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Let Pk := F2[x1, x2, . . . , xk] be the polynomial algebra over the prime field of two elements, 
F2, in k variables x1, x2, . . . , xk , each of degree 1. We are interested in the Peterson hit 
problem of finding a minimal set of generators for Pk as a module over the mod-2 Steenrod 
algebra, A. In this paper, we study the hit problem in degree (k − 1)(2d − 1), with d a 
positive integer. Our result implies the one of Mothebe [4,5].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient A l’algèbre de Steenrod mod-2 et Pk := F2[x1, x2, . . . , xk] l’algèbre polynomiale 
graduée à k générateurs sur le corps à deux éléments F2, chaque générateur étant de 
degré 1. Nous étudions le problème suivant soulevé par F. Peterson : déterminer un système 
minimal de générateurs comme module sur l’algèbre de Steenrod pour Pk , problème appelé 
hit problem en anglais. Dans ce but, nous étudions le hit problem en degré (k − 1)(2d − 1), 
avec d > 0. Cette solution implique un résultat de Mothebe [4,5].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Pk be the graded polynomial algebra F2[x1, x2, . . . , xk], with the degree of each xi being 1. This algebra arises as 
the cohomology with coefficients in F2 of an elementary Abelian 2-group of rank k. Then, Pk is a module over the mod-2 
Steenrod algebra, A. The action of A on Pk is determined by the elementary properties of the Steenrod squares Sqi and 
subject to the Cartan formula (see Steenrod and Epstein [12]).

An element g in Pk is called hit if it belongs to A+ Pk , where A+ is the augmentation ideal of A. This means that g can 
be written as a finite sum g = ∑

u�0 Sq2u
(gu) for suitable polynomials gu ∈ Pk .
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We are interested in the hit problem, set up by F. Peterson, of finding a minimal set of generators for the polynomial 
algebra Pk as a module over the Steenrod algebra. In other words, we want to find a basis of the F2-vector space QPk :=
Pk/A+ Pk = F2 ⊗A Pk .

The hit problem was first studied by Peterson [7], Wood [16], Singer [10], and Priddy [8], who showed its relation to 
several classical problems respectively in cobordism theory, modular representation theory, the Adams spectral sequence for 
the stable homotopy of spheres, and stable homotopy type of classifying spaces of finite groups.

The vector space QPk was explicitly calculated by Peterson [7] for k = 1, 2, by Kameko [3] for k = 3, and recently by the 
second author [13,14] for k = 4. From the results of Wood [16] and Kameko [3], the hit problem is reduced to the case of 
degree n of the form

n = s(2d − 1) + 2dm, (1.1)

where s, d, m are non-negative integers and 1 � s < k (see [14]). For s = k − 1 and m > 0, the problem was studied by Crabb 
and Hubbuck [2], Nam [6], Repka and Selick [9], and the second author [13,14].

In the present paper, we study the hit problem in degree n of the form (1.1) with s = k − 1, m = 0 and d an arbitrary 
positive integer.

Denote by (QPk)n the subspace of QPk consisting of the classes represented by the homogeneous polynomials of degree 
n in Pk . From the result of Carlisle and Wood [1] on the boundedness conjecture, one can see that for d big enough, the 
dimension of (QPk)n does not depend on d; it depends only on k. In this paper, we prove the following.

Main Theorem. Let n = (k − 1)(2d − 1) with d a positive integer and let p = min{k, d}, q = min{k, d − 1}. If k � 3, then

dim(QPk)n � c(k,d) :=
p∑

t=1

(
k

t

)
+ (k − 3)

(
k

2

) q∑
u=1

(
k

u

)
,

with equality if and only if either k = 3 or k = 4, d � 5 or k = 5, d � 6.

Note that c(k, 1) = (k
1

) = k. If d > k, then c(k, d) = (
(k − 3)

(k
2

) + 1
)
(2k − 1). At the end of Section 3, we show that our 

result implies Mothebe’s result in [4,5].
In Section 2, we recall the definition of an admissible monomial in Pk and Singer’s criterion on the hit monomials. Our 

results will be presented in Section 3.

2. Preliminaries

In this section, we recall some needed information from Kameko [3] and Singer [11], which will be used in the next 
section.

Notation 2.1. We denote Nk = {1, 2, . . . , k} and XJ = X{ j1, j2,..., js} = ∏
j∈Nk\J x j, J = { j1, j2, . . . , js} ⊂ Nk . In particular,

XNk = 1, X∅ = x1x2 . . . xk , X j = x1 . . . x̂ j . . . xk, 1 � j � k, and X := Xk ∈ Pk−1.
Let αi(a) denote the i-th coefficient in dyadic expansion of a non-negative integer a. That means a = α0(a)20 +α1(a)21 +

α2(a)22 + . . . , for αi(a) = 0 or 1 with i � 0. Set α(a) = ∑
i�0 αi(a).

Let x = xa1
1 xa2

2 . . . xak
k ∈ Pk . Denote ν j(x) = a j, 1 � j � k. Set Jt(x) = { j ∈ Nk : αt(ν j(x)) = 0}, for t � 0. Then, we have 

x = ∏
t�0 X2t

Jt (x) .

