforced at boundary grid points. The convexity constraint (C) is not enforced beyond the selection of the
positive root in (M1).

2.2. Method 2: Iterative solution of a Poisson equation

The second method we study involves successively solving the Poisson equation until a fixed point is reached.
This method is a model for the non-convergent methods which require that the solution be in H2(Ω).

The method is based on an algebraic identity satisfied by the two-dimensional Monge-Ampère equation, used
by Dean and Glowinski [7–10,16]. We generalize this idea below to produce a fixed point operator in higher
dimensions.

Expanding (Δu)2 = (uxx + uyy)2 and applying (MA), we obtain the identity

(uxx + uyy)2 = u2
xx + u2

yy + 2u2
xy + 2f

for solutions u(x, y) of (MA) which are smooth enough.
This algebraic identity leads to the following definition, where the positive square root is selected in order to

select the locally convex solution.

Definition 2.1. Define the operator T : H2(Ω) → H2(Ω) for Ω ⊂ R
n by

T [u] = Δ−1
(√

(Δu)2 + 2(f − det(D2u))
)

.

In particular, in R
2,

T [u] = Δ−1
(√

u2
xx + u2

yy + 2u2
xy + 2f

)
. (2.2)

The solution operator incorporates the Dirichlet boundary conditions (D).

Remark. While it is possible to define the domain of the operator more carefully, for our purposes it is sufficient
to observe that it is well-posed on H2(Ω).

Lemma 2.1. Provided the solution, u, of (MA) is in H2(Ω), it is a fixed point of the operator T .

Proof. Let v be the solution of (MA, D, C). Since v is in H2(Ω), Δv is in L2(Ω) and the Poisson equation

Δu = |Δv| ,

augmented by the Dirichlet boundary conditions (D), is well-posed. Inserting the solution v into Definition 2.1
we obtain

T [v] = Δ−1
(√

(Δv)2
)

= Δ−1(|Δv|).

Since v is convex, by (C), Δv > 0, and consequently,

T [v] = Δ−1(Δv) = v.

Therefore, v is a fixed point of (M2). �
Method 2 consists of iterating un+1 = T [un] by solving

Δun+1 =
√

(un
xx)2 + (un

yy)2 + 2(un
xy)2 + 2f (M2)

along with the prescribed Dirichlet boundary conditions (D).
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2.3. Discussion of Method 1

In order to prove convergence of the finite difference method to viscosity solution of (MA), it is sufficient to
prove that the method is monotone. When written in the form (M1), it would be enough to show [19] that the
value ui,j is a non-decreasing function of the neighboring values. However, this is not the case for (M1). In
addition, based on the discussion in [20,21], we don’t expect that any narrow stencil method will be monotone
and consistent for the equation (MA).

However, we can study the convexity requirement. Directional convexity along grid directions is the require-
ment that the solution satisfy

u(x) ≤ u(x + v) + u(x − v)
2

(2.3)

for all lattice (grid) directions v. For more details about enforcing convexity of solutions, using finite difference
methods, we refer to [20].

The directional convexity along the axes is satisfied by (M1).

Lemma 2.2. The fixed point of (M1) satisfies the inequalities (2.3) for the grid directions

v ∈ {(1, 0), (0, 1)}.

Proof. Using the notation of (2.1), assume without loss of generality that a2 ≤ a1.
Next, estimate ui,j from (M1), using the fact that f is non-negative,

ui,j ≤ a1 + a2

2
− a1 − a2

2
= a2 =

ui,j+1 + ui,j−1

2

to obtain convexity in the direction v = (0, 1). Using the first assumption in the proof, we also have

ui,j ≤ ui+1,j + ui−1,j

2
,

which gives the convexity in the direction v = (1, 0). �

2.4. Discussion of Method 2

The method is convenient to implement because it simply involves evaluating derivatives and solving the
Poisson equation, which can be accomplished using the method of choice. However, the Poisson equation is
solved with a source involving the norm of the Hessian of the previous solution. When the solution is not
in H2(Ω), this function can be unbounded.

