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For multi-dimensional Fokker–Planck–Kolmogorov equations, we propose a numerical 
method which is based on a novel localization technique. We present extensive numerical 
experiments that demonstrate its practical interest for finance applications. In particular, 
this approach allows us to treat calibration and valuation problems, as well as various risk 
measure computations.
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r é s u m é

Nous proposons une nouvelle méthode numérique, utilisant une technique de loca-
lisation originale, pour résoudre des équations de Fokker–Planck–Kolmogorov multi-
dimensionnelles. Nous présentons des tests numériques extensifs qui démontrent l’intérêt 
pratique de cette approche pour les applications en finance. En particulier, cette approche 
nous permet de traiter les problèmes de calibration et de valorisation, ainsi que le calcul 
de mesures de risque variées.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous présentons une nouvelle méthode de calcul numérique pour les équations de Kolmogorov provenant de la finance 
mathématique. Cette méthode permet de résoudre le problème de la valorisation et le problème de la calibration de manière 
homogène. Tout d’abord, nous reformulons les équations de Kolmogorov grâce à un changement de variable motivé par la 
théorie du transport optimal. Un deuxième ingrédient essentiel dans notre méthode est la construction d’une grille de calcul 
dont la discrépance est optimale : les points de la grille sont obtenus à partir d’une suite de points de type (quasi-)Monte-
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Carlo, qui est transformée en une suite optimale par un système dynamique adéquat. Nos résultats numériques mettent en 
évidence la pertinence de cette approche pour des applications pratiques en finance.

1. Introduction and main strategy

1.1. Fokker–Planck–Kolmogorov equations

We denote by μ = μ(t, x) (t ≥ 0, x ∈ R
D ) the probability density measure of a stochastic process, in which the number 

of dimensions D is usually the number of risk sources (also called underlyings) in the applications in mathematical finance. 
We assume that this process defines, up to a variable change, a martingale process governed by a Fokker–Planck equation

∂tμ −Lμ = 0, Lμ :=
∑

1≤i, j≤D

∂i∂ j
(
aij(t, .)μ

)
, (1)

where A(t, x) := (
aij(t, x)

)
i, j=1,...,D ∈ R

D×D is a (possibly unknown) field of symmetric positive definite matrices. We also 
consider the adjoint of the above equation, that is, a backward Kolmogorov equation with unknown P = P (t, x) ∈ R

M

(defined for 0 ≤ t ≤ T and x ∈ R
D )

∂t P −L∗ P = 0, P (T , ·) = P T ∈ R
M , (2)

where L∗ P := ∑
1≤i, j≤D aij(t, .)∂i∂ j P denotes the adjoint operator and a final Cauchy data P T = P T (x) is prescribed at some 

(future) time T > 0. This equation typically is enjoyed by flows (of cash or asset) in mathematical finance. We can also treat 
nonlinear versions of (2), such as the optimal-stopping problem in which the mapping S = S(t, x, P ) : RD+1+M → R

E is 
interpreted as a “strategy”:

either ∂t P −L∗ P = 0 and S(t, x, P ) ≥ 0 hold, or else ∂t P −L∗ P ≥ 0 and S(t, x, P ) = 0. (3)

In this context, the following two rather distinct problems arise.

1.1.1. The calibration problem
This problem consists in solving for the probability measures μ(t, ·) satisfying (1) and we distinguish between three 

setups. First of all, the SDE-driven problem corresponds to a case where the matrix A = A(t, x) is known, for instance when 
the equation (1) arises from a stochastic process t �→ Xt ∈ R

D driven by a stochastic differential equation (SDE) dXt =
σ(t, Xt) dWt , where t �→ Wt is an uncorrelated Brownian motion and, in this case, one has A = 1

2 σ Tσ . In the second setup 
of interest, referred to as the model-free calibration, the matrix A = A(t, x) itself is an unknown of the problem and is 
determined such that μ(t, ·) satisfies a list of integral constraints at some (future) times T1, T2, . . . , T I > 0:∫

RD

P i(·)μ(Ti, ·) = Ci, i = 1, . . . , I, (4)

in which P i and Ci (referred to as observables) are prescribed. From a local volatility model “à la Dupire”, several methods 
are available in order to handle this (undetermined) problem and we refer to [4] for a review of the most commonly used 
methods. In a third possible setup, referred to as a scenario, the map t �→ μ(t, ·) is in fact prescribed.

