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We show that the construction of Gabor frames in L2(R) with generators in S0(R) and 
with respect to time-frequency shifts from a rectangular lattice αZ × βZ is equivalent to 
the construction of certain Gabor frames for L2 over the adeles over the rationals and the 
group R × Qp . Furthermore, we detail the connection between the construction of Gabor 
frames on the adeles and on R ×Qp with the construction of certain Heisenberg modules.
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r é s u m é

Nous montrons que la construction de trames (ou repères) de Gabor de L2(R) avec 
générateurs dans S0(R) et des décalages de temps-fréquence dans un réseau rectangulaire 
αZ × βZ est équivalente à la construction de certaines trames de Gabor pour L2 sur les 
adèles des rationnels avec le groupe R ×Qp . Nous analysons également les relations entre 
la construction de trames de Gabor sur les adèles et sur R × Qp et la construction de 
certains modules de Heisenberg.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The theory of Gabor systems and of their frame properties is available on any locally compact abelian (LCA) group 
[23]. However, the construction of explicit examples of Gabor frames with time-frequency shifts from lattices (discrete and 
co-compact subgroups) is mostly restricted to the elementary LCA groups R, Z, T and Z/dZ, d ∈ N. While the group of the 
p-adic numbers Qp does not contain any lattice, the group R × Qp and also the adele group over the rationals, AQ , do 
contain discrete and co-compact subgroups. This makes these groups eligible for Gabor analysis.

Other efforts to do time-frequency and time-scale (wavelet) analysis on local fields include [1–3,27,33,42,43] and [44].
We mention that [5] provides a method for constructing Gabor frames on any group with time-frequency shifts from 

lattices. In case of the p-adics or other groups that do not contain lattices, other methods of building somewhat structured 
families of functions with the use of quasi-lattices have been suggested in [19].
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In this paper, we combine the established theory on the p-adic numbers, the adeles, Gabor analysis, the theory of the 
Feichtinger algebra, and the modulation spaces. Our main result (Theorem 4.2) shows that the construction of (dual) Gabor 
frames for L2(R) with generators in the Feichtinger algebra S0(R) is equivalent to both (I) the construction of certain (dual) 
Gabor frames for L2(AQ) with generators in S0(AQ) and (II) the construction of certain (dual) Gabor frames for L2(R ×Qp)

with generators in S0(R ×Qp).
In Section 2, we describe the groups Qp and AQ . The Feichtinger algebra on the p-adic groups Zp and Qp , the adeles AQ , 

and R × Qp is described in Section 3. Finally, in Section 4 we state and prove our main result. In Section 4.1, we connect 
the construction of dual Gabor frames in L2(AQ) and L2(R ×Qp) with the construction of idempotent elements in twisted 
group C∗-algebras of the groups AQ and R × Qp as explained in [24]. In this way, we answer the question raised in [30, 
Remark 5.8]. This work is related to the investigation of noncommutative solenoids by Latrémolière and Packer [30–32] and 
the work of Larsen and Li [29].

We also mention that after submitting the preprint of this paper, we have discovered a simultaneous generalization of 
the main result to Gabor frames over L2(R × �a), where �a denotes the group of a-adic integers [20, p. 184], [21, Section 
10]. These groups generalize both the p-adic numbers and the finite adeles over the rationals, but do not appear often in 
the literature. An example of an application of these groups in operator algebras can be found in [26].

2. The p-adic numbers and adeles over the rationals

In this section, we give a brief exposition of the field of p-adic numbers and the adele group AQ over the rational 
numbers. Given a prime number p, the p-adic absolute value on Q is defined by

|x|p = p−k

where x = pk(a/b) and p divides neither a nor b. One also sets |0|p = 0. The p-adic absolute value satisfies a strengthened 
version of the triangle inequality (the ultrametric triangle inequality), namely

|x + y|p ≤ max{|x|p, |y|p}. (1)

The completion of Q with respect to the metric dp(x, y) = |x − y|p is a field denoted by Qp and its elements are called 
p-adic numbers. The topology inherited from the metric makes Qp into a locally compact Hausdorff space. In particular, the 
p-adic numbers Qp form a (non-compact) locally compact abelian group with respect to the topology induced by the above 
metric and under addition. One can show that every p-adic number x has a p-adic expansion of the form

x =
∞∑

k=−∞
ak pk,

where ak ∈ {0, . . . , p − 1} for each k and there exists some n ∈ Z such that ak = 0 for all k < n. The sequence (ak)k∈Z in this 
expansion is unique.

The p-adic integers The closed unit ball in Qp is denoted by Zp and its elements are called p-adic integers. Because of (1)
and the multiplicativity of | · |p , Zp is a subring of Qp . In terms of p-adic expansions, a p-adic number x = ∑

k∈Z ak pk is a 
p-adic integer if and only if ak = 0 for k < 0. The map {0, . . . , p −1}N → Zp given by (ak)k �→ ∑

k ak pk is a homeomorphism, 
which shows that Zp has the topology of a Cantor set. In particular, Zp is a compact subgroup of Qp . But Zp is also open 
in Qp . Indeed, if x ∈ Zp , then using (1) one shows that the open ball B1/2(x) = {y ∈Qp : |y − x|p < 1/2} is contained in Zp .

We take the Haar measure μQp on Qp so that μQp (Zp) = 1. The Haar measure on Zp is the one on Qp restricted to Zp .

The dual groups of Qp and Zp Denote by Z[1/p] the subring of Q consisting of rational numbers of the form a/pk where 
k, a ∈ Z. Then Qp = Zp +Z[1/p] and Zp ∩Z[1/p] = Z, so that

Qp/Zp = Zp +Z[1/p]
Zp

∼= Z[1/p]
Zp ∩Z[1/p] = Z[1/p]/Z

as abelian groups. Denote the quotient map Qp → Z[1/p]/Z by x �→ {x}p . In terms of p-adic expansions, we have {∑
k∈Z ak pk

}
p = ∑−1

k=−∞ ak pk + Z (observe that for any p-adic number x, only finitely many of the ak are nonzero). Ev-

ery character ω ∈ Q̂p is of the form

ω : Qp →C, ω(x) = e2πi{xy}p , x ∈Qp,

for some y ∈ Qp . In fact, the map Qp → Q̂p given by mapping y to the ω defined above is a topological isomorphism. 
Hence the Pontryagin dual of Qp , Q̂p , can be identified with Qp itself. We will use this particular identification for the rest 
of the paper.



190 U.B.R. Enstad et al. / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 188–199
Recall that the annihilator of a closed subgroup H of a locally compact abelian group G is defined by

H⊥ = {ω ∈ Ĝ : ω(h) = 1 for all h ∈ H }.
In general, we have topological isomorphisms Ĥ ∼= Ĝ/H⊥ and Ĝ/H ∼= H⊥ . Under the identification of Q̂p with Qp , the 
annihilator Z⊥

p of the p-adic integers Zp is identified with Zp itself. Hence the dual group Ẑp is isomorphic to Q̂p/Z⊥
p

∼=
Qp/Zp ∼= Z[1/p]/Z. There is another interesting description of Ẑp , namely it is isomorphic to the Prüfer p-group Z(p∞), 
which is the subgroup of T consisting of all pn-th roots of unity as n ranges over all n = 0, 1, 2 . . .,

Z(p∞) = {
z ∈C : z = e2πikp−n

, k = 1, . . . , pn, n ∈N0
}
. (2)

Observe that any z ∈ Z(p∞) can be uniquely written as z = exp(2πi 
∑∞

k=1 ak p−k), where each ak ∈ {0, 1, . . . , p − 1} and only 
finitely many ak are non-zero. This allows us to identify every element z ∈ Z(p∞) with a unique p-adic number, also to be 
denoted by z, given by z = ∑∞

k=1 ak p−k . Every element z ∈ Z(p∞) defines a character ωz ∈ Ẑp via

ωz : Zp →C, ωz(x) = e2πi{xz}p , x ∈ Zp . (3)

Conversely, every element in Ẑp is given in this way for some z ∈ Z(p∞).

Restricted products Let (Gi)i∈I be a collection of locally compact abelian groups for some index set I . If for each i ∈ I , the 
group Hi is a compact and open subgroup of Gi , then the restricted product of the groups (Gi)i∈I (with respect to the Hi ) is 
defined to be

G =
∏Hi

i∈I

Gi =
{
(xi)i∈I ∈

∏
i∈I

Gi : xi ∈ Hi for all but finitely many i ∈ I
}
.

The correct topology in order to turn G into a locally compact group is the one with a basis of open sets of the form ∏
i∈I Ui , where each Ui is open in Gi and Ui = Hi for all but finitely many i ∈ I . This is called the restricted product topology. 

If each Gi is locally compact and each Hi is compact, then the restricted product is a locally compact group [38, Proposition 
5-1(i)]. Moreover, every character ω ∈ Ĝ is of the form

ω((xi)i∈I ) =
∏
i∈I

ωi(xi),

where (ωi)i∈I is an element of the restricted product 
∏H⊥

i

i∈I

Ĝ i , [38, Theorem 5-4]. This gives us an identification

(∏Hi

i∈I
Gi

)̂ ∼=
∏H⊥

i

i∈I

Ĝ i .

If for each i ∈ I , the Haar measure on Gi is μi , then the product measure μ = ∏
i∈I μi gives a Haar measure on the 

restricted product of the Gi . Typically, the Haar measure on each Gi is normalized so that μi(Hi) = 1.

The adeles The group of finite adeles is the restricted product

AQ,fin =
∏Zp

p∈P
Qp .

As Q̂p ∼= Qp and Z⊥
p

∼= Zp , it follows from the previous paragraph that AQ,fin is a self-dual locally compact abelian group. 
The group of adeles is

AQ = R×AQ,fin.

It is also a self dual locally compact abelian group. We write elements of the adeles as (x∞, (xp)p), where x∞ ∈ R and 
(xp)p ∈ AQ,fin. The Haar measure on AQ is the product measure of the Lebesgue measures on R and the measure on all the 
p-adics Qp (normalized for each p so that μQp (Zp) = 1).

Every element y = (y∞, (yp)p) ∈AQ defines a character ωy ∈ ÂQ via

ωy : AQ → T, x = (
x∞, (xp)p

) �→ e2πix∞ y∞ ·
∏
p∈P

e−2πi{xp yp}p . (4)

Moreover, every character on AQ is given in such a way by some y ∈ AQ . The minus in the exponential for the p-adics is 
not necessary for this identification. It is however required for the following neat fact: we will see in a moment that the 
rationals Q can be embedded into AQ as a discrete and co-compact subgroup. By the identification of AQ with ÂQ above, 
one has Q⊥ = Q. The identification in (4) is the same as that used in [7, Satz 5.4.2]. In [37, Section 4.3.7], the identification 
of AQ with ÂQ is done with the minus in the exponential for the real part.
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Lattices in the adeles A subgroup H of an abelian topological group G is called a lattice if it is discrete and the quotient 
group G/H is compact. A fundamental domain for H in G is a Borel set B ⊆ G such that every x ∈ G can be uniquely written 
as x = b + h, where b ∈ B and h ∈ H . Fundamental domains always exist for lattices in abelian groups [28, Lemma 2]. The 
size or covolume of a lattice H in G , denoted by s(H), is the measure μ(B) of any fundamental domain B for H in G .

Naturally, there is an abundance of lattices in R (they are all of the form H = αZ, α ∈ R\{0}). The p-adic numbers 
contain no lattices (the only co-compact subgroup in Qp is Qp itself, and the only discrete subgroup of Qp is the trivial 
subgroup {0}). However, both AQ and R ×Qp do contain lattices.

Proposition 2.1. For any α ∈R \ {0} the mapping

ϕα : Q →AQ, ϕα(q) = (
αq, (q)p

)
embeds Q as a lattice into AQ . The set Bα = [0, |α|) × ∏

p∈PZp is a fundamental domain for ϕα(Q) in AQ and s(ϕα(Q)) = |α|. 
Moreover, under the identification of AQ with ̂AQ as in (4), the group ϕα(Q)⊥ can be identified with ϕ1/α(Q).

Proof. As described in, e.g., [38, Theorem 5-11], [7, Satz 5.2.1], and [37, Section 4.3.7], ϕ1(Q) is a lattice in AQ with 
fundamental domain [0, 1) × ∏

p∈PZp and s(ϕ1(Q)) = 1. Moreover, it is also shown that ϕ1(Q)⊥ = ϕ1(Q). The embedding 
of Q into AQ via ϕα for α �= 1 corresponds to an application of the topological group automorphism x �→ α · x, x ∈R on the 
real component of AQ . It is immediate that the desired results hold. �
Lattices in R × Qp In a fashion similar to the construction given in equation (4), every y = (y∞, yp) ∈ R × Qp defines a 
character ωy ∈ R̂× Q̂p via

ωy : R×Qp, x = (
x∞, xp

) �→ e2πi(x∞ y∞−{xp yp}p). (5)

One can show that every character in R̂× Q̂p is given as in (5) for some y ∈ R ×Qp .
As for the adeles, there is an abundance of lattices in R ×Qp . This is well known and can be found in, e.g., [31].

Proposition 2.2. Let p be a prime number. For any α ∈R \ {0}, the mapping

ψα : Z[1/p] → R×Qp, ψα(q) = (αq,q)

embeds Z[1/p] as a lattice into R × Qp . The set Bα = [0, |α|) × Zp is a fundamental domain for ψα(Z[1/p]) in R × Qp and 
s(ψα(Z[1/p]) = |α|. Moreover, under the identification of R ×Qp with ̂R× Q̂p as in (5), the group ψα(Z[1/p])⊥ can be identified 
with ψ1/α(Z[1/p]).

The proof is very similar in nature to that of Proposition 2.1 and it is therefore omitted.

3. Feichtinger’s algebra for p-adic groups and the adeles

For any locally compact abelian group, the Feichtinger algebra S0 [8,22,34] (sometimes denoted by M1) is a Banach space 
of functions that behaves very much like the Schwartz–Bruhat space S (in fact, S is a dense subspace of S0, see [8, Theorem 
9]). For example, S0 is invariant under the Fourier transform and the Poisson formula holds pointwise. In this section, we 
describe S0 for the following concrete groups: the real line R, the p-adic integers Zp , the p-adic numbers Qp , the group 
R ×Qp , the finite adeles AQ,fin, and the adeles AQ .

The description below of S0 on Qp and AQ makes it clear that S0 is a far larger and more interesting space of functions 
than the Schwartz–Bruhat space on these groups. The latter consists “only” of the collection of all locally constant functions.

S0 on the real line, R The Feichtinger algebra on the real line, S0(R), is described in detail in, e.g., [12] and [14]. Here we 
only mention the following definition. If we let g be the Gaussian function g(x) = e−x2

, x ∈R, then

S0(R) =
{

f ∈ L1(R) :
∫
R

‖ f ∗ Eω g‖1 dω < ∞
}
.

Here ∗ is the usual convolution of functions and Eω : f (x) �→ e2πiωx f (x), x ∈ R is the modulation operator. The S0-norm of 
f is given by ‖ f ‖S0(R) = ∫ ‖ f ∗ Eω g‖1 dω.
R
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S0 on the p-adic integers, Zp Since Zp is a compact group, it follows from, e.g., [8, Remark 3] or [22, Lemma 4.11], that 
S0(Zp) consists exactly of all continuous functions on Zp that have an absolutely summable Fourier series. With the identi-
fication of the Prüfer p-group Z(p∞) as the dual group of Zp (see (2) and (3)), we can describe S0(Zp) as follows:

S0(Zp) =
{

f ∈ C(Zp) : f (x) =
∑

z∈Z(p∞)

c(z)e2πi{xz}p , x ∈ Zp and where c ∈ �1(Z(p∞))
}
.

Moreover, the norm on S0(Zp) is defined by ‖ f ‖S0(Zp) = ‖c‖1, where f and c are related as above.

S0 on the p-adic numbers, Qp The p-adic numbers Qp contain the p-adic integers Zp as a compact open subgroup. A set of 
coset representatives Y p of Qp/Zp is given by

Y p = {y ∈Qp : y =
∞∑
j=1

c j p− j, c j ∈ {0,1, p − 1}, c j = 0 for all but finitely many j}. (6)

It follows by, e.g., [8, Lemma 8(ii)], [22, Theorem 7.7], or [39, §2.9] that S0(Qp) consists exactly of all continuous functions 
f for which their restrictions to each of the cosets of Qp/Zp , the collection of functions{

f y : Zp →C, x �→ f (x + y), x ∈ Zp
}

y∈Y p
,

belongs to S0(Zp) and such that ‖ f ‖S0(Qp) := ∑
y∈Y p

‖ f y‖S0(Zp) < ∞.
The characterization of S0(Zp) in terms of the functions with absolutely convergent Fourier series allows us to describe 

S0(Qp) as those functions that are exactly of the form

f (x) =
∑

z∈Z(p∞)

c(y, z)e2πi{(x−y)z}p for all x ∈ y +Zp (7)

and for all y ∈ Y p , and where c ∈ �1(Y p × Z(p∞)). Moreover, the norm on S0(Qp) is equivalently defined by ‖ f ‖S0(Qp) =
‖c‖�1(Y p×Z(p∞)) , where f and c are related as in (7).

S0 on R ×Qp It follows from, e.g., [8, Theorem 7] or [22, Theorem 7.4], that the functions in S0(R ×Qp) are exactly those 
of the form

f =
∑
j∈N

f (R)
j ⊗ f

(Qp)

j where f (R)
j ∈ S0(R), f

(Qp)

j ∈ S0(Qp) (8)

for all j ∈ N and such that 
∑

j∈N ‖ f (R)
j ‖S0(R) ‖ f

(Qp)

j ‖S0(Qp) < ∞. The norm on S0(R ×Qp) is given by

‖ f ‖S0(R×Qp) = inf
{∑

j∈N
‖ f (R)

j ‖S0(R) ‖ f
(Qp)

j ‖S0(Qp)

}
,

where the functions f , { f (R)
j } j∈N and { f

(Qp)

j } j∈N are related as in (8) and the infimum is taken over all possible represen-
tations of f as in (8).

S0 on AQ,fin The finite adeles AQ,fin contain H = πp∈PZp as a compact open subgroup. A set of coset representatives Y of 
AQ,fin/H is given by

Y = {
(y2, y3, . . .) ∈ πp∈PY p : where Y p is as in (6) and

yp = 0 for all but finitely many p
}
.

By [8, Lemma 8(ii)], [22, Theorem 7.7], or [39, §2.9] the Banach space S0(AQ,fin) consists exactly of all continuous functions 
f on AQ,fin for which their restriction to each of the cosets of AQ,fin/H , the functions{

f y : H �→C, x �→ f (x + y), x ∈ H
}

y∈Y ,

belong to S0(H) and are such that

‖ f ‖S0(AQ,fin) =
∑
y∈Y

‖ f y‖S0(H) < ∞. (9)

Here S0(H) is the Banach space of continuous functions over the compact group H = πp∈PZp with absolutely convergent 
Fourier series.
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Another characterization of S0(AQ,fin) is given in [39, §9.4] in the following way: any function f in S0(AQ,fin) is exactly 
of the form

f =
∑
j∈N

⊗
p∈P

f
(Qp)

j =
∑
j∈N

f (Q2)
j ⊗ f (Q3)

j ⊗ . . . , where f
(Qp)

j ∈ S0(Qp), p ∈ P, j ∈N, (10)

and for each j ∈N only finitely many of the functions f
(Qp)

j , p ∈ P are not equal to 1Zp , and such that∑
j∈N

∏
p∈P

‖ f
(Qp)

j ‖S0(Qp) < ∞.

The norm

‖ f ‖S0(AQ,fin) = inf
{∑

j∈N

∏
p∈P

‖ f
(Qp)

j ‖S0(Qp)

}
,

where the infimum is taken over all possible representations of f as in (10), is a norm on S0(AQ,fin) that is equivalent to 
the norm in (9).

S0 on the adele group, AQ By definition, AQ =R ×AQ,fin. It follows from [8, Theorem 7] or [22, Theorem 7.4] that a function 
f belongs to S0(AQ) if and only if

f =
∑
j∈N

⊗
p∈{∞}∪P

f
(Qp)

j =
∑
j∈N

f (R)
j ⊗ f (Q2)

j ⊗ f (Q3)
j ⊗ . . . , (11)

(Q∞ =R) where for each j ∈N only finitely many of the functions f
(Qp)

j , p ∈ P are not equal to 1Zp , and such that∑
j∈N

∏
p∈{∞}∪P

‖ f
(Qp)

j ‖S0(Qp) < ∞.

Moreover, the S0(AQ)-norm is given by

‖ f ‖S0(AQ) = inf
{∑

j∈N

∏
p∈{∞}∪P

‖ f
(Qp)

j ‖S0(Qp)

}
,

where the infimum is taken over all possible representations of f as in (11).

4. Gabor frames

In this section, we describe how one can construct Gabor frames for L2(R ×Qp) and L2(AQ) from existing Gabor frames 
for L2(R). The theory of Gabor frames is well understood, see, e.g., the books [4,14] and the recent paper [23] that develops 
the theory of Gabor frames for general LCA groups. We give a very brief account of Gabor frames for general LCA groups 
before we state our main result, Theorem 4.2.

The theory of Gabor frames for general LCA groups For a moment, let G be a general locally compact abelian group. We denote 
the dual group by Ĝ . The action that an element ω ∈ Ĝ has on x ∈ G is written as ω(x). For any x ∈ G and ω ∈ Ĝ , we define 
the translation Tx and the modulation operator Eω as follows:

Tx f (t) = f (t − x), Eω f (t) = ω(t) f (t), t ∈ G.

The translation and modulation operators are unitary operators on L2(G) and isometries on S0(G). For convenience we 
define the time-frequency shift operator for any λ = (x, ω) ∈ G × Ĝ to be

π(λ) = π(x,ω) = EωTx.

Let 
 be a lattice (a discrete and co-compact subgroup) of the time-frequency domain G × Ĝ and let g be a func-
tion in L2(G). We let 〈 · , · 〉 denote the L2-inner product with the linearity in the first entry. The collection of functions 
{π(λ)g}λ∈
 ⊂ L2(G) is a Gabor system. Such a system is a frame for L2(G) if there exist constants A, B > 0 such that

A ‖ f ‖2
2 ≤

∑
λ∈


|〈 f ,π(λ)g〉|2 ≤ B ‖ f ‖2
2 for all f ∈ L2(G).

Equivalently, the associated Gabor frame operator
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S g,
 : L2(G) → L2(G), S g,
 f =
∑
λ∈


〈 f ,π(λ)g〉π(λ)g

is well defined, linear, bounded, and invertible. The usefulness of (Gabor) frames lies in the following. If g ∈ L2(G) and 
the lattice 
 in G × Ĝ are such that {π(λ)g}λ∈
 is a frame for L2(G), then there exists a (in general non-unique) function 
h ∈ L2(G) such that

f =
∑
λ∈


〈 f ,π(λ)g〉π(λ)h for all f ∈ L2(G). (12)

If g and h are such that (12) holds, then they are called a dual pair of Gabor frame generators. For a given Gabor frame 
{π(λ)g}λ∈
 , the canonical choice of the function h such that (12) holds is the canonical dual generator h = S−1

g,
 g . It is 
a celebrated result of Gabor analysis that, if g ∈ S0(G) generates a Gabor frame, then the canonical dual generator also 
belongs to S0(G) [16].

For our purposes, we mention only the following result of Gabor analysis:

Lemma 4.1 ([23, Theorem 6.1]). Let G be an LCA group and let 
 be a lattice of G × Ĝ . Two functions g, h ∈ S0(G) are a dual pair of 
Gabor frame generators for L2(G) with respect to time-frequency shifts from 
 (i.e., (12) holds) if and only if

〈h,π(λ◦)g〉 = s(
) δλ◦,0 for all λ◦ ∈ 
◦,

where 
◦ is the adjoint lattice of 
,


◦ = {λ◦ ∈ G × Ĝ : π(λ)π(λ◦) = π(λ◦)π(λ) for all λ ∈ 
}.

Gabor systems in L2(R) Recall that for every ω ∈ R the modulation operator Eω is given by Eω f (t) = e2πiωt f (t). A Gabor 
system in L2(R) generated by a function g ∈ L2(R) with time-frequency shifts from the lattice 
 = αZ × βZ, α, β > 0 is 
thus of the form

{π(λ)g}λ∈αZ×βZ = {Emβ Tnα g}m,n∈Z = {t �→ e2πimβt g(t − nα)}m,n∈Z.

Celebrated results in time-frequency analysis include the following: (A) the Gaussian function g(x) = e−πx2
[36,41] and 

all totally positive functions [18,17] generate a Gabor frame for L2(R) whenever α and β are such that αβ < 1; (B) the 
values of α, β and γ such that the Gabor system {Emβ Tnα1[0,γ ]}m,n∈Z is a frame for L2(R) is much more difficult to 
describe [25,6].

Gabor systems in L2(R ×Qp) For every ω = (ω∞, ωp) ∈ R ×Qp , the modulation operator Eω ≡ Eω∞,ωp on functions f over 
R ×Qp is defined by

Eω f (t∞, tp) ≡ Eω∞,ωp f (t∞, tp) = e2πi(ω∞t∞−{ωptp}p) f (t∞, tp), (t∞, tp) ∈R×Qp .

A Gabor system generated by a function g ∈ L2(R ×Qp) and the lattice


 = ψα(Z[1/p]) × ψβ(Z[1/p]) = {(αq,q, βr, r) : q, r ∈ Z[1/p]} , α,β > 0

is thus of the form

{π(λ)g}λ∈
 = {
(t∞, tp) �→ e2πi(βrt∞−{rtp}p)g(t∞ − αq, tp − q)

}
q,r∈Z[1/p].

Gabor systems in L2(AQ) For every ω = (ω∞, (ωp)p) ∈AQ the modulation operator Eω ≡ Eω∞,(ωp)p on functions f over AQ

is defined by

Eω∞,(ωp)p f
(
t∞, (tp)p

) = e2πiω∞t∞
∏
p∈P

e−2πi{ωptp}p f
(
t∞, (tp)p

)
, (t∞, (tp)p) ∈AQ.

A Gabor system generated by a function g ∈ L2(AQ) and a lattice


 = ϕα(Q) × ϕβ(Q) = {
(αq, (q)p, βr, (r)p) : q, r ∈Q

}
, α,β > 0

is thus of the form

{π(λ)g}λ∈
 =
{(

t∞, (tp)p
) �→ e2πiβrt∞

∏
p∈P

e−2πi{rtp}p g(t∞ − αq, (tp − q)p)
}

q,r∈Q.
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Gabor frames in L2(R × Qp) and L2(AQ) The following result describes that the construction of a Gabor frame in L2(R)

implies that certain functions generate Gabor frames for L2(R ×Qp) and L2(AQ).

Theorem 4.2. Let α, β > 0. For any two functions g(R) and h(R) in S0(R) the following statements are equivalent.

(i) g(R) and h(R) generate dual Gabor frames for L2(R) with respect to time-frequency shifts from the lattice αZ ×βZ.
(ii) For any p ∈ P, the two functions g = g(R) ⊗1Zp and h = h(R) ⊗1Zp in S0(R ×Qp) generate dual Gabor frames for L2(R ×Qp)

with respect to the lattice


 = ψα(Z[1/p]) × ψβ(Z[1/p]) = {
(αq,q, βr, r) : q, r ∈ Z[1/p]} ⊂ R×Qp ×R×Qp .

(iii) The two functions g and h in S0(AQ), defined by

g = g(R) ⊗1Z2 ⊗1Z3 ⊗ . . . and h = h(R) ⊗1Z2 ⊗1Z3 ⊗ . . . ,

generate dual Gabor frames for L2(AQ) with respect to the lattice


 = ϕα(Q) × ϕβ(Q) = { (
αq, (q)p, βr, (r)p

) : q, r ∈ Q
} ⊂ R×AQ,fin ×R×AQ,fin.

Corollary 4.3. For any g(R) ∈ S0(R) and α, β > 0 the following statements are equivalent.

(i) The function g(R) generates a Gabor frame for L2(R) with respect to the lattice αZ × βZ.
(ii) For any p ∈ P, the function g = g(R) ⊗1Zp generates a Gabor frame for L2(R ×Qp) with respect to the lattice


 = ψα(Z[1/p]) × ψβ(Z[1/p]) = {(αq,q, βr, r) : q, r ∈ Z[1/p]} ⊂R×Qp ×R×Qp .

(iii) The function g ∈ S0(AQ) defined by

g = g(R) ⊗1Z2 ⊗1Z3 ⊗ . . . ,

generates a Gabor frame for L2(AQ) with respect to the lattice


 = ϕα(Q) × ϕβ(Q) = {(
αq, (q)p, βr, (r)p

) : q, r ∈Q
} ⊂ R×AQ,fin ×R×AQ,fin.

Proof of Theorem 4.2. It follows from the description of S0 in Section 3 that the functions g and h in (ii) and (iii) belong 
to S0(R ×Qp) and S0(AQ), respectively. We only proof the equivalence between (i) and (iii) as the proof of the equivalence 
between (i) and (ii) is almost identical. Observe that s(
) = αβ and that the adjoint lattice to the lattice 
 in (iii) is the 
discrete and co-compact subgroup of AQ ×AQ given by


◦ = ϕ1/β(Q) × ϕ1/α(Q) = {(
β−1q, (q)p,α−1r, (r)p

) : q, r ∈Q
} ⊂ R×AQ,fin ×R×AQ,fin.

By Lemma 4.1, the two functions g and h generate dual Gabor frames for L2(AQ) if and only if they satisfy

〈h,π(λ◦)g〉 = αβ δλ◦,0 for all λ◦ ∈ 
◦. (13)

The tensor product form of g and h implies that (13) takes the form

〈h(R), Eα−1r Tβ−1q g(R)〉
∏
p∈P

〈1Zp , Er Tq1Zp 〉 = αβ δ(q,r),(0,0) for all q, r ∈ Q. (14)

Observe that a fraction q ∈ Q belongs to Zp for all p ∈ P if and only if q ∈ Z. Hence, if q ∈ Q\Z, then, for some p ∈ P
the support of the function 1Zp and Tq1Zp is disjoint. This implies that (14) is satisfied for all q ∈ Q\Z. Since modulation 
Er is turned into translation Tr by the Fourier transform on Qp , it follows from Parseval’s identity that also, for any given 
r ∈ Q\Z, the inner product

〈1Zp , Er1Zp 〉L2(Qp) = 0

for some p ∈ P. These two observations imply that we have verified (14) for all q, r ∈ Q\Z. It remains to show that (14)
holds for all q, r ∈ Z. If q, r ∈ Z, then 〈1Zp , Er Tq1Zp 〉 = 1 for all p ∈ P (we have normalized the Haar measure on each Qp

such that 
∫
Qp

1Zp = 1). This implies that we only need to verify

〈h(R), Eα−1r Tβ−1q g(R)〉 = αβδ(q,r),(0,0) for all q, r ∈ Z. (15)

Lemma 4.1 states that (15) is satisfied if and only if the two Gabor systems {Emβ Tnα g(R)}m,n∈Z and {Emβ Tnαh(R)}m,n∈Z are 
dual Gabor frames, which is (i). �
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A Balian–Low theorem The classical Balian–Low theorem for the Feichtinger algebra on the real numbers states that if 
g ∈ S0(R) and αβ = 1, then g cannot generate a Gabor frame for L2(R) over the lattice αZ × βZ ⊆ R × R̂. It is a natural 
question to ask whether the following general statement for locally compact abelian groups holds: suppose that g ∈ S0(G)

and that 
 is a lattice in G × Ĝ of the form 
 × 
⊥ with 
 a lattice in G . Then g should not generate a Gabor frame for 
L2(G) over 
?

It turns out that this does not hold for general LCA groups G and lattices 
, see [13]. However, it has been shown to 
hold for all lattices in second countable compactly generated LCA groups with noncompact component of the identity [28]. 
The groups AQ and R × Qp are both second countable with noncompact component of the identity, but not compactly 
generated, so the result in [28] does not cover these groups. Note that the lattice 
 = ϕα(Q) in AQ has annihilator 
⊥ =
ϕ1/α(Q). Thus, if αβ = 1, then ϕα(Q) × ϕβ(Q) ⊆ AQ × AQ is a lattice of the form 
 × 
⊥ (and similarly for the lattice 
ψα(Z[1/p]) × ψβ(Z[1/p]) ⊆ (R ×Qp) × (R ×Qp)).

Combining Corollary 4.3 and the classical Balian–Low theorem for the Feichtinger algebra on R, we obtain the following 
restricted Balian–Low type theorem for the groups AQ and R ×Qp :

Proposition 4.4. Let g ∈ S0(R), and let αβ = 1. Then the following hold:

(i) The function g ⊗ 1Z2 ⊗ 1Z3 ⊗ · · · ∈ S0(AQ) does not generate a Gabor frame for L2(AQ) over the lattice ϕα(Q) × ϕβ(Q) in 
AQ ×AQ .

(ii) The function g ⊗1Zp ∈ S0(R ×Qp) does not generate a Gabor frame for L2(R ×Qp) over the lattice ψα(Z[1/p]) ×ψβ(Z[1/p])
in (R ×Qp) × (R ×Qp).

The above result only holds for functions in S0(AQ) of the restricted form g ⊗ 1Z2 ⊗ 1Z3 ⊗ · · · with g ∈ S0(R) (and 
analogously for S0(R × Qp)). An interesting question is whether one can obtain the same conclusion for all elements of 
S0(AQ), and the first author is presently working on this.

Modulation spaces Modulation spaces were invented by Feichtinger in the early 1980s and can be defined on any locally 
compact abelian group, see, e.g., [9–11] and [14].

It is well known that the modulation spaces can be described using Gabor frames that are constructed with windows 
in S0 [14]. This characterization of the modulation spaces and the construction of the Gabor frames for L2(R × Qp) and 
L2(AQ) in Theorem 4.2 lead to the following.

Lemma 4.5. Let g ∈ S0(AQ) and 
 be as in Theorem 4.2(iii) such that {π(λ)g}λ∈
 is a Gabor frame for L2(AQ). The modulation 
space Ms,t(AQ), s, t ∈ [1, ∞] consists exactly of all elements σ ∈ S′

0(AQ) such that

‖σ‖Ms,t (AQ) :=
(∑

r∈Q

(∑
q∈Q

∣∣σ (
Eβr,(r)p Tαq,(q)p g

)∣∣s
)t/s

)1/t

,

with the obvious modification if s or t equal ∞.

In a similar way, the modulation spaces on R × Qp can be defined using the Gabor frames constructed as in Theo-
rem 4.2(ii).

It is well known that S0 ∼= M1,1, L2 ∼= M2,2, and that S′
0 = M∞,∞ .

In recent years, the modulation spaces have been used successfully as spaces of symbols in the theory of pseudo-
differential operators. For example, the space M∞,1 coincides with the Sjöstrand class. Among many we refer to, e.g., [15,
19].

4.1. Heisenberg modules

As described in [24], the construction of Gabor frames for L2(G) with time-frequency shifts from a closed subgroup 

 ⊂ G × Ĝ (where G is any locally compact abelian group and Ĝ its dual group) is equivalent to the construction of 
certain projections in the twisted group C∗-algebra C∗(
, c) where c denotes the cocycle coming from the Heisenberg 
representation [40]. We state briefly some of the theory of [24] for the case of the Gabor frames for L2(AQ) and L2(R ×
Qp) constructed in Theorem 4.2. This is the first example of a singly-generated Heisenberg module beyond the case of 
elementary locally compact abelian groups and it is not covered by the recent results in [24]. The equivalence bimodule that 
we use here is a suitable completion of the Feichtinger algebra on the respective groups. In contrast, the theory presented 
in [40] and [30,31] use completions of the Schwartz–Bruhat space S(G) and Cc(G), respectively, to construct equivalence 
bimodules between twisted group C∗-algebras of lattices in G × Ĝ .
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Heisenberg modules over R ×Qp For α, β > 0 we define the following two Banach algebras:

A = {
a ∈ B(L2(R×Qp)) : a =

∑
q,r∈Z[1/p]

a(q, r)Eβr,r Tαq,q, a ∈ �1(Z[1/p]2)
}
,

B = {
b ∈ B(L2(R×Qp)) : b = 1

αβ

∑
q,r∈Z[1/p]

b(q, r)
(

Eα−1r,r Tβ−1q,q

)∗
, b ∈ �1(Z[1/p]2)

}
.

Indeed, the norms ‖a‖A = ‖a‖1, ‖b‖B = ‖b‖1 (where a, a, b and b are related as above) turn A and B into involutive 
Banach algebras with respect to the composition of operators and where the involution is the L2-adjoint.

Observe that A and B are not generated by finitely many unitaries as is the case of the noncommutative 2-torus studied 
in relation to the construction of Gabor frames in L2(R) [35].

Elements in A and B act on functions in L2(R ×Qp) from the left and the right, respectively, by

a · f :=
∑

q,r∈Z[1/p]
a(q, r)Eβr,r Tαq,q f , f ∈ L2(R×Qp), a ∈ A,

f · b := 1

αβ

∑
q,r∈Z[1/p]

b(q, r)
(

Eα−1r,r Tβ−1q,q

)∗
f , f ∈ L2(R×Qp), b ∈ B.

We define an A- and B-valued inner product in the following way:

A〈·, ·〉 : S0(R×Qp) × S0(R×Qp) → A,

A〈 f , g〉 =
∑

q,r∈Z[1/p]
〈 f , Eβr,r Tαq,q g〉 Eβr,r Tαq,q,

〈·, ·〉B : S0(R×Qp) × S0(R×Qp) → B,

〈 f , g〉B = 1

αβ

∑
q,r∈Z[1/p]

〈g,
(

Eα−1r,r Tβ−1q,q

)∗
f 〉 (

Eα−1r,r Tβ−1q,q

)∗
.

One can show that

A〈 f , g〉 · h = f · 〈g,h〉B for all f , g,h ∈ S0(R×AQ).

Denote by A and B the C∗-closures of A and B inside B(L2(R × Qp)), respectively. The actions and algebra-valued inner 
products defined give S0(R × Qp), the structure of a pre-imprimitivity A-B-bimodule. It can thus be completed into an 
imprimitivity A−B bimodule, a Heisenberg module in the sense of Rieffel [40], which sets up a Morita equivalence between 
A and B . It is worth noting that, in this case, A is a twisted group C∗-algebra on the group Z[1/p] × Z[1/p]. These have 
been termed noncommutative solenoids by F. Latrémolière and J. Packer and are studied in [30–32], where they prove that B
is also a noncommutative solenoid.

Proposition 4.6 ([24, Theorem 3.14]). Let g, h be two functions in S0(R ×Qp) and consider the lattices


 = {
(αq,q, βr, r) : q, r ∈ Z[1/p]} and 
◦ = {

(β−1q,q,α−1r, r) : q, r ∈ Z[1/p]}
in (R ×Qp)2 with α, β > 0 as in Theorem 4.2. The following statements are equivalent:

(i) f = A〈 f , g〉 · h for all f ∈ S0(R ×Qp);
(ii) 〈g,h〉B is the identity operator on L2(R ×Qp);
(iii) g and h generate dual Gabor frames with respect to 
 for L2(R ×Qp);
(iv) A〈g,h〉 is an idempotent operator from L2(R ×Qp) onto V := span

{
π(λ◦)g

}
λ◦∈
◦ ;

(v) f = g · 〈h, f 〉B for all f ∈ S0(R ×Qp) ∩ V .

We close with a result on projections in A which follows from Theorem 4.2 by choosing for g(R) the Gaussian g(R)
0 (t) =

e−πt2
.

Proposition 4.7. Let g ∈ S0(R ×Qp) be the function defined by g = g(R)
0 ⊗ 1Zp , where g(R)

0 is the Gaussian, and consider the lattice


 = ϕα(Z[1/p]) × ϕβ(Z[1/p]) = {
(αq,q, βr, r) : q, r ∈ Z[1/p]} ⊂R×Qp ×R×Qp .

Then A〈S−1/2
g,
 g, S−1/2

g,
 g〉 is a projection in A if and only if αβ < 1.
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Proof. As shown in [35] the construction of projections of the form A〈g, g〉 is equivalent to the construction of tight Gabor 
frames. Since S−1/2

g,
 g generates the canonical tight Gabor frame the result follows from the result of Lyubarskii-Seip that 
{π(αk, βl)g(R)

0 }k,l∈Z is a Gabor frame if and only if αβ < 1. �
Heisenberg modules over AQ For α, β > 0 we define the following two Banach algebras:

A = {
a ∈ B(L2(AQ)) : a =

∑
q,r∈Q

a(q, r)Eβr,(r)p Tαq,(q)p , a ∈ �1(Q2)
}
,

B = {
b ∈ B(L2(AQ)) : b = 1

αβ

∑
q,r∈Q

b(q, r)
(

Eα−1r,(r)p
Tβ−1q,(q)p

)∗
, b ∈ �1(Q2)

}
.

The norms ‖a‖A = ‖a‖1, ‖b‖B = ‖b‖1 turn A and B into involutive Banach algebras with respect to the composition of 
operators and where the involution is the L2-adjoint. As in the case of R ×Qp described before, A and B are not generated 
by finitely many unitaries. Elements in A and B act on functions in L2(AQ) from the left and the right, respectively, by

a · f :=
∑

q,r∈Q
a(q, r)Eβr,(r)p Tαq,(q)p f , f ∈ L2(AQ), a ∈ A,

f · b := 1

αβ

∑
q,r∈Q

b(q, r)
(

Eα−1r,(r)p
Tβ−1q,(q)p

)∗
f , f ∈ L2(AQ), b ∈ B.

We define an A- and B-valued inner product in the following way:

A〈·, ·〉 : S0(AQ) × S0(AQ) → A,

A〈 f , g〉 =
∑

q,r∈Q
〈 f , Eβr,(r)p Tαq,(q)p g〉 Eβr,(r)p Tαq,(q)p ,

〈·, ·〉B : S0(AQ) × S0(AQ) → B,

〈 f , g〉B = 1

αβ

∑
q,r∈Q

〈g,
(

Eα−1r,(r)p
Tβ−1q,(q)p

)∗
f 〉 (

Eα−1r,(r)p
Tβ−1q,(q)p

)∗
.

One can show that

A〈 f , g〉 · h = f · 〈g,h〉B for all f , g,h ∈ S0(AQ).

In this case, as in the case with the group R ×Qp , we obtain from S0(AQ) an imprimitivity A–B bimodule, where A and B
denote the C∗-closures of A and B in B(L2(AQ)), respectively.

Proposition 4.8 ([24, Theorem 3.14]). Let g, h be two functions in S0(AQ) and consider the lattices


 = {
(αq, (q)p, βr, (r)p) : q, r ∈Q

}
and 
◦ = {

(β−1q, (q)p,α−1r, (r)p) : q, r ∈Q
}

in A2
Q

with α, β > 0 as in Theorem 4.2. The following statements are equivalent:

(i) f = A〈 f , g〉 · h for all f ∈ S0(AQ);
(ii) 〈g,h〉B is the identity operator on L2(AQ);
(iii) g and h generate dual Gabor frames with respect to 
 for L2(AQ);
(iv) A〈g,h〉 is an idempotent operator from L2(AQ) onto V := span

{
π(λ◦)g

}
λ◦∈
◦ ;

(v) f = g · 〈h, f 〉B for all f ∈ S0(AQ) ∩ V .

We close with a result on projections in A which follows from Theorem 4.2 by choosing for g(R) the Gaussian g(R)
0 (t) =

e−πt2
. The proof is analogous to the one of Proposition 4.7.

Proposition 4.9. Let g ∈ S0(AQ) be the function defined by

g = g(R)
0 ⊗1Z2 ⊗1Z3 ⊗ . . . ,

where g(R)
0 denotes the Gaussian, and consider the lattice


 = ϕα(Q) × ϕβ(Q) = {
(αq, (q)p, βr, (r)p) : q, r ∈Q

} ⊂ R×AQ,fin ×R×AQ,fin.

Then A〈S−1/2
g,
 g, S−1/2

g,
 g〉 is a projection in A if and only if αβ < 1.
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