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It is well known that the Hörmander smoothness condition supy �=0
∫
|x|≥2|y| |K (x − y) −

K (x)| dx < ∞ implies weak-type (1, 1) estimates for associated L2-bounded Calderón–
Zygmund operators. It has been an open question to know whether Hörmander’s condition 
also suffices to guarantee weak-type (1, 1, 1/2) estimates for bilinear Calderón–Zygmund 
operators that are bounded at one point. In this paper, we provide a negative answer to 
this question.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Il est bien connu que la condition de lissage de Hörmander supy �=0
∫
|x|≥2|y| |K (x − y) −

K (x)| dx < ∞ implique des estimations faibles de type (1, 1) pour les opérateurs de 
Calderón–Zygmund L2-bornés. La question s’est alors posée de savoir si cette condition de 
Hörmander est également suffisante pour assurer des estimations faibles de type (1, 1, 1/2)

pour les opérateurs bilinéaires de Calderón–Zygmund qui sont bornés en un point. Nous 
donnons ici une réponse négative à cette question.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Hörmander’s [12] adaptation of the Calderón–Zygmund theorem says that an L2-bounded convolution operator associated 
with a kernel K on Rd satisfying the smoothness condition
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‖K‖H = sup
y �=0

∫

|x|≥2|y|
|K (x − y) − K (x)|dx < ∞ (1)

is also bounded from L1(Rd) to L1,∞(Rd). By duality and interpolation, this classical result implies that the operator also 
admits an Lp -bounded extension for all p ∈ (1, ∞). Recent interest in multilinear extensions of the Calderón–Zygmund the-
ory has led to the development of multilinear harmonic analysis; see [7, Chapter 7] and [17]. This area was introduced by 
Coifman and Meyer in their seminal work [3], [4], [5]. A fundamental result in this theory is that, if an m-linear Calderón–
Zygmund operator is bounded from L2 × · · · × L2 to L2/m and its kernel K satisfies an appropriate size condition and a 
standard Lipschitz smoothness condition on Rmd , then it is bounded from L1 ×· · ·× L1 to L1/m,∞; this result implies strong 
boundedness for the operator from the product of Lebesgue spaces to another Lebesgue space L p in the largest range of 
indices possible, and also implies weak-type boundedness at the endpoints. Boundedness in the region where the target 
space is Lp with p > 1 was first proved by Coifman and Meyer [4], [5], and was extended to the case p ≤ 1 by Kenig and 
Stein [13], and independently by Grafakos and Torres [11]. A natural question, inspired by linear theory, is whether this re-
sult also holds if the kernel K , which is a function on Rmd \ {0}, satisfies only Hörmander’s condition (1). This question has 
been around since 2002 and has attracted some attention. In this note, we provide a negative answer to it. Our argument is 
mainly inspired by two ingredients related to bilinear rough singular integrals. The first one is a reinforced and quantitative 
version of the counterexample in [6], while the second one is the L2 × L2 → L1 boundedness of bilinear rough singular 
integrals recently obtained in [8] and [9].

Our counterexample is a homogeneous kernel, i.e. a kernel that has the form:

K�(x1, x2) = �((x1, x2)/|(x1, x2)|)|(x1, x2)|−2d, (x1, x2) ∈R2d

where � is integrable on the sphere S2d−1 with vanishing integral. The associated bilinear Calderón–Zygmund operator T K�

is then defined as

T K�
( f , g)(x) = p.v.

∫

R2d

K�(x − y1, x − y2) f (y1)g(y2)dy1 dy2.

We prove the following result:

Theorem 1. Let 1 ≤ q < ∞. There exists an odd function � in Lq(S2d−1) such that the associated kernel K� satisfies the Hörmander 
kernel condition (1), but the associated bilinear Calderón–Zygmund operator T K�

does not map Lp1(Rd) × Lp2 (Rd) → Lp,∞(Rd)

whenever 1
p1

+ 1
p2

= 1
p , 1 ≤ p1 , p2 ≤ ∞ and 1

p + 2d−1
q > 2d. In particular, this operator is not of weak type (1, 1, 12 ) when 1 ≤ q <

2d−1
2d−2 .

If � ∈ Lq(S2d−1) with q ≥ 2, then T K�
is always L2(Rd) × L2(Rd) → L1(Rd) bounded, see [8]; this result was later 

extended to 4
3 < q ≤ ∞ in [9]. Thus Theorem 1 yields the following corollary:

Corollary 2. Let d ∈ {1, 2}. There exists an odd function � on S2d−1 such that K� satisfies Hörmander’s condition (1) and the associ-
ated operator T K�

is bounded from L2(Rd) × L2(Rd) → L1(Rd), but is unbounded from Lp1(Rd) × Lp2 (Rd) to Lp,∞(Rd) whenever 
1
p1

+ 1
p2

= 1
p , 1 ≤ p1 , p2 ≤ ∞ and p < 4

2d+3 . In particular, this operator is not of weak type (1, 1, 12 ).

Remark 1. To obtain, via these techniques, an example of an L2(Rd) × L2(Rd) to L1(Rd) bounded bilinear Calderón–
Zygmund operator whose kernel satisfies Hörmander’s condition (1) but which does not satisfy a weak-type (1, 1, 12 )

estimate in an arbitrary dimension d, we would need to know that

‖T K�
‖L2(Rd)×L2(Rd)→L1(Rd) ≤ C‖�‖Lq(S2d−1) (2)

for all q > 1; but (2) remains open, as of this writing, for 1 < q ≤ 4
3 .

Other versions of the Hörmander kernel condition in the multilinear setting are given in [16], [15] and [2]; these condi-
tions are weaker than (1), so our example applies also in that case. Our result should be contrasted with the positive result 
in [18] concerning a stronger geometric version of condition (1).

Additionally, it was observed in [11] that, if � ∈ L1(R) is an odd function, then the boundedness of T K�
can be obtained 

as a consequence of the uniform boundedness of the bilinear Hilbert transforms, see [10], [14]. Thus, in particular, T K�
is 

bounded from Lp1 (R) × Lp2 (R) to Lp(R) whenever the triple ( 1
p1

, 1
p2

, 1
p ) belongs to the hexagon H defined by the relations 

1 < p1, p2, p < ∞, 1
p2

+ 1
p2

= 1
p and

∣∣∣ 1 − 1 ∣∣∣ <
1

,

∣∣∣ 1 − 1
′
∣∣∣ <

1
,

∣∣∣ 1 − 1
′
∣∣∣ <

1
,

p1 p2 2 p1 p 2 p2 p 2
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where p′ = p
p−1 . We note that this hexagon contains points ( 1

p1
, 1

p2
, 1

p ) with p > 1 arbitrarily close to 1. Another corollary 
of Theorem 1 is the following.

Corollary 3. There exists an odd function � on S1 such that the kernel K� satisfies the 2-dimensional Hörmander condition (1) and the 
associated operator T K�

is bounded from Lp1(R) × Lp2 (R) to Lp(R) whenever ( 1
p1

, 1
p2

, 1
p ) ∈H, but does not map Lp1(R) × Lp2 (R)

to Lp(R) if 0 < p < 1, 1 ≤ p1 , p2 ≤ ∞ and 1
p1

+ 1
p2

= 1
p .

For clarity, we prove the one-dimensional version of Theorem 1 in the next section. The proof in the d-dimensional case 
is given in Section 3; this contains an additional perturbation argument. We verify that K� satisfies (1) in Section 4. In 
Section 5, we briefly discuss the multilinear situation. The notations A � B and A � B mean that A ≥ cB and A ≤ cB , where 
c is an inessential constant, while A ∼ B means both A � B and A � B .

2. Proof of Theorem 1 when d = 1

Define points on the circle S1

an =
(

cos
(π

4
+ π

2n

)
, sin

(π
4

+ π
2n

))

and define circular arcs I+n with endpoints an and an+1 for n = 10, 11, 12, . . . Let I−n be the reflection about the origin of 
I+n . We observe that the length �n of both I+n and I−n is approximately 2−n . Consider the function

� =
∞∑

n=10

hn
(
χI+n − χI−n

)

where hn = 2nδ for some δ < 1/q. Note that

‖�‖Lq(S1) ≤ c
( ∞∑

n=10

hq
n�n

) 1
q ≤ c

( ∞∑
n=10

2nδq−n
) 1

q
< ∞

and that � is an odd function on S1.

For 0 < ε < 1
100 , define fε = (2ε)

− 1
p1 χ[−ε,ε] , gε = (2ε)

− 1
p2 χ[−ε,ε]; these functions satisfy ‖ fε‖Lp1 = ‖gε‖Lp2 = 1.

Let us fix an x ∈R such that 11
10 ≤ x ≤ 12

10 . Then we have

|T K�
( fε, gε)(x)| ≥ (2ε)

− 1
p1 (2ε)

− 1
p2

∫

|y1|<ε

∫

|y2|<ε

�
( (x−y1,x−y2)

|(x−y1,x−y2)|
)

|(x − y1, x − y2)|2 dy1 dy2. (3)

Let Pε,x be all projections of points of the form (x − y1, x − y2) onto the circle S1, where (y1, y2) is an arbitrary point in 
(−ε, ε) × (−ε, ε). As the point (x − y1, x − y2) lies near the positive diagonal (that forms 45◦ with the positive horizontal 
axis), this projection will only intersect circular caps I+n and will never intersect caps I−n . In this case, every term in the 
sum that defines � and appears in (3) is positive. We obtain

|T K�
( fε, gε)(x)| ≥ cε

− 1
p1 ε

− 1
p2 ε

∑
n≥10

I+n �Pε,x

�nhn

as |(x − y1, x − y2)|2 ∼ 1 and if I+n ⊆ Pε,x , then the set of those (y1, y2) satisfying |y1| < ε, |y2| < ε and
(x − y1, x − y2)/|(x − y1, x − y2)| ∈ I+n has measure comparable to ε�n , since x is so close to 1. As 1

p1
+ 1

p2
= 1

p , we 
obtain, for 11

10 ≤ x ≤ 12
10 , that

|T K�
( fε, gε)(x)| � ε

− 1
p +1

∑
n:

2−n<cε

2nδ−n � ε
2− 1

p −δ
,

which yields that ‖T K�
( fε, gε)‖Lp,∞(R) � ε

2− 1
p −δ

, and

‖T K�
‖L p1 (R)×Lp2 (R)→Lp,∞(R) ≥ ‖T K�

( fε, gε)‖L p,∞(R)

‖ fε‖L p1 (R)‖gε‖L p2 (R)

� ε
2− 1

p −δ
.

Choosing δ sufficiently close to 1/q, we conclude that, if 2 − 1 − 1 < 0, then
p q
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‖T K�
‖L p1 (R)×Lp2 (R)→Lp,∞(R) = ∞.

To complete the proof of the main theorem, we need to know that K� satisfies Hörmander’s condition (1). For this, we 
prove the following lemma in which points in R2 will be denoted by capital letters.

Lemma 4. Let r > 1 and �t = t− 1
r χIt , where It is a circular arc of small length t > 0 on the circle S1 . Then there is a constant Cr < ∞

such that

sup
t>0

sup
Y �=0

∫

|X |≥2|Y |

∣∣K�t (X − Y ) − K�t (X)
∣∣ dX ≤ Cr .

As the proof of Lemma 4 is contained in that of Lemma 5 proved later, we do not include it here. Since δ < 1
q ≤ 1, we 

can choose r such that δ < 1
r < 1, then Lemma 4 gives that

‖K�‖H ≤
∞∑

n=10

hn�
1
r

n

(∥∥∥ 1

�
1
r

n

χI+n

∥∥∥
H

+
∥∥∥ 1

�
1
r

n

χI−n

∥∥∥
H

)

≤ C
∞∑

n=10

hn�
1
r

n = C
∞∑

n=10

2nδ−n 1
r

and this sum is convergent. This concludes the proof of Theorem 1 when d = 1.

3. Proof of Theorem 1 when d ≥ 2

We now extend the proof to higher dimensions. Fix a point

a = ( 1√
2d

, . . . , 1√
2d

) ∈ S2d−1

and for n = 10, 11, 12, . . . define spherical annuli

A+
n = S2d−1 ∩

(
B(a,2−n) \ B(a,2−n−1)

)
.

Let A−
n be the reflection about the origin of A+

n . We observe that the measure vn of both A+
n and A−

n is approximately 
2−n(2d−1) . Consider the function

� =
∞∑

n=10

hn
(
χA+

n
− χA−

n

)

where hn = 2nδ for some δ < 2d−1
q . Note that

‖�‖Lq(S2d−1) ≤ c
( ∞∑

n=10

hq
n vn

) 1
q ≤ c

( ∞∑
n=10

2n(δq−(2d−1))
) 1

q
< ∞

and that � is an odd function on S2d−1.

For 0 < ε < 1
100d , define fε = (2ε)

− d
p1 χ[−ε,ε]d , gε = (2ε)

− d
p2 χ[−ε,ε]d ; these functions satisfy ‖ fε‖Lp1 = ‖gε‖Lp2 = 1.

Let us fix an interval on the diagonal line in Rd defined by

Id = {
x ∈Rd : x1 = x2 = · · · = xd ∈ [ 1√

d
+ 1

100d , 1√
d

+ 2
100d ]}. (4)

Then, for x ∈ Id , we have

|T K�
( fε, gε)(x)| ≥ (2ε)

− d
p1 (2ε)

− d
p2

∫

[−ε,ε]d

∫

[−ε,ε]d

�
( (x−y1,x−y2)

|(x−y1,x−y2)|
)

|(x − y1, x − y2)|2 dy1 dy2. (5)

Let Pε,x be the set of all projections onto the sphere S2d−1 of points of the form (x − y1, x − y2), where (y1, y2) is an 
arbitrary point in [−ε, ε]2d . As the point (x − y1, x − y2) lies near the positive diagonal, this projection will only intersect 
spherical annuli A+

n and will never intersect annuli A−
n . In this case, every term in the sum that defines � and appears in 

(5) is positive. We obtain
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|T K�
( fε, gε)(x)| ≥ cε

− d
p1 ε

− d
p2 ε

∑
n≥10

A+
n �Pε,x

vnhn

as |(x − y1, x − y2)|2 ∼ 1 and if A+
n ⊆ Pε,x , then the set of those (y1, y2) satisfying (y1, y2) ∈ [−ε, ε]2d and

(x − y1, x − y2)/|(x − y1, x − y2)| ∈ A+
n has measure comparable to εvn , since x is so close to the unit sphere. Since 

1
p1

+ 1
p2

= 1
p , we obtain

|T K�
( fε, gε)(x)| � ε

− d
p +1

∑
n:

2−n<cdε

2nδ−n(2d−1) � ε
(2− 1

p )d−δ
,

whenever x ∈ Id . In particular, in the last summation the term with 2−nε ∼ cd
10ε would contribute essentially the same lower 

bound ε(2− 1
p )d−δ .

We now fix a point x0 ∈ Id . For any x such that |x − x0| ≤ c′
dε with c′

d a small positive constant, we define Pε,x as 
the projection of (x, x) + [−ε, ε]2d onto S2d−1. Recalling that Pε,x0 contains A+

nε
and that the distance between A+

nε
and 

S2d−1 \ Pε,x0 is greater than cd
2 ε, we obtain that A+

nε
⊂ Pε,x if c′

d is small enough, since the distance between the boundary 
of Pε,x0 and the boundary of Pε,x is bounded by c′

dε. In summary, for any point x ∈ Nε , the c′
dε-neighborhood of Id with 

volume about εd−1, we have

|T K�
( fε, gε)(x)| � ε

− d
p +12nε(δ−2d+1) ∼ ε

(2− 1
p )d−δ

. (6)

This yields

‖T K�
‖L p1 (Rd)×L p2 (Rd)→L p,∞(Rd) ≥ ‖T K�

( fε, gε)‖L p,∞(Rd)

‖ fε‖L p1 (Rd)‖gε‖L p2 (Rd)

� ε
d−1

p +(2− 1
p )d−δ

.

Choosing δ sufficiently close to 2d−1
q , we conclude that, if

2d − 1
p − 2d−1

q < 0,

then

‖T K�
‖L p1 (Rd)×L p2 (Rd)→L p,∞(Rd) = ∞.

We have the following d-dimensional extension of Lemma 4.

Lemma 5. Let r > 1
2d−1 and �t = t− 1

r χAt , where At is a spherical cap of small radius t on the sphere S2d−1. Then there is a constant 
C that depends on d and r such that

sup
t>0

sup
Y �=0

∫

|X |≥2|Y |

∣∣K�t (X − Y ) − K�t (X)
∣∣ dX ≤ C . (7)

We note that each spherical annulus A+
n , A−

n can be written as B+
n \ C+

n or B−
n \ C−

n , where B+
n , C+

n and B−
n , C−

n are 
spherical caps of radius approximately 2−n centered at a and −a, respectively. Therefore, assuming Lemma 5, we obtain

‖K�‖H ≤
∞∑

n=10

hn2− n
r

∥∥∥2
n
r
(
χB+

n
− χC+

n
− χB−

n
+ χC−

n

)∥∥∥
H

≤ C
∞∑

n=10

hn2− n
r = C

∞∑
n=10

2nδ− n
r

and this sum is convergent if we choose δ < 1
r < 2d − 1, which is possible since δ < 2d−1

q ≤ 2d − 1.
This finishes the proof of Theorem 1 for d ≥ 2 assuming Lemma 5, which is proved in the next section.

4. Proof of Lemma 5

Let X ∈R2d and X ′ = X/|X |. It suffices to prove that∫ ∣∣�t((X − Y )′) − �t(X ′)
∣∣ dX

|X − Y |2d
≤ C < ∞
|X |≥2|Y |
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as the part∫

|X |≥2|Y |

∣∣∣∣ �t(X ′)
|X − Y |2d

− �t(X ′)
|X |2d

∣∣∣∣ dX

is trivially bounded by ‖�t‖L1(S2d−1) ≤ C since r > 1
2d−1 .

But |X − Y | ∼ |X |, and so we look at

∞∫

2|Y |

∫

S2d−1

∣∣�t((sθ − Y )′) − �t(θ)
∣∣ dθ

ds

s
. (8)

The interior integral vanishes if both terms χAt ((sθ − Y )′) and χAt (θ) are 1 or 0. Thus we may consider the case when one 
term is one and the other is zero. In this case, we estimate the expression on the left in (7) by

t− 1
r

∞∫

2|Y |
|{θ ∈ At,

(
θ − Y

s

)′
/∈ At}|ds

s
+ t− 1

r

∞∫

2|Y |
|{θ /∈ At,

(
θ − Y

s

)′ ∈ At}|ds

s
.

Both At and the set of all θ ∈ S2d−1 for which 
(
θ − Y

s

)′ ∈ At have spherical measure at most ct2d−1, where to show the 
latter we use the fact that | Y

s | ≤ 1
2 . Let us now assume that |Y |

s ≤ t
100 � 1. In the first integral, the set has spherical 

measure at most c |Y |
s t2d−2, because it is comparable to |A′

t \ At | with A′
t an appropriate rotation of At with displacement 

∼ |Y |
s . Similarly, the set in the second integral has spherical measure at most c |Y |

s t2d−2 as well. We therefore obtain the 
estimate for (8)

ct− 1
r

⎡
⎢⎢⎢⎣

100|Y |
t∫

2|Y |
t2d−1 ds

s +
∞∫

100|Y |
t

|Y |
s t2d−2 ds

s

⎤
⎥⎥⎥⎦ ≤ ct− 1

r [t2d−1 log(t−1)] ≤ C,

where C < ∞, since 2d − 1 − 1
r > 0 and t ≤ 1. This proves (7).

5. The multilinear case

The argument needed to prove a multilinear version of Theorem 1 is similar to the one performed above. We sketch it 
below for completeness.

Let � be an integrable function on the sphere Smd−1 with vanishing integral. We define

K�(x1, . . . , xm) = �((x1, . . . , xm)/|(x1, . . . , xm)|)|(x1, . . . , xm)|−md

for (x1, . . . , xm) ∈Rmd . The m-linear rough singular integral operator T K�
is then defined by

T K�
( f1, . . . , fm)(x) = p.v.

∫

Rmd

K�(x − y1, . . . , x − ym) f1(y1) · · · fm(ym)dy1 · · · dym.

Let 1 ≤ q < ∞. We choose a = ( 1√
md

, . . . , 1√
md

) ∈ Smd−1, and define � = ∑
n hn(χA+

n
− χA−

n
) with hn = 2nδ and δ <

(md − 1)/q. Here, A+
n is a spherical annulus centered at point a whose radius is 2−n and measure ∼ 2−(md−1)n , and A−

n is 
its reflection with respect to the origin. We can easily check that � ∈ Lq(Smd−1).

Let 1 ≤ p1, . . . , pm ≤ ∞ and p > 0 be such that 1
p1

+ · · · + 1
pm

= 1
p . We take f j = (2ε)−d/p j χ[−ε,ε]d ; then ‖ f j‖Lp j (Rd) = 1

for j = 1, . . . , m. Let Id be as in (4) and let Nε be a c′
dε-neighborhood of Id , then we can verify that

T K�
( f1, . . . , fm)(x) ≥ cε

− d
p ε

∑
n: 2−n≤ε

|A+
n |hn ∼ cε

− d
p +md−δ

for all x ∈ Nε . Therefore,

‖T K�
‖L p1 (Rd)×···×Lpm (Rd)→L p,∞(Rd) � ε

md− 1
p −δ

,

which tends to ∞ as ε → 0 when md < 1
p + md−1

q if we choose δ close to md−1
q . It is straightforward to verify Lemma 5 in 

the multilinear setting under the condition r > 1 . In summary, we have showed the following.
md−1
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Proposition 6. For any 1 ≤ q < ∞, there is an odd function � in Lq(Smd−1) such that the associated kernel K� satisfies Hörmander’s 
condition (1) but the Calderón–Zygmund operator T K�

does not map Lp1(Rd) ×· · ·× Lpm (Rd) to Lp(Rd) whenever 1
p1

+· · ·+ 1
pm

=
1
p , 1 ≤ p1 , . . . , pm ≤ ∞, and 1

p + md−1
q > md. In particular, this operator is not of weak type (1, . . . , 1, 1

m ) when 1 ≤ q < md−1
m(d−1)

.

Remark 2. It is known from [1] that the m-linear operator T K�
is bounded from L2(Rd) ×· · ·×L2(Rd) to L2/m(Rd) whenever 

� ∈ Lq(Smd−1) with q > 2m
m+1 . Thus, in the multilinear case, boundedness on the product of L2 spaces and Hörmander’s 

condition are not sufficient to yield the weak-type (1, 1, . . . , 1, 1/m) endpoint when d ≤ 2.
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