3. Numerical examples: Overview

In this section we discuss the performance of the methods on a range of computational examples.
We are concerned with two measures of performance.
(1) Convergence rate. Both methods are discretized using standard centered finite differences, which is

formally second order accurate. For a fixed resolution, the numerical solution, and consequently the
numerical accuracy, of both methods is the same. In practice, the observed convergence rate varies
depending on the regularity of the solution, from second order (for smooth solutions) to order one half
(for singular solutions).

(2) Solution time. The difference in performance for the two methods is observed in the number of iterations
and the CPU time required to solve the discretized equation.

The performance of (M2) relative to (M1) is faster when the solutions are smooth but substantially slower
when the solutions are singular. In fact, we have found strongly singular solutions for which (M2) appears to
diverge.
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These examples fall into three categories depending on the regularity of the solution.

• Smooth or mildly singular solutions. These solutions are the mildest: we expect any reasonable methods
for Monge-Ampère will perform well.

• Moderately singular solutions. These examples that are at the edge of the capabilities of many of the
existing methods.

• Strongly singular solutions. In this case many of the methods currently available have do not present
numerical or analytical evidence of convergence. In particular, in the case of [7–10,16], the methods are
known to fail. In the case of [12–14] we are not aware of computational results.

3.1. Comparison with previous works

There are four main examples computed by Dean and Glowinski. Feng and Neilan also give computational
examples for these problems. The first two, which we call mild, are studied in Sections 4.1 and 4.2. The third,
for which no exact solution is available, though the solution is known to be singular, is studied in Section 5.3.
The fourth solution is not in H2(Ω). For this solution, the method of Dean and Glowinski diverges [8], p. 1361.
While the convergence rate is slower than for the smoother examples, both our methods (M1) and (M2) are
observed to converge for this example, Section 5.4.

The solutions above we categorize as mild or moderate. In addition, we present computational results for
more singular examples, Section 6.

We compare the results of Dean and Glowinski [7–10,16] to (M2), which is the model for these methods. For
the first three examples, these require roughly the same number of iterations to converge. Although computation
times were not given, presumably each iteration of our method is more efficient since it involves only a single
Poisson solve. Each iteration of [7–10,16] involves a Poisson solve and additional calculations.

Feng and Neilan [12–14] do not give details about the computation time or iteration count of their numerical
method.

We also compared (M1), (M2) to the monotone method of [21]. The discretizations are different and so the
accuracy can differ. As expected, the accuracy for the monotone method was generally lower, but improved as
the stencil was widened. The only case where the monotone method was more accurate than (M1) was for the
most singular example computed, Section 6.1. A minor modification (implemented in Sect. 7.1) improves the
accuracy of the method by an order of magnitude while maintaining a narrow stencil.

3.2. Comparison of Method 1 and Method 2

The computation time for (M1) was roughly independent of the regularity of the solution. On the other hand,
the computation times for (M2) were faster (by more than one order of magnitude) on very smooth solutions,
about equal on mildly singular solutions, and much slower (by a couple of orders of magnitude) on the more
singular solutions.

Naturally, for any finite resolution, the discretized solutions are not singular, so we cannot conclude that the
method diverges. But since the relative computational costs increase dramatically as the solutions become less
regular, this behavior is consistent with divergence.

We find (M2) performs extremely rapidly when solutions are smooth, but is very slow when solutions are not
smooth or not strictly convex. The explicit method (M1), on the other hand, requires approximately the same
amount of CPU time to converge without regard for the regularity of the solutions.

To show this more concretely, we consider a representative example from each category: the smooth radial
solution of Section 4.1, the example with noisy data of Section 5.1, and the non-smooth cone of Section 6.1.
We compare the absolute computation time required for these three examples to demonstrate our observation
that the speed of (M1) is independent of regularity while the speed of (M2) is very sensitive to regularity; see
Figure 1. We compare the ratio of CPU times required by the two methods for a representative example, see
Table 1.
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Figure 1. CPU time required to converge for the smooth radial solution of Section 4.1, the
noisy solution of Section 5.1, and the non-smooth cone of Section 6.1. (a) Results for (M1).
(b) Results for (M2).

