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RESUME

Dans cette Note, nous construisons des déformations intégrables des équations de
Maxwell-Bloch en modifiant leurs constantes de mouvement. Nous obtenons deux
réalisations Hamilton-Poisson du nouveau systéme. De plus, nous prouvons que le
systéme obtenu admet des réalisations Hamilton-Poisson infiniment nombreuses. Nous
présentons une approche Hamilton-Poisson du systéme obtenu en considérant deux
fonctions particuliéres de déformation.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

La construction des déformations intégrables a été étudiée dans des articles récents [1,5].

Dans cette Note, nous construisons des déformations intégrables des équations de Maxwell-Bloch [4]. Nous montrons
qu'une telle déformation intégrable est un systéme bi-hamiltonien. De plus, nous analysons une déformation intégrable
particuliére des équations de Maxwell-Bloch. Plus précisément, nous établissons la stabilité de Lyapunov des points d’équi-
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libre et nous prouvons I'existence d’orbites périodiques autour de ces points. Nous présentons les liens entre la fonction
énergie-Casimir et les éléments dynamiques susmentionnés.

1. Introduction

In recent papers, the construction of integrable deformations of a given integrable system was studied. In [1], considering
Poisson-Lie groups as deformations of Lie-Poisson (co)algebras, integrable deformations of both uncoupled and coupled
versions of certain integrable types of Réossler and Lorenz systems were given. In [5], using the fact that the constants of
motion uniquely determine the dynamical equations, integrable deformations of the Euler top were constructed.

In this paper, we construct integrable deformations of the three-dimensional real valued Maxwell-Bloch equations. The
Maxwell-Bloch equations have significant importance in optics. These equations represent a model used to describe the
interaction between laser light and a material sample composed of two-level atoms [4].

The paper is organized as follows.

In the second section, we prove that the constants of motion uniquely determine the Maxwell-Bloch equations, up
to a parameterization of time. Using this property, we construct integrable deformations of the Maxwell-Bloch equations.
In the third section, we show that such integrable deformation is a bi-Hamiltonian system. Moreover, this system has
infinitely many Hamilton-Poisson realizations. In the last section, we analyze a particular integrable deformation of the
Maxwell-Bloch equations. More precisely, we establish the Lyapunov stability of the equilibrium points, and we prove the
existence of the periodic orbits around these points. We also present the connections between the energy-Casimir mapping
and the aforementioned dynamical elements.

2. Integrable deformations of the Maxwell-Bloch equations

In this section, we construct integrable deformations of the three-dimensional real valued Maxwell-Bloch equations. We
use the method considered in [5].
We recall that the equations

X=y, y=xz, z=—xy (M

are called the three-dimensional real valued Maxwell-Bloch equations [4]. Moreover, two constants of motion in involution
of system (1) are given by

1, 1, 15

Lhx,y,2)==x"+z, h(x,y,2)= -y + =z°. (2)
2 2 2

Let us prove that equations (1) are uniquely determined by these constants of motion, up to a parameterization of time.

Indeed, differentiating the above constants of motion (2), we get

. 1. . z.
X=——2, y=—=12.
X y

Considering z= —xyf, where f = f(t) is an arbitrary continuous function, we obtain

x=yf, y=xzf, z=—xyf.

. . . . . . . dx dx dt
Using the transformation t = t(t), where t is the new time variable, given by 7 = f(f f(s)ds, it follows Fral i
1 d dz
yf - 7 = y(t). Analogously, we obtain d—y =x(1)z(7), F —x(t)y(t), as required.
T T
The above property of equations (1) allows constructing integrable deformations of the Maxwell-Bloch equations altering
their constants of motion. More precisely, let us consider the new constants of motion C; and Cy given by

1, 1,, 15
Cixy. )= x+z+axy.2) and Q&y. =5y + 52 +pxy.2), 3)
where o and B are arbitrary differentiable functions.
By (3), we have
.. da., da. du, . . 0dB. 9B. O0B.
XX+Z+ —X+_—y+-—-z=0, yy+zz+ —ﬁx—i——ﬂy—i——ﬂz:O,
ox oy 0z ax ay 90z

or equivalent,

ok i 5 (1429 P (y+ LB y=— (24 L)
ax ayy_ 9z )7 ox Y dy y= 9z )"
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Solving this algebraic system and denoting Z as below, we obtain the following integrable deformation of the Maxwell-Bloch
equations:

. o da 9B da 9B da 9B
X=y—z—+y—+ + 5T
ay dz dy dy 0z 0dz dy
- da  Ip a8  da 9B da IB
Y R e Tox ez Tax 9z 9z ax
a a doa 0 do 9
ax dy ox dy dy 0x

(4)

It is obvious if & and B are constant functions, then (4) reduces to (1).
3. Hamilton-Poisson realizations of the integrable deformations of the Maxwell-Bloch equations

In this section, we determine two Poisson brackets on C*°(R3 R). As a consequence, we obtain two Hamilton-Poisson
realizations of system (4). Moreover, since the Poisson brackets are compatible, it follows that the considered system is
bi-Hamiltonian. We also prove that system (4) has infinitely many Hamilton-Poisson realizations.

Firstly, we consider that C; (3) is a Casimir function of the Poisson bracket {.,.};, denoted in matrix notation by ITj.
Thus, the condition IT; - VC1 = 0 implies

oo o
—xyh+ 1+ )%z =0,
ay 0z

9 9
<X+ 8_04) {x,yh = (1 + —a> {y,zh, (5)
X 0z
9 9
<x+ 8—‘::) {x, 21 = —g{y,z}y

We also impose the condition that C; (3) to be the Hamiltonian of system (4), namely IT; - VCy = (, ¥, 2)':

(y + %> x.yh + <Z+ %) {x,z}1 =&,
ay 0z

0B B .
——&yh+|z+ - ){y.zh =7, (6)
ax 0z
) a .
——ﬁ{x, Zh—(y+ o {y.zh ==z
X ay
Considering (5)-(6) as an algebraic system, and using (4), we obtain:
o oo o
, =1+ —, {x, =——, = - 7
xyh=1+ P {x, z}1 3y v, zh=x+ ™ (7

The Jacobi identity is checked in coordinates, thus {.,.}; given by (7) is a Poisson bracket. Consequently, (R3, {.,.}1, C2) is a
Hamilton-Poisson realization of system (4).
Analogously, considering C, to be a Casimir function of the second Poisson structure IT,, and C; the Hamiltonian, we
obtain
ap ap ap
% yla=-z 57" X zha=y+ 3y’ v,z = " (8)
Furthermore, (R3, {.,.}2, C1) is a Hamilton-Poisson realization of system (4). In addition, it immediately follows that IT; 41T
is a Poisson structure. Thus, the Poisson brackets {.,.}; and {., .}, are compatible. Taking into account system (4) has the
form T1; - VC, =TI, - VC1 = (%, y, 2)%; it is a bi-Hamiltonian system.

Now, since ITy + I is a Poisson structure, it follows that I, = ally + bII, is a Poisson structure for every a,b € R.
Considering c,d € R such that ad — bc =1, and the functions H. g4 = —cCq1 +dCy, Cqp =aCy —bC2, we have Iy - VCqp =0,
and Iy - VHc g = (%, 3, 2)'. Consequently, system (4) has infinitely many Hamilton-Poisson realizations (R, Iy, He 4)
indexed by a,b,c,d € SL(2, R).

4. A particular integrable deformation of the Maxwell-Bloch equations

In this section, we consider particular functions o and 8. We study the dynamics of system (4) in this particular case,
namely the stability of the equilibrium points and the existence of the periodic orbits around these points. Moreover, we
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give the image of the energy-Casimir mapping associated with the considered system. We also present the classification of
the topology of the fibers of the energy-Casimir mapping.

k
Let us consider the functions a(x, y,z) = Eyz and B(x,y,2) = where k € [0, co) is a deformation parameter. In this

k
2x2°
case, system (4) becomes

) . ko, k2
x=y—kyz, y=xz+ =, z:—xy——3y. 9)
X X
We observe that system (9) is invariant under the transformation (x, y, z) — (—x, —Y, z). Therefore, we analyze this system
in the case x € (0, 00).
The constants of motion of system (9) are given by (3):

2

Considering C a Casimir function and H the Hamiltonian, system (9) has the Hamilton-Poisson realization (e(1,1)*,
{.,.}1, H), where the Poisson bracket {.,.}; given by (7) is in fact a modified Lie-Poisson bracket on the dual of the Lie
algebra e(1, 1) corresponding to the three-dimensional Lie group of rigid motions of the Minkowski plane, E(1, 1) (see, for
example, [6]). For details about modified Lie-Poisson structures see, for example, [10].

