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Deformations and infinitesimal methods

Formal methods

Deformations RESUM E

Hermitian and Kdhlerian manifolds

Nous introduisons un isomorphisme canonique entre I'espace des formes différentielles
complexes de type pur sur une variété complexe, compacte, et celui de ses déformations
infinitésimales, et nous l'utilisons pour généraliser la formule d’extension récemment
obtenue par K. Liu, X. Yang et le second auteur. Comme corollaire direct des formules
d’extension, nous établissons plusieurs théorémes d’invariance par déformation des
nombres de Hodge des variétés complexes, sans avoir recours a l'inégalité de Frolicher
ou a I'invariance topologique des nombres de Betti.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

This paper aims at studying the deformation invariance of Hodge numbers using an iteration method to construct an
explicit extension of Dolbeault cohomology classes.

Let w : X — A be a holomorphic family of n-dimensional compact complex manifolds with the central fiber 7 ~1(0) = Xg
and its infinitesimal deformations 7 ~1(t) = X;, where A is a small disk in C for simplicity. Then there exists a transversely
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holomorphic trivialization Fy : X @.n) Xo x A (cf. [20, Proposition 9.5] and [3, Appendix A]), which gives us the Kuranishi
data ¢(t) (or ¢), depending holomorphically on t, with the integrability

= 1
dp() =S le®, ¢O]- (11)

Fix an open coordinate covering {Ll (w ) eU% U% e Ll} of X, with a restricted covering {ilo z e UJ :=U*M Xo,

U*¥MXo € LLO} of Xo. As we focus on one coordinate chart, the superscript « is suppressed. As in [3,10,9], the operator el¢
is defined by

o0 ]
ip _ Z 14
¢ k!l“”
k=0

where ¥ denotes k times of the contraction operator i, = ¢ and '@ is similar efined. It is known that {e» (dz!)}-
here i, denotes k t f th tract perator i, = ¢ and e' larly defined. It is that {e'v (dz')}_,
*(1 9 and T*(O 1)

and {elv (dz )} ', are the local bases of Ty , respectively. Inspired by these, we introduce:

Definition 1.1. A canonical map between AP:9(Xp) and AP-9(X;) is defined as:

elvliv: AP9(Xo) —  API(Xp)

w > elelio (),
where
ioliz 1 i (4, i i (=it —j
e?'? (w) = Z —— Wiy, ip: 1, ] (z)(eW (dz1 /\--~/\dzp))/\(ev> (dz .- ndz q))
plgt hE
i1,,ip
J1. g
and o is locally written as ), ... .ip p,q,a)l1 dpiite g (z)dz'A1 A-ondZP Adzit AL dZie,
J1. ]q

It is easy to check that e/ is independent of the choice of the local coordinates and is actually a real isomorphism.
From the explicit formula of ¢ (cf. [11, pp. 150]), a careful calculation yields:

Lemma 1.2.
dw® = % (eiw (dz’))
__ —1\J 1n\J
P = ((11 -9 (5%) )a ((11 o) 1o (3L)” )a 27
where @@ := ¢ 1@ and @ is similarly defined.

awe — i )
Corollary 13. 24 78 = (1 — ¢p) )i L-(a-907'%) &
Then we get the following useful local formula:

Lemma 14. .
d (eiW (dz’)) = ((IL —gp)"! @)i z—gj (ei(f’ szk) A (eiq’ szj)
((IL oP)~ )l z(p]il (e'vudz ) A (ei‘hdzj),
which describes the d-operator under the local frames {el¢ (dz ) (dz )}l 1°

Using these, one has:

Proposition 1.5. Let f be a smooth function on Xy. Then

df =evlio((1—9) "0 - P + 1 -F9) @ —g0)f).
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Since df can be decomposed into 9, f + 9, f on X, 3;f = ei¢|i¢((]l —20) 1@ - gp_,a)f). Thus f is holomorphic with
respect to the complex structure of X; if and only if

(0 —¢ad)f =0,

by the invertibility of (1 — @g)~!.. Hence, we reprove this important criterion (cf. [13] and also [11, pp. 151-152]) in the
deformation theory.
Then we get two extension formulas on (p, 0) and (0, q)-forms.

Proposition 1.6. For w € AP9(Xy),
d(e'v'' (w)) = ei¢Ii¢< (1 —99) "' 40w + d(pw) — Y 1dw)
+ (1 - ¢@) " Jdw — pdw — (1 — @)~ @) (e + a(gaJw))).
Corollary 1.7. For w € A%9(Xy),
d(e™i7 (w)) = e"w“vf( (1 - ¢9) (0w + (@) — Padw)
+ (1 —¢) ' Jdw — qdw — (1 —9p) ! Lp) 20w + 5(@@))).

Based on these two, we use the iteration method, initiated by [10] and developed in [16,17,9,22], to achieve two theo-
rems on deformation invariance of Hodge numbers, by constructing explicit extension, without use of Frélicher inequality
or the topological invariance of Betti numbers (cf. [6, Section 5.1] and [20, Section 9.3.2]). We need:

Definition 1.8. Define a complex manifold X € £P:9, ©P-4 and BP9, if for any d-closed dg € AP9(X), the equation
0X=10g

has a solution, a d-closed solution and a d-exact solution, respectively. It is obvious that BP9 C ®P-9 C £? and that X,
satisfying the 99-lemma, lies in BP9,

Set h?? = dimc HP9(X;, C). Then:
Theorem 1.9. For 1 < p < nand Xo € DP-' N EP10, kP are independent of t.

Theorem 1.10. For 1 < q <nand Xo € B9 N 70N D91 with all 1 <q' < g, h>*? are independent of t.
By Theorem 1.9 and the standard Hodge theory on compact complex surfaces (such as in Section IV.2 of [2]), we obtain:
Corollary 1.11. All the Hodge numbers of a compact complex surface are infinitesimal deformation invariant.

For the jumping phenomenon of Hodge numbers, we refer to [12,21]. More generally than Proposition 1.6 and Corol-
lary 1.7, we achieve:

Proposition 1.12. For w € A**(Xo),
d (el (@)) =€ (90 + (991 — @) ) s — 0 (921~ 99~ ) o) + (8 (P = 9P ) ) 0
- (P -9 ") H0+3 (P -9 ")) - (32— 99" 7) 0
+30+ (01 - 59) ") 00 -3 ((Fe —Pp) ) 0) + (3 (1 - 79) ")) 0
~ (e -9 )00+ ((01 -F9) ")) - (31 -20) " p) ).

More details and applications (especially for Proposition 1.12) will appear in [15].



982 Q. Zhao, S. Rao / C. R. Acad. Sci. Paris, Ser. 1 353 (2015) 979-984

2. The ideas of proofs

We shall describe the main ideas in the proofs of Theorems 1.9 and 1.10 in this section. Throughout this section, X;
is assumed to be determined by the integrable Kuranishi data ¢(t) = Y 2, tkp, with (1.1). Theorem 1.9 is obtained by
Kodaira-Spencer’s upper semi-continuity theorem and the following iteration procedure.

Proposition 2.1. Let Xg € ©P-1 N EPH1-0, Then for any holomorphic (p, 0)-form o on Xo, there exits a power series
e¢]
oy =09+ Ztkak € AP°(Xo),
k=1
such that ele® (o;) € AP-9(X;) is holomorphic with respect to the complex structure on X.
Sketch of proof. By Grauert’s formal function theorem [5], we only need to construct o¢ order by order. Proposition 1.6
yields that the holomorphicity of e'¢® (o) is equivalent to the resolution of the equation
90 = —3(@(t)10p) + (1) 100

- -1
by the invertibility of the operators e'v0!5® and (]1 - go(t)go(t)) _i. By comparing the coefficients of t¥, it suffices to resolve
the system of equations

909 =0,
a0 = —0(XK | @isoi_i), for eachk > 1, (2.1)
0o, =0, for each k > 0.