Table 1. Ratio of computation times required for (M1) and (M2) for three representative
examples: the smooth radial solution of Section 4.1, the noisy solution of Section 5.1, and the
non-smooth cone of Section 6.1.

N Section 4.1 Section 5.1 Section 6.1
21 6.3 1.3 0.12
41 4.1 2.1 0.07
61 7.7 1.9 0.06
81 11.7 1.5 0.05

101 14.1 1.2 0.04
121 23.5 1.0 0.07
141 29.9 0.7 0.05

3.3. Computational details

The solutions are computed on an N × N grid and iteration is continued until the maximum difference
between two subsequent iterates is less than 10−14. By convention, h is the spatial discretization parameter
h = L/N where L is the length of one side of the square domain.

A reasonable choice for the initial data is the solution of uxx + uyy =
√

2f , which was used when measuring
the solution time and iteration count. However, the methods are robust: the iterations converge to a fixed
point for all initial data attempted. The initial data attempted included: a constant (which didn’t respect the
boundary conditions), and both non-convex and random initial data.

The implementation of (M2) can be performed using the method of choice. We focus on the simple finite
difference method that arises from discretizing (2.2) using central differences (as with the first method). We
also briefly discuss in Section 7.2 the use of an adaptive finite element method.
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Figure 2. Convergence results for u(x, y) = exp
(

x2+y2

2

)
on an N×N grid. (a) Error versus N .

(b) Total CPU time.

4. Smooth or mildly singular examples

In the following examples, the solutions are smooth, or mildly singular, and (M2) is much faster than (M1).
We observed convergence rates consistent with O(h2) for the smooth solution, and O(h1.5) for the mildly singular
solution.

4.1. An exact radial solution

An exact radial solution is

u(x, y) = exp
(

x2 + y2

2

)
, f(x, y) = (1 + x2 + y2) exp(x2 + y2).

Both methods converge to the same numerical solution, which is accurate to second order in h, O(h2), see
Figure 2(a). For this smooth example, (M2) is by far the fastest method: see Table 2 and Figure 2(b).

4.2. Blow-up at boundary

Another exact solution is

u(x, y) =
2
√

2
3

(x2 + y2)3/4, f(x, y) =
1√

x2 + y2

on the square [0, 1] × [0, 1]; the function f blows up at the boundary. Again, both methods converge to the
exact solution, although the order of convergence is now only 1.5. For this example (M2) was significantly faster
than (M1). See Tables 3 and 4 and Figure 3.
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Table 2. Computation times for the exact solution u(x, y) = exp
(

x2+y2

2

)
on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 1014 54 0.9 0.1
81 14 621 59 39.8 3.4

141 42 746 60 350.0 11.7
201 84 611 60 1540.0 27.2
261 — 65 — 57.8

...
...

...
341 — 65 — 118.0
421 — 78 — 249.0
501 — 151 — 804.0
581 — 284 — 2120.0

Table 3. Errors for the exact solution u(x, y) = 2
√

2
3 (x2 + y2)3/4 on an N × N grid. Results

are the same for both methods.

N 21 61 101 141 181 221∥∥u − u(N)
∥∥
∞ 5.5 × 10−4 1.1 × 10−4 5.0 × 10−5 3.0 × 10−5 2.1 × 10−5 1.5 × 10−5

Table 4. Computation times for u(x, y) = 2
√

2
3 (x2 + y2)3/4 on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 1083 58 0.5 0.2
61 8967 59 28.7 1.9

101 23 849 59 206.0 6.9
141 45 358 59 770.0 11.4
181 73 254 59 2050.0 21.2
221 107 388 60 4500.0 34.6

5. Moderately singular examples

In the following examples, the solutions are moderately singular, and the two methods perform about equally.