The equilibrium points of system (9) are given by the family £ = {(M, 0, —#) :M € (0, 00)}. It is easy to see that all the
equilibrium points of £ are Lyapunov stable [11], via the Lyapunov function

Ly =t (12 2+M4+k2 ALY P : (10)
VA= T w2 TR M4 )

1, k, k1, 1,
C(x,y,2)=5x +5y +2z, H(x,y,2)=ﬁ+§y + =z

In the following, we prove the existence of the periodic orbits of the considered system. The eigenvalues of the Ja-
cobian matrix corresponding to system (9) at the equilibrium point ey := (M, O, —%) are A1 =0, A23 = fiw, where

w= #\/(M“ + k2)(M® 4+ 4k). Thus, we can apply a version of the Moser theorem in the case of zero eigenvalue regarding
the existence of periodic orbits around a nonlinearly stable equilibrium point (Theorem 2.1, [2]). Indeed, the function L (10)
is a constant of motion of system (9) that satisfy dL(ey) =0 and d?L(ep)|wxw > 0, where W = spang {(1, 0, —M), (0, 1, 0)}.
Consequently, for each sufficiently small ¢ € R* , any integral surface

k(1 x \2> M*4K? 1 k )2
yem . (- — — T2z =) =2
& 2<x M2>+ 2M*4 y+2(+M4
contains at least one periodic orbit of system (9) whose period is close to %"

The Poisson geometric frame of the considered system allows considering the energy-Casimir mapping [12] correspond-
ing to (9):

k 1 1 1 k

EC:R3 > R?, EC(x,y,2) = (ﬁ + iyz + 522’ 5"2 + §y2 +z> . (11)
Taking into account the connections between the images of the energy-Casimir mapping and the dynamics of some partic-
ular systems of differential equations [3,6-9,12], it is natural to ask whether the same properties are obtained in our case,
namely if the boundary of the set Im(£C) C R? is the union of the images of the stable equilibrium points through £C, and
the image of the energy-Casimir mapping is convexly generated by these images, as well as if the fibers corresponding to
the points that belong to the interior of the set Im(£C) are periodic orbits.

The image of £C is the set In(EC) = {(h,c) e RZ|(A)(x, y,2) e R?: EC(x, y, z) = (h, ¢)}. In some cases, this set is obtained
from the algebraic system H(x, y,z) =h, C(x, y, z) = c. From geometric point of view, in our case this system has solutions
if and only if the surfaces Xﬁz + y% + 7% =2h, x* + ky? + 2z = 2c have nonempty intersection (Fig. 1).

We notice that £EC(ey) = (ﬁ + % MTZ - % ot (h3,, c3p). Considering the function f(x,y,z) = X% +y2+27>—2h and
the constraint x2 + ky® + 2z = 2c},, we obtain that ey is a local minimum point of f. Taking into account the behavior of
the aforementioned surfaces when h and c vary, we obtain that for every fixed value of ¢, c =cf;, Im(£C) is an empty set
for h < h$;. We conclude that Im(£C) is convexly generated by the points of the curve Im(EC)|g given parametrically by
the equations h = ﬁ + % c= MTZ — k. Me(0,00) (Fig. 2).

Now we present the connexions between the image of the energy-Casimir mapping and the dynamics of system (9).
For each (h, c) € Im(EC), a fiber of the energy-Casimir mapping is the set Fp) ={(x,y,2) € R3:EC(x,y,2) = (h,c)}. We
deduce that for every (h,c) € dIm(£C), there is M € (0, 0o) such that F ) = {em}. Furthermore, if (h,c) € Int(Im(EC)),
then F () is a periodic orbit (Fig. 1, right). Therefore, there are two types of fibers: nonlinearly stable equilibrium points,

and periodic orbits.
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Fig. 1. Relative positions of the surfaces H(x, y,z) =h, C(x, y, z) = c. (Position relative des surfaces H(x, y,z) =h, C(x,y,z) =c.)

A

=Y

Im(EC)|g

Fig. 2. The image of the energy-Casimir mapping. (L'image de la fonction énergie-Casimir.)
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