By Xo € EPT1.0, the equation dx = dop has solutions, which implies doo = 0 by type consideration. Let's resolve (2.1)
inductively. Since Xo € ©P-1, our task is to verify

k
30(Y_ pi101—i) =0

i=1
for k> 1. Set n, = —B(Zf=1 @iok—;) for simplicity. For k =1, one has

N1 = —30(p1.00) = 3(d¢1 200 + ¢1900) =0

since d¢; =0 by (1.1) and 3o = 0. Thus o7 is got by Xo € ©P-1. By induction, we assume that (2.1) is solved for all k <1
and thus we have doy =0 for 0 <k <I. By Xg € ©P'1, we only need to show 37,1 = 0. We resort to a useful commutative
formula (cf. [18,19,1,4,3,7-9]) on a complex manifold X. For ¢, ¥ € A%1(X, Ty%) and & € A**(X),

(¢, Yoo = =0 a(dae)) — Y u(pda) + o0 (Vo) + a9 (P).

Hence, by this formula and (1.1), one has

141 !
g1 =19 <25<ﬂi401+1i + Z@i—fgahrli)

i=2 i=1
s I+1—i
= ZZ[‘P} Qi—jlaoip1—i Z@Ha Z QjI011—i—j
i=2 j=1
1 I+1 i-1
=9 EZZ( ()2 (¢i-j10141-i)) = 9} 20i- 200141
i=2 j=1
+ 910 (Pi—j1O141—i) + Pi—j 0 (QDjJUlH—i))
I I+1—i
—Z%Ja Z QIO 41—i—j
i=1 j=1
I 41—
=9 Z 919 (@i-j10111-i) —Z Z ©i20 (@jo0111-i—j)
1<j<i<l+1 i=1 j=1

=0. |
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The proof of Theorem 1.10 is a bit different from that of Theorem 1.9 and we need:

Lemma 2.2. (See [14], Lemma 3.1.) Each Dolbeault class [o] of type (p, q) on a complex manifold X € BP+14 can be represented by a
d-closed (p, q)-form yy.

Lemma 2.3. Let yy, and Yy, be two d-closed representatives of the same Dolbeault class [a1] = [«2] as in the above lemma on
X € £99N B9, Then Yy, = Y-

Proof. From yu, = + 3By, i = 1,2, there exists some 8 € A%9~1(X) such that
Yoy = VYou = 9.

Since yy,, Ya, are d-closed, we have 898 = 0. Hence, by X € £99, the equation
ax=20p

has solutions. From type consideration, 38 = 0, which implies Ya; =VYap- O

We shall construct a correspondence from H%9(Xq) to H*9(X,) by sending [] € H*9(Xp) to [ (v (t))] € H®I(X,),
where

o
Ve =vo + Y vat' € A%(Xo).

k=1
Here y, is uniquely determined by the Dolbeault class [«] from the above two lemmas. To guarantee that this correspon-
dence cannot send a nonzero class in H%9(Xg) to a zero class in H%9(X;), one needs h?‘q*1 = hg‘qq. Therefore, for each

1 < q <n, we use induction to reduce Theorem 1.10 to the following proposition with all 1 <¢q’ <gq.

Proposition 2.4. Let X € BlLd' Mgl 0nDI1, Then for any d-closed (0, q')-form og on Xo, there exits a power series on Xg
oo
ot =00+ Y tor € A% (Xo)
k=1

such that eim(at) € onq/(Xt) is 3;-closed with respect to the complex structure on X;.

Sketch of Proof. By Corollary 1.7, the invertibility of the operators eleolige yields that the desired 3;-closed condition is
equivalent to the resolution of the equation

N -1 _ _ I -1 [
(1-9@e®) d0: —qd0. - ((11 ~ 909 ®) Jcp(r))J(aot + (@ 00) =0.

By comparing the coefficients of t¥, it suffices to resolve the system of equations

50} =0,
dor + 9 (p(t)or) =0,

or equivalently, by conjugation,

dog =0,
96 =—3(X %, gior—),  foreachk>1, (2.2)
00, =0, foreachk > 1.

Hence, analogously to the proof of Proposition 2.1, we are able to resolve (2.2) inductively by the assumption on Xg and
Lemmata 2.2, 2.3. O
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