5.1. Noisy data

We now return to the first example we considered, with exact solution

u(x, y) = exp
(

x2 + y2

2

)
, f(x, y) = (1 + x2 + y2) exp(x2 + y2),

and study the effects of adding high frequency sinusoidal noise to the data (f and the boundary conditions).
Results are shown in Figure 4. Although the data is not convex, all methods find a solution that is convex
except at the boundary. The noise does not seem to have any effect on the rate of convergence for (M1).
However, (M2) becomes much slower when dealing with the noisy, non-convex data so that the time required
for the two methods is comparable; compare Tables 2 and 5.
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Figure 3. Results for u(x, y) = 2
√

2
3 (x2 + y2)3/4 on an N × N grid. (a) f blows up at the

boundary. (b) Surface plot of the solution. (c) Error versus N . (d) Total CPU time.

Table 5. Computation times for u(x, y) = exp
(

x2+y2

2

)
with noisy data on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 1016 58 0.2 0.1
41 3866 99 2.4 1.2
61 8432 185 10.7 5.6
81 14 672 409 32.0 21.0

101 22 516 695 77.6 63.4
121 31 965 1205 153.0 156.0
141 43 008 2162 291.0 401.0
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(a) (b)

(c) (d)

Figure 4. Results for u(x, y) = exp
(

x2+y2

2

)
with noisy, non-convex data on an 81 × 81 grid.

(a) f without noise. (b) f with noise. (c) Surface plot of the solution with noise. (d) |u − unoisy|.

5.2. Discontinuous source term

We next consider an example source term f that is discontinuous on a circle

f =

{
1 (x − 0.5)2 + (y − 0.5)2 > 0.162

0 otherwise.

The solution is

u = max
{

(x − 0.5)2 + (y − 0.5)2

2
, 0.08

}
.

The solution is flat where f vanishes and parabolic elsewhere. See the surface plot in Figure 5(a). Both methods
require about the same amount of time for this example as is seen in Figure 5(b) and Table 6.
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Figure 5. Results for Section 5.2. (a) Surface plot of solution. (b) Total CPU time.

Table 6. Computation times for Section 5.2 on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 950 90 0.2 0.3
41 3651 259 2.0 3.4
61 7944 363 9.4 12.1
81 13 810 783 21.5 42.5

101 21 162 893 68.0 85.0
121 29 966 1678 132.0 221.0
141 40 196 2076 244.0 480.0

5.3. An example which is singular at the boundary

This example was taken from [8]. We consider the solution of Monge-Ampère when f = 1 with constant
boundary values 1 on the square [−1, 1]× [−1, 1]. There is no exact solution available for this example, however
the solution is not smooth: since uxx = 0 on part of the boundary, uyy → ∞ there. Method (M1) converges to
a solution that is convex except near the corners of the domain (Fig. 6(b)). This is comparable to the solutions
presented in [8]. Method (M2) converges to a slightly different, more convex, solution.

As no exact solution is available for comparison, following [21], we focus on the minimum value of the solution
produced by each method. We also consider the minimum values obtained using the monotone method in [21];
see Table 7. The solutions obtained with our methods are lower than the solutions obtained with the monotone,
wide-stencil method. The monotone method is known to converge to a supersolution of (MA), so we do expect
these values to be higher than the true values. This is evident in the numerics as the solution obtained with the
monotone method becomes lower (and closer to the solutions obtained with our methods) as the stencil width
is increased.

Method (M2) performs very slowly in this case. It is also much slower than (M1), which requires about the
same number of iterations to converge as it did for the smooth examples. See Figure 7 and Table 8.
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(a) (b)

Figure 6. Solutions when f = 1 with constant boundary values 1. (a) Surface plot of solution.
(b) The methods produces a solution with slight negative curvature along the line y = x.
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Figure 7. Convergence results when f = 1 with constant boundary values 1 on an N × N
grid. (a) Total number of iterations required versus N . (b) Total CPU time versus N .

5.4. Surface of ball

Next we consider another example from [8], which is the exact solution

u(x, y) = −
√

2 − x2 − y2, f =
2

(2 − x2 − y2)2

on the domain [0, 1]×[0, 1]. The method of [8] is known to diverge for this example, however both (M1) and (M2)
successfully capture this non-smooth solution, although we no longer have second order accuracy as we did with
the smooth solution of Section 4.1, instead the convergence rate is about .5. See Figure 8 and Table 9. In this
case (M2) outperforms (M1) by an order of magnitude with regard to computation time.
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Table 7. Minimum value of u when f = 1 with constant boundary values 1 on an N ×N grid.
We include results from the wide stencil methods of [21] on nine, seventeen, and thirty-three
point stencils.

N u
(N)
min

(M1), 9-Point 17-Point 33-Point
(M2) stencil stencil stencil

21 0.2892 0.3115 0.2815 0.2839
41 0.2734 0.3090 0.2807 0.2732
61 0.2682 0.3082 0.2803 0.2711
81 0.2655 0.3078 0.2802 0.2704
101 0.2639 0.3076 0.2800 0.2700
121 0.2629 0.3075 0.2798 0.2697
141 0.2621 0.3074 0.2796 0.2695

Table 8. Computation times when f = 1 with constant boundary values 1 on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 1615 535 0.1 1.7
41 6366 1917 0.6 33.6
61 14 049 4070 2.8 254.0
81 24 560 6944 8.1 1170.0

101 37 824 10 503 19.9 3730.0
121 53 778 14 711 41.2 6820.0
141 72 377 19 571 99.7 8560.0

Table 9. Computation times when u = −
√

2 − x2 − y2 on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 1009 67 0.2 0.2
41 3833 79 1.9 1.0
61 8343 89 8.5 2.7
81 14 480 99 26.3 5.2

101 22 189 106 60.2 10.0
121 31 445 113 120.1 15.0
141 42 202 119 218.3 21.3

6. Strongly singular examples

In the following examples, the solutions are strongly singular (they are not in H2(Ω)), and (M2) is expected
to diverge. The increasingly large number of iterations required to locate a fixed point of (M2) (both relative
to (M1) on the same solutions, and relative to (M2) on smoother solutions) is consistent with divergence.

For the cone u(x, y) =
√

x2 + y2, the convergence rate decreases to O(h.8), and the solution time is about
one order of magnitude slower for (M2).

Another example is the absolute value function u(x, y) = |x| in Section 6.2. Here the computation time
for (M1) is two orders of magnitude faster than for (M2). Since the solution is piecewise linear, the discretization
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Figure 8. Results for u(x, y) = −
√

2 − x2 − y2 on an N × N grid. (a) Surface plot of the
solution. (b) Error versus N . (c) Number of iterations. (d) Total CPU time.

error is zero. However, the rate of convergence for iterations to a fixed point is O(N−5) for (M1) and the O(N−2)
for (M2).

6.1. Cone

Next we consider the cone u(x, y) =
√

x2 + y2. To obtain this solution with our methods we set f to be the
appropriately weighted delta distribution at the origin, which discretizes to

fi,j =

{
4/h2 xi = yj = 0
0 otherwise,

(centering the grid so that the origin is a grid point), so that (MA) is satisfied in the sense of distributions.
Despite the fact that this solution is only Lipschitz continuous, both still converge to the exact solution; see
Table 10 and Figure 9, however the rate of convergence is approximately O(h.8) and the computational time
for (M2) is about two orders of magnitude longer than for (M1) (Tab. 11).
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Figure 9. Results for u(x, y) =
√

x2 + y2 on an N ×N grid. (a) Surface plot of the solution.
(b) Error versus N . (c) Total number of iterations. (d) Total CPU time.

Table 10. Errors for the exact solution u(x, y) =
√

x2 + y2 on an N × N grid.