1.1.2. The valuation problem
The probability measure μ(t, ·) being known at this stage, the second problem of interest consists in computing the 

operator L (for the model-free calibration) and solving the equation (3), which leads one to the output measure computed 
from the surface {t, x, P (t, x)}. There exist several numerical methods devoted to (2) and (3); see for instance [2] for a survey 
of Monte-Carlo methods (which are able to handle linear problems like (2) only) and PDE (partial differential equation) 
lattice-based methods (which are able to handle also nonlinear problems (3)). We emphasize that the whole “surface” 
{t, x, P (t, x)} must be computed in order to solve the nonlinear problem (3). Furthermore, even for linear problems like (2), 
this surface also contains the necessary information that is required for risk measurement applications (of operational or 
regulatory nature).

1.2. Application to mathematical finance

For instance, one could treat the scalar strategy S(t, x, P ) = P − (x − K )+ (with Q + := max(Q , 0)) corresponding to 
an optimal strategy for options having strike K ∈ R. The vector-valued function P = P (t, x) in general determines the fair
value of contracts under the strategy S , when the underlying stochastic process is worth x ∈ R

D at a future time t ≥ 0. The 
method we now propose provides a general framework since all the stochastic models usually defined by prescribing specific 
stochastic processes (such as normal, log-normal, stochastic volatility, local volatility or local correlation models) fit into the 
Fokker–Planck setting (1). Moreover, the applications in mathematical finance involve constraints of the form (4), which we 
can handle here. As stated above, all classical risk measurements can be deduced from the knowledge of the solutions to 
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Fig. 1. Different grids with Delaunay meshes.

(3). For instance, for operational measures, P t := ∫
RD P (t, ·)μ(t, ·) corresponds to the fair value if t = 0 (and future value if 

t > 0) of contracts viewed from today (t = 0), since 
∫
RD ∇ P (t, ·)μ(t, ·) computes its hedge, where ∇ := (

∂
∂xd

)
d=1,...,D is the 

gradient operator. Similarly for regulatory type measures, a Value At Risk (VaR) or a Credit Value Adjustment (CVA) can be 
expressed from the knowledge of the function t �→ P (t, ·).

1.3. Purposes and main ideas

The CoDeFi algorithm, as we call it, is based on several novel numerical techniques, which lead us to a framework for 
handling the calibration problem as well as the valuation problem possibly in high dimensions. Our algorithm is based on 
two main ingredients. First of all, a localization principle is defined from a change of variable which localizes the system 
of equations (3) to the unit cube, denoted � = [0, 1]D . To properly introduce this change of variable, we recall a standard 
result from the theory of optimal transport (cf. Villani [10]), going back to Brenier [1], allowing one to regard the quantile 
of a probability measure as a change of variable of the form:

μ(t, ·) = S(t, ·)#m, S(t, ·) = ∇h : � �→R
D , h convex, (5)

where S(t, ·)#m stands for the pull-back of the Lebesgue measure m on �. For our purpose, we think of S(t, ·) as a map 
inducing a relevant change of variable for Monte-Carlo methods. Together with a random generator, it allows us to sample 
any process at time t , by writing

E
t(P ,μ) :=

∫

RD

P (·)μ(t, ·) 	 1

N

∑
1≤n≤N

P ◦ S(t, Yn), n = 1, . . . , N, (6)

where Y = {Yn ∈ �}n=1,...,N ∈ R
N×D is made of random vectors. Our localization principle then consists in considering the 

following version of (3) (transported into the unit cube):

either
(
∂t P −L∗ P

) ◦ S = 0 and S(t, S, P ◦ S) ≥ 0 hold, or else
(
∂t P −L∗ P

) ◦ S ≥ 0 and S(t, S, P ◦ S) = 0. (7)

One important incentive for using the change of variables above is to transform the Fokker–Planck equation (1) and Kol-
mogorov equation (2) into self-adjoint problems. Indeed, one can check that [6]

∂t S = −∇ ·
(
(∇ S)−1 A ◦ S(∇ S)−1∇

)
S, ∂t(P ◦ S) = ∇ ·

(
(∇ S)−1 A ◦ S(∇ S)−1∇

)
(P ◦ S), (8)

where ∇· denotes the divergence operator. In particular, for the model-free calibration, we observe that, once S(t, ·) =
∇h(t, ·) is determined, then A ◦ S := (∂th)(∇2h)−1 provides a solution to the latter equation in (8). Notice that we are 
assuming in this Note that the Jacobian ∇2h is strictly positive definite. However, we can also cope with degenerate cases, 
corresponding to singular probability measures μ(t, ·), see [6] for details and, for earlier related work by the authors, see [5].

Our second main ingredient is a meshfree technique (cf. [3] for an introduction) in order to solve (7) using (8). Our 
motivation is that random sampling methods (such as Monte-Carlo ones (6)) are not sensitive to increasing the dimension 
of the problem. Our PDE-based method will use the sampling vectors Y as a mesh. In the rest of this Note, we build upon 
these two main ideas and we provide further details on the CoDeFi algorithm.

2. Grid generation, calibration and valuation algorithms

2.1. Grid generation

Throughout, we have two essentials parameters, that is, the number D of dimensions (i.e. the number of underlyings or 
risk sources in financial applications) and the number N of grid points. Let us discuss first the choice of the sampling set 
Y = {Yn ∈ �}n=1,...,N ∈ R

N×D , used as a mesh for the PDE computation. The CoDeFi algorithm is primarily a Monte-Carlo 
method and, in fact, could rely on any sampling set of the uniform law over � as a grid. For instance, Fig. 1 displays the plot 



P.G. LeFloch, J.-M. Mercier / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 680–686 683
of a two-dimensional grid with 200 points, based on a Delaunay mesh and using the Mersenne Twister generator mt19937 
(cf., for instance, [7]). Another alternative is to use quasi-random sequences: Fig. 1 displays a grid with 200 points using a 
Sobol low-discrepancy generator (cf. for instance [9]).

On the other hand, since the properties of the underlying mesh is essential in PDE methods, we propose here to use 
sequences that we call optimal discrepancy sequences, in order to generate the grid. See the right-most plot in Fig. 1. Such 
sequences reach the rate of convergence ε = O(1/N)% for sufficiently regular functions P in (6). Our sequences are deter-
mined by considering (for instance) the discrepancy functional D(Y ) = ∑

i, j=1,...,N ln |Yi − Y j |2 and the dynamical system 
d
dt Yi = ∑

j=1,...,N
Y j−Yi

|Y j−Yi |2 , corresponding to a steepest descent algorithm for this functional. The corresponding discrete 
scheme converges at exponential rate (up to a rescaling factor) toward (what we call) an optimal discrepancy sequence for 
the unit ball B(0, 1) ⊂ R

D . The numerical results presented in this Note were obtained by transporting such sequences into 
the unit cube [0, 1]D .

2.2. The model-free calibration algorithm

Our calibration algorithm search for a probability measure μ(t, ·) and, by standard optimal transport results, this is 
equivalent to finding the quantile S(t, ·) in (5). When the matrix A = A(t, x) is prescribed, we can solve directly the left-
hand-side equation in (8); therefore, we can now focus on the model-free calibration problem, i.e. the case when the 
quantile is required to satisfy the constraints (4).

Let μ0(t, ·) be a smooth “prior” probability measure (in practice, we use normal or log-normal processes as priors) and 
let S0(t, ·) = ∇h0(t, ·) be its quantile, which is known explicitly. From the numerical standpoint, we solve the calibration 
problem by finding a matrix S(t) = ∇Y h(t) ∈ R

N D , where ∇Y ∈ R
N D×N denotes a discretization of the nabla operator ∇ , 

satisfying for each relevant time Ti (cf. our notation in (4)):

h(Ti) := arg inf
h∈RN

∑
n=1,...,N

|∇Y h − ∇Y h0|22,
1

N

∑
n=1,...,N

P i(Ti,∇Y h) = C i, i = 1, . . . , I. (9)

This optimization problem with constraints does not guarantee that the solution h will be convex, that is, 
(
∇2

Y h(t)
)

n=1,...,N
need not be a field of symmetric positive definite matrices. However, h can always be made convex by a permutation; 
that is, we also need here to apply a reordering algorithm in order to compute the relevant permutation using optimal 
transport and we refer to [6] for the details. Consequently, starting from a set of calibrated times Ti , standard bootstrap 
and interpolation arguments allow us to recover the whole surface t �→ S(t) ∈R

N D for any desired times, as required. Note, 
moreover, that the constraints (4) may not always hold true but, since we solve a constrained minimization problem, the 
calibration step remains always stable in practice. We conclude this section by pointing out that the constraints (4) provide 
us with a quite general setup. In particular, we can use a set of constraints to match classical statistical measures exactly:

– expectations: we can match any of the D marginal expectations T �→ Fd(T ) := ∫
xdμ(T , ·) of any distributions using the 

constraint Fd(T , x) = xd in (4);
– variances: we can match any of the D marginal variances T �→ Vd(T ) of any distributions using the constraints 

Vd(T , x) = (
xd − Fd(T )

)2
in (4);

– correlations: we can match any correlation matrix T �→ Cd1,d2(T ) with d1, d2 = 1, . . . , D , using the constraints 
Cd1,d2 (T , x) = (xd1 −Fd1 (T ))(xd1 −Fd2 (T ))

Vd1 (T )Vd2 (T )
, 1 ≤ d1 < d2 ≤ D in (4).

2.3. The valuation algorithm

It remains to present the discretization of the transported Kolmogorov equation (i.e. the right-hand-side equation in (8)). 
This valuation phase arises once the calibration step has been performed, hence the discrete quantile S(t) = ∇Y h(t) ∈ R

N D

is known at this stage: it is either computed as described in Section 2.2 or prescribed a priori. We suppose also at this stage 
that the matrix A ◦ S(t) is also known. In particular, we can pick-up A ◦ S(t) := ∂th(∇2

Y h)−1 in the model-free calibration. 
Denote S(t) = ∇Y h with h 	 h(t, Y n)n=1,...,N ∈ R

N numerically convex (in the sense (∇2
Y h)n=1,...,N is symmetric positive 

definite at each point of the mes) and denotes P (t) 	
(

P (t, Yn)
)

n=1,...,N
∈R

N×M its numerical approximation. Then writing 
a semi-discrete scheme leads us to a scheme of the form

d

dt
P = −

(
∇Y · (∇2

Y h)−1 A ◦ S(∇2
Y h)−1∇Y

)
P = −B(t)P , P (T ) ∈R

N×M being prescribed, (10)

where ∇Y · := ∇T
Y approximates the divergence operator, B(t) = CT(t)C(t) ∈ R

N×N symmetric positive definite with C(t) :=√
A ◦ S(∇2h)−1∇Y ∈ R

N D2×N . Our scheme is dissipative in the sense that d ‖P‖2
N×M ≤ 0, hence a global existence result 
Y dt R
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Fig. 2. Qualitative and quantitative property of the SDE driven algorithm – Heston case.

Table 1
ρ = 0: Comparison with the modified Craig–Sneyd method (results provided using Quantlib), grids of size N × N . The theoretical value is 5.435503.

CoDeFi N = 6 N = 9 N = 12 Craig–Sneyd N = 30 N = 60 N = 120
Comp. 5.441709 5.43749 5.435855 5.446631 5.4380253 5.4361311
Err % 0.0571% 0.0183% 0.0032% 0.10226% 0.0232% 0.00578%
Conv. rate 4.168 3.917173 4.1603 2.0244 2.0440 2.0384

holds true. Let s ≤ t two consecutive times of this time grid (recall that time is reversed). Then the solution P (s) ∈ R
N is 

computed accordingly to

P (s) = �(t,s) P (t), �(t,s) :=
(

π(t,s)
n,m

)
n,m=1,...,N

∈R
N×N , (11)

where the matrix �(t,s) (the generator to the discrete transported Kolmogorov equation (11)) is computed explicitly using 
a θ scheme. This matrix �(t,s) can be interpreted in a Markov-chaining process setting: π(t,s)

n,m is the probability that the 
stochastic process jumps from the state Sn(t) ∈ R

D to the state Sm(t) ∈ R
D . Hence, an important property of this matrix 

is to be stochastic, reflecting the fact that the underlying process defines a martingale process. Obviously, this property 
is obtained after projecting the quantile t �→ S(t, ·) into a proper space of martingale mappings. Note that this stochastic
property implies the following discrete conservation of expectations for any time, for any solution P ◦ S to the transported 
Kolmogorov equation

C =
∑

n=1,...,N

P i(t, Sn(t)) := 〈P (t),1N〉
RN , 0 ≤ t ≤ Ti . (12)

Solutions to the nonlinear problem (3) are approximated adding nonlinear terms to the linear solution (11) at each time, as 
follows: P (s) = max

(
�(t,s) P (t), S(s, S(s), �(t,s) P (t))

)
. Hence, once the transition matrices �(t,s) computed, computing (3)

is mainly a matter of matrix–matrix multiplication.

3. Numerical experiments

3.1. SDE-driven algorithm example

Let us investigate our method for a bi-dimensional Heston process (κ, θ, r, ρ, ξ) defined by the SDE dXt = r(t, Xt) +
σ(t, Xt)dWt , with r(t, x) := (rx1, κ(θ − x2)), σ(t, x) =

( √
x2x1 0

ρξ
√

x2
√

1−ρ2ξ
√

x2

)
– a combination between a log-normal process 

and a CIR (Cox–Ingelson–Ross) process. This stochastic process is well-defined for 2κθ > ξ2, that is the condition for which 
the CIR process remains positive. The numerical test is as follows: consider the Heston process defined by (κ = 0.5, θ =
0.04, r = 0, ρ = 0, ξ = 0.1), with initial data X0 = (40, 0.04) and the function (call payoff) P (1y, x) := (x1 − K )+ , with K = 36
(where 1y stands for ‘one year’). We recall that there exists a closed formula to value this particular Heston Kolmogorov 
equation, giving benchmarks. These data are input in our algorithm, that computes the left-hand equation in (8) as a discrete 
quantile t �→ S(t) ∈ R

N×2. For instance, the three right-most figures in Fig. 2 show S(1y) for three different values of the 
correlation ρ = −1, 0, +1, N = 32 (hence including the two degenerate cases ρ = ±1). With this quantile, the Kolmogorov 
equation (right-hand-side equation in (8)) is solved using the scheme (10), and our result (line “Comp.” in Table 1) is 
compared with the modified Craig–Sneyd method, using N time steps of a N × N grid, computing the observed convergence 
rate of both methods in the last column (in this table, the total number of points being N × N). This table shows that our 
algorithm performs particularly well.

3.2. Model-free calibration algorithm – examples

The first example is one dimensional: consider Table 2, containing (few but) real constraints, corresponding to quotes 
of call options written over index S X5E having maturity 3 months (denotes as 3m), that is P i(Ti, x) = (x − Ki)

+ , Ti = 3m , 
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Table 2
Market values of European Call SX5E Mat 3m . Spot 3064.03.

Strike αi 0.8 0.9 0.95 0.975 1 1.025 1.05 1.1 1.2

Value C i 559.2 292.6 180.7 133.6 93.76 61.59 37.99 11.34 0.31

Table 3
Price of European Best-of options MAT 10Y.

MC N = 1048576 D = 1 D = 4 D = 16 D = 64

0.12578 0.35941 0.68796 1.0166

N = 32 0.128275 0.340435 0.678092 0.927398
N = 128 0.126521 0.349573 0.693397 0.982611
N = 512 0.125921 0.359632 0.688982 1.0144

Table 4
Call SX5E Mat 3m . Spot 3064.03.

Strike % Eur. Call values N = 16 N = 64 N = 256 N = 1024

0.8 559.224 650.54 650.54 650.54 650.54
1 93.76 103.16 104.19 104.33 104.37
1.2 0.31 0.31 0.31 0.31 0.32

Computational time 0.02 s 0.06 s 1.52 s 77 s

Fig. 3. Left: Calibrated SX5E quantile for N = 256, D = 1. Others: P (T , S) at different retropropagation times, N = 256.

Ki := αi S(0) (see our notation (4)). Then the leftmost Fig. 3 shows a quantile calibrated to these quotes at time 3m using 
the calibration and the reordering algorithm (which amounts to reorder by increasing values in one dimension).

To illustrate the behavior of this calibration algorithm in large dimensions and for a large number of constraints, we now 
consider an independent log-normal process Xd = eZd/10, d = 1d (one day), where Zd denotes a standard normal process. 
Table 3 presents, for D = 1, 4, 16, 64, N = 32, 128, 512, the computation of the expectation (6) for the function P (T , x) =
(|x|∞ − K )+ , with K = 1 (called a best-of option), where |x|∞ = supd=1,...,D(|xd|), and T = 10Y . Table 3 – line MC – presents 
reference computations using an N = 1048576 × D sequence of a pseudo-random Mersenne twister MT19937, which are 
confident with a relative error estimated at 0, 1% 	 1/

√
1048576. The others columns present the same computations, but 

using calibrated sequences S(T ), matching all expectations, all variances, and the whole correlation identity matrix, that is 
2144 constraints for D = 64. Indeed, we noticed that this calibration procedure accelerates the convergence of Monte-Carlo 
sampling (6), as could be expected.

3.3. Valuation algorithms

Our test here, which consists in solving (3), with the same data as presented in Table 2, but using the strategy S(t, x, P ) =
P − (x − Ki)

+ , corresponds to an option exercise. We considered the data set in Table 2 to calibrate the underlying process 
at time T = 3m , see Fig. 3 at time T = 3m . The qualitative properties of the solution are plotted in a series of three figures, 
illustrating the retro-propagation step for the special case Ki = 3064. The first one, the second one in Fig. 3, represents the 
initial conditions at time T = 3m . It plots more precisely the surface {S3m

n , P (3m, S3m
n )}n=1,...,256. The second one, the third 

one in Fig. 3, plots the solution at time t = 1m , {S11m
n , P (1m, S1m

n )}n=1,...,256. The third one plots the solution at time t = 6d , 
{S6d

n , P (6d, S
6d
n )}n=1,...,256, which is the last computation time.

Expectations of the solution at time T = 6d , which corresponds to fair options prices, are presented in Table 4, with 
different numbers of points N – we recall that N drives the accuracy of the computation – and different strikes Ki , but the 
same as that used for the calibration process. It has already been noted that these numerical schemes are very stable and 
accurate [8], as confirmed by this table.



686 P.G. LeFloch, J.-M. Mercier / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 680–686
References

[1] Y. Brenier, Polar factorization and monotone re-arrangements of vector-valued functions, Commun. Pure Appl. Math. 44 (1991) 375–417.
[2] M. Broadie, J.B. Detemple, Option pricing: valuation models and applications, Manag. Sci. 50 (2004) 1145–1177.
[3] G.E. Fasshauer, Meshfree methods, in: M. Rieth and, W. Schommers (Eds.), Handbook of Theoretical and Computational Nanotechnology, vol. 2, Ameri-

can Scientific Publishers, 2006.
[4] C. Homescu, Implied volatility surface: construction methodologies and characteristics, preprint, arXiv:1107.1834, unpublished work.
[5] P.G. LeFloch, J.-M. Mercier, Revisiting the method of characteristics via a convex hull algorithm, J. Comput. Phys. 298 (2015) 95–112.
[6] P.G. LeFloch, J.-M. Mercier, Tackling the curse of dimensionality, in preparation.
[7] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. 

Comput. Simul. 8 (1998) 3–30.
[8] J.-M. Mercier, Optimally transported schemes and applications in mathematical finance, notes available at http://www.crimere.com/blog/jean-marc/

?p=336, November 2008.
[9] I.M. Sobol, Distribution of points in a cube and approximate evaluation of integrals (in Russian), Ž. Vyčisl. Mat. Mat. Fiz. 7 (1967) 784–802.
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