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It is well-known (see Bolley et al. [3]) that there exists a contraction in Wasserstein
distance between the solution to the granular media equation and its unique steady state,
provided that the confining potential is strictly convex. Nevertheless, in the nonconvex
case, just few is known. In particular, we do not have a unique steady state under easily
checked assumptions if the diffusion coefficient is sufficiently small. Consequently, the
method of Bolley, Gentil and Guillin can not be applied in this setting. However, here,
we present a simple example (for the sake of the simplicity) of a double-well confining
potential, and we show the convergence to 0 of the Wasserstein distance between the
solution to the granular media equation and a related application (which characterizes the
steady states) of this solution.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

RESUME

Il est bien connu (voir Bolley et al. [3]) qu'il existe une contraction en distance de
Wasserstein entre la solution de I'équation des milieux granulaires et son unique état
d’équilibre, pour peu que le potentiel de confinement soit strictement convexe. Néanmoins,
dans le cas non convexe, on dispose de peu de résultats. En particulier, sous des conditions
simples a vérifier, il n’y a pas unicité de I'état d’équilibre. Par conséquent, la méthode de
Bolley, Gentil et Guillin ne peut pas étre appliquée sous ces conditions. Toutefois, ici, nous
présentons un exemple simple (par souci de simplicité) d'un potentiel de confinement a
deux puits, et nous montrons la convergence vers 0 de la distance de Wasserstein entre la
solution de I'’équation des milieux granulaires et une application (qui caractérise les états
d’équilibre) de cette solution.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper, we are interested in the following so-called granular media equation:

d o _8 028 o o V’ F/ o 1
gut(X)—a{Tauf(X)er(X)( (%) + *Mt(X))}, (1)

where the confining potential V has two wells and the interacting potential F is convex.

This partial differential equation has a natural interpretation in terms of stochastic processes. Indeed, let us consider the
following so-called McKean-Vlasov diffusion:

X7 = Xo+ 0B — [y (WT)' (X)ds )
W =V +FxL(X7) '
Here, % denotes the convolution. By u{, we denote the law at time t of the process X?. It is well known that the family of
probability measures {u{ ; t > 0} satisfies the granular media equation starting from £ (Xo).
The convergence (as the time goes to infinity) of uf towards a steady state has been proved in the convex case (see
[1-5]) and in the nonconvex case (see [8,9]).
We now give the assumptions on V and F.

Assumption 1. The potentials V and F satisfy the following hypotheses:

Let us point out that we take a simple example for the sake of the simplicity, but that we can consider a more general
double-well confining potential.
We also need an hypothesis of synchronization.

Assumption 2. We put p := o — sup —V" (x) = a — 1. We assume that p is positive.
xeR

Assumption 2 allows us to control u¢ for any t > 0.
We add a last hypothesis.

Assumption 3. There are exactly three invariant probabilities.

This hypothesis is satisfied provided that the diffusion coefficient o is strictly smaller than a threshold o, see [7,10].

We now introduce the material that will be used in the note.

By W,, we denote the Wasserstein distance: W (u; v)? = ,/ianE{(X - Y)2}, the infimum being taken for all pair of
random variables X and Y such that £(X) = and L(Y) =v.

By I1, we denote the application from the set of probability measures in R to itself defined by

exp[ ( +°‘2 X —am(u)x)] dx where m(uw) :=/xu(dx). 3)
jRexp[ ( +et yz—am(u)y)] R

Thanks to [7], we know that . is an invariant probability of diffusion (2) if and only if p = TT(w).

In [3], the authors obtained a convergence in Wasserstein distance of uf towards the unique invariant probability
measure by assuming that V is strictly convex, despite it is not uniformly strictly convex. Here, we aim to prove a similar
result in the nonconvex case. However, we slightly modify the type of convergence. Indeed, what we show is the following.

M()(dx) =

Theorem 4. There exists K > 0 such that for any s, t > 0, we have the inequality

Wa (s TH (1)) < Ke™ 42 sup m (i) = m (1) | - (4)
P re[s;s+t]

Thanks to [8,9], we know that uf weakly converges to an invariant probability ©” so that m (,u?) converges to m (,u”)
as t goes to infinity. This readily implies the following corollary.

Corollary 5. We have the limit: t_l)iToo W (5 T (uf)) =0.
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About the rate of convergence, the first term in (4) decreases exponentially and the second one is related to the rate of
convergence of t > m (u).

Remark 6. Also, one can wonder what is the limit of #7 among the three invariant probabilities. However, the question of
the basins of attraction is still open.

Let us point out that we are currently dealing with this question in a work in progress. The setting of this work is exactly

4 2 . . . . .
the same as here: V(x) := XI — "7 F(x) := %xz with o > 1 and o is sufficiently small. The main result more or less is the

following: if o is a probability measure with a compact support K C R%, then uf weakly converges towards w9, the
unique invariant probability with a positive mean provided that o is small enough.

2. Proof of Theorem 4

We now prove Theorem 4. To do so, we consider the following diffusion:
u
Y5t 9 = X? 4+ 0 (Bsgu — Bs) — / [V (Y2 ) + Froepd (Y2SF09) ] dr )
0

Equivalently to the stochastic differential equation (5), we can look at the partial differential equation

d

9 tx ——{G—zi x) + x)(V/x + F s pud x))} (6)
BuMU()_ax D) axﬂu( M () * Mgy ( .

We put 15" := £ <Y5‘5+t‘”>, which is also the solution to Equation 6. The assumptions of the note imply that V 4 F

gy, is uniformly strictly convex: V” 4+ o > p > 0. However, the unique invariant probability of diffusion (5) is IT (pc§’+[).
Consequently, we obtain

Wa (Hi’SH? 1 (:“?H)) < e PIWa (g T (1)) - ™)

According to [6, Theorem 2.13], we know that the first moment of u{ is uniformly bounded. We deduce the existence of a
constant K > 0 such that, for any s,t > 0, we have Wy (u?; T (1Z,,)) < K.

We now provide an upper-bound for the quantity W, (M(ST_H; Hf‘Sth). We remark that

d (Xngu - Yfz's-Hﬁ) = [_V/( §7+Ll) —Flapdy (Xngu) +V (YLSt’SH’U) +F ey (YLSI’S-H'”)] du.
As F'(x) = ax, we can write
d (Xngu - YLS[S-H’U) =- [V/ (X;’H) to ( ou—E [Xngu])
—V(YE) —a (Y ~E[XE,]) Jdu
= (W2 (X0h) — (W2 (5577) — a (B[XC,] ~ B[x2, ) ],

where W¢,, :=V + F x uJ,,. Consequently, we have

S+u
d
du | Xy = YR ’2 =—2(XZ — Vi) {(W&u)/ (XZu) — (W) ((Yfl*sﬁ’”)}
+20 (XZyy = Yy [m (1) —m (m)] -

Since W{,, is uniformly strictly convex ((W;’Jru)” > p > 0), we deduce the following

d
du |XTpy = Yo |2 < =2p|X7, — Y5 |2 20 | Xy — Y] sup m(wgyy) —m(d,)] -

uel0;t]
2
Consequently, the quantity £ |XZ,, — Yf,’”t’”‘ is nonpositive provided that [XZ,, — Yf,’”t’”‘ > & suPycjo.q M (1yy) —

s, s+t,0
YO

m(ud, ). Since X7 = , we immediately obtain that:

o
[ XZpu = Yo T < = sup [m(udy,) —m(nd)| -
P uel0;t]

2
Consequently, W (,us+t; H?’Ht) < E{ o

2
X% — YZ’SH"T‘ } < L (supyeqoe | (40) —m (4%,,)|)°, Which ends the proof.
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