N 21 61 101 141∥∥u − u(N)
∥∥
∞ 1.4 × 10−2 5.9 × 10−3 3.8 × 10−3 2.8 × 10−3

6.2. Absolute value function

Next we consider the function u(x, y) = |x|, which is Lipschitz continuous but not differentiable. Since even
at the edge one eigenvalue is zero, det(D2u) = 0 in the sense of distributions. Therefore setting f = 0, all
methods correctly find this solution. Moreover, it appears that regardless of the value of N , the error in the
approximations can be made arbitrarily small by iterating sufficiently many times (since the solution is piecewise
linear).
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Table 11. Computation times for u(x, y) =
√

x2 + y2 on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 1148 424 0.1 1.1
41 4386 1458 2.5 35.6
61 9588 3017 11.4 200.0
81 16 686 5082 33.2 681.0

101 25 635 7561 73.3 2090.0
121 36 396 10 486 235.0 3560.0
141 48 946 13 750 372.0 7160.0
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Figure 10. Results for u(x) = |x| on an N × N grid. (a) Surface Plot. (b) Error versus
number of iterations for N = 81.

Table 12. Computation times for u(x, y) = |x| on an N × N grid.

N Iterations CPU time (s)
(M1) (M2) (M1) (M2)

21 1417 3604 0.2 9
41 5366 13 252 1.9 164
61 11 636 28 233 12.0 878
81 20 135 48 116 37.3 2440

101 30 795 72 727 83.2 6650

Although both methods appear to be exact for this example, (M1) performs much more quickly for this
degenerate example. We plot maximum error against number of iterations in Figure 10(b). From this plot we
observe that the error decreases like the fifth power of the number of iterations for (M1), but only decreases
quadratically for (M2). The difference in computational time is even more pronounced; see Table 12.
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Table 13. Errors for the exact solution u(x, y) =
√

x2 + y2 on an N × N grid.

N
∥∥u − u(N)

∥∥
∞

(M1) (M1∗)
21 1.4 × 10−2 2.5 × 10−3

41 8.2 × 10−3 1.5 × 10−3

61 5.9 × 10−3 1.1 × 10−3

81 4.6 × 10−3 8.4 × 10−4

101 3.8 × 10−3 7.0 × 10−4

121 3.2 × 10−3 6.0 × 10−4

141 2.8 × 10−3 5.3 × 10−4

7. Extensions to other methods

Several modifications to our methods can be used to improve the results in some of the non-smooth examples.

7.1. Additional directional convexity

The convergent finite difference method of [21] enforced directional convexity in many directions by using a
wide stencil method. The purpose of this section is to explore whether increasing the directions of convexity,
while maintaining a narrow stencil improves the methods.

Along the lines of [20,21] (where convexity along several directions ensures convergence), we can also build
more convexity requirements into our method. This is accomplished by modifying (M1) as follows:

ui,j = min

⎧⎨
⎩a1 + a2

2
−
√(

a1 − a2

2

)2

+
(

a3 − a4

4

)2

+
1
4
fi,jh4, a3, a4

⎫⎬
⎭ . (M1∗)

Lemma 7.1. The fixed point of (M1∗) satisfies the inequality (2.3) for the grid directions

v ∈ {(1, 0), (0, 1), (−1, 1), (1, 1)}.

Proof. The proof of the first part of this lemma is the same as the proof of the first part of Lemma 2.2. The
second half of this lemma is built directly into (M1∗). �

In the majority of cases, this modified method performs comparably (or identically) to (M1), with both
methods converging to the same solution. One notable exception to this trend is the cone. Although the
convergence time is the same for both (M1) and (M1∗), the results obtained with (M1∗) are roughly one order
of magnitude more accurate; see Table 13.

7.2. Finite element implementation

Method (M2) involves iteratively solving Poisson’s equation. The Poisson solver can be implemented using
the method of choice. We tried a finite element solver which took advantage of mesh adaptation, to see if the
performance of the method improved.

We implemented the Poisson solver of (M2) using a Finite Element Lagrangian P2 Poisson solver, FreeFem++.
This software incorporates an anisotropic mesh adaptative algorithm. At each iteration of (M2) the mesh is
adapted based on the magnitude of the norm of the Hessian of the solution.

In most examples, this finite element implementation is not significantly faster than the finite difference
implementation. The one significant difference was observed for the example of Section 5.3. The mesh appears
to have lined up well with the singularities of the solution, see Figure 11. In this case, the method, initialized
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(a) (b)

Figure 11. Results with f = 1 and homogeneous Dirichlet boundary conditions initialized on
a uniform 40× 40 mesh. (a) Final mesh and level curves of the solution. (b) Convergence and
residual against number of iterations.

on a uniform 40×40 mesh, converged in about 40 iterations whereas the finite difference implementation requires
thousands of iterations (compare to Tab. 8).

7.3. Preconditioning

It is natural to look for other methods of solving the discretized equations (MA)h that might be faster than
either (M1), (M2).

Since (M2) is faster than (M1) when solutions are regular, which, by the regularity theory, occurs when the
source term f is bounded away from zero, we suggest the following:

(1) Replace f with fh = max(f, h2). With this source term, the solution of (MA) is smooth (unless there
are singularities on the boundary, as in Sect. 5.3).

(2) Approximately solve (MA) with fh, for uh, using (M2).
(3) Solve (MA) with f using (M1), using uh as initial data.

While we didn’t pursue this, we offer it as a starting point for accelerating convergence to the solution of the
equation (MA)h.

7.4. Higher dimensions

One challenge in extending these methods to higher dimensions is enforcing convexity of the solution.
Method (M1), for instance, involves discretizing (MA) and solving a quadratic equation in two dimensions;
this method does not immediately generalize to higher dimensions. Method (M2) can, of course, be used in
higher dimensions, although additional work may be needed to enforce convexity. We leave the higher dimen-
sional case to future work.
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8. Conclusions

Two simple numerical methods (M1), (M2) were introduced for solving (MA). Computations were performed
on a number of solutions whose regularity ranged from smooth to strongly singular. Performance comparisons
were made between the two methods and between results available for existing methods.

The first method, (M1), is a simple explicit finite difference method. While it is second order accurate, it is
not monotone, so there is no convergence proof available. However, the method appeared to converge for all the
numerical examples computed. These examples ranged from very smooth to singular (not in H2(Ω), Lipschitz
continuous). The observed convergence rate went from two (second order) for smooth solutions, down to one
half for singular solutions. The discrete equation was solved by a simple iterative method, with the number of
iterations (for fixed problem size) roughly independent of the regularity of solution.

We concluded that (M1), which is simply the natural finite difference discretization of the equation, is the
simplest and best performing method currently available, for generic problems. Only in the most singular case
studied did the provably convergent method of [21] perform better. However, in this case we introduced a simple
modification of (M1) which improved accuracy by an order of magnitude, Section 7.1.

The second method, (M2) solved the same discrete equation (MA)h using a different iterative method. In this
case, an identity satisfied by (MA) was used to write a Poisson equation involving the Hessian of the solution
and the source term (2.2). This method is simple to implement and demonstrably superior to other methods
that require solutions to be in H2(Ω). It converges on a wider range of solutions, and each iteration is simply
a Poisson solve.

Comparing the two methods, Method (M2) was faster (by at least an order of magnitude) on smooth solutions.
However, strongly singular solutions led to a poorly conditioned Poisson equation and, for the most singular
solutions, (M2) was slower (by more than an order of magnitude) than (M1).

In summary, Method (M2) is the method of choice for solutions which are known to be in H2(Ω) or better,
while Method (M1) is the method of choice for generic problems where the regularity is not known. In particular,
if the source term, f , is sometimes zero, solutions may be singular, and (M1) should be used.
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