Definition 2.2. For a monomial x in Pk , define two sequences associated with x by

ω(x) = (ω1(x),ω2(x), . . . ,ωi(x), . . .), σ (x) = (ν1(x), ν2(x), . . . , νk(x)),

where ωi(x) = ∑
1� j�k αi−1(ν j(x)) = deg XJi−1(x), i � 1. The sequence ω(x) is called the weight vector of x.

Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of non-negative integers. The sequence ω is called the weight vector if ωi = 0
for i � 0.

The sets of the weight vectors and the sigma vectors are given the left lexicographical order.
For a weight vector ω, we define degω = ∑

i>0 2i−1ωi . If there are i0 = 0, i1, i2, . . . , ir > 0 such that i1 + i2 + . . .+ ir = m, 
ωi1+...+is−1+t = bs, 1 � t � is, 1 � s � r, and ωi = 0 for all i > m, then we write ω = (b(i1)

1 , b(i2)
2 , . . . , b(ir)

r ). Denote b(1)
u = bu . 

For example, ω = (3, 3, 2, 1, 1, 1, 0, . . .) = (3(2), 2, 1(3)).
Denote by Pk(ω) the subspace of Pk spanned by monomials y such that deg y = degω, ω(y) � ω, and by P−

k (ω) the 
subspace of Pk spanned by monomials y ∈ Pk(ω) such that ω(y) < ω.

Definition 2.3. Let ω be a weight vector and f , g two polynomials of the same degree in Pk .
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i) f ≡ g if and only if f − g ∈A+ Pk . If f ≡ 0 then f is called hit.
ii) f ≡ω g if and only if f − g ∈A+ Pk + P−

k (ω).

Obviously, the relations ≡ and ≡ω are equivalence ones. Denote by QPk(ω) the quotient of Pk(ω) by the equivalence 
relation ≡ω . Then, we have QPk(ω) = Pk(ω)/((A+ Pk ∩ Pk(ω)) + P−

k (ω)) and (QPk)n ∼= ⊕
deg ω=n QPk(ω) (see Walker and 

Wood [15]).
We note that the weight vector of a monomial is invariant under the permutation of the generators xi , hence QPk(ω)

has an action of the symmetric group �k .
For a polynomial f ∈ Pk(ω), we denote by [ f ]ω the class in QPk(ω) represented by f . Denote by |S| the cardinal of a 

set S .

Definition 2.4. Let x, y be monomials of the same degree in Pk . We say that x < y if and only if one of the following holds:

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.5. A monomial x is said to be inadmissible if there exist monomials y1, y2, . . . , ym such that yt < x for t =
1, 2, . . . , m and x − ∑m

t=1 yt ∈A+ Pk .
A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of the admissible monomials of degree n in Pk is a minimal set of A-generators for Pk in degree n. 
Now, we recall a result of Singer [11] on the hit monomials in Pk .

Definition 2.6. A monomial z in Pk is called a spike if ν j(z) = 2d j − 1 for d j a non-negative integer and j = 1, 2, . . . , k. If z
is a spike with d1 > d2 > . . . > dr−1 � dr > 0 and d j = 0 for j > r, then it is called the minimal spike.

In [11], Singer showed that if α(n + k) � k, then there exists uniquely a minimal spike of degree n in Pk .

Lemma 2.7.

i) All the spikes in Pk are admissible and their weight vectors are weakly decreasing.
ii) If a weight vector ω is weakly decreasing and ω1 � k, then there is a spike z in Pk such that ω(z) = ω.

The proof of this lemma is elementary. The following is a criterion for the hit monomials in Pk .

Theorem 2.8. (See Singer [11].) Suppose x ∈ Pk is a monomial of degree n, where α(n + k) � k. Let z be the minimal spike of degree n. 
If ω(x) < ω(z), then x is hit.

The following theorem will be used in the next section.

Theorem 2.9. (See [13,14].) Let n = ∑k−1
i=1 (2di − 1) with di positive integers such that d1 > d2 > . . . > dk−2 � dk−1 , and let m =∑k−2

i=1 (2di−dk−1 − 1). If dk−1 � k − 1 � 3, then

dim(QPk)n = (2k − 1)dim(QPk−1)m.

Note that we correct Theorem 3 in [13] by replacing the condition dk−1 � k − 1 � 1 with dk−1 � k − 1 � 3.

3. Proof of the Main Theorem

Denote Nk = {
(i; I); I = (i1, i2, . . . , ir), 1 � i < i1 < . . . < ir � k, 0 � r < k

}
.

Definition 3.1. Let (i; I) ∈ Nk , let r = �(I) be the length of I , and let u be an integer with 1 � u � r. A monomial x ∈ Pk−1 is 
said to be u-compatible with (i; I) if all of the following hold:

i) νi1−1(x) = νi2−1(x) = . . . = νi(u−1)−1(x) = 2r − 1,
ii) νiu−1(x) > 2r − 1,

iii) αr−t(νiu−1(x)) = 1, ∀t, 1 � t � u,
iv) αr−t(νit−1(x)) = 1, ∀t, u < t � r.
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Clearly, a monomial x can be u-compatible with a given (i; I) ∈ Nk for at most one value of u. By convention, x is 
1-compatible with (i; ∅).

For 1 � i � k, define the homomorphism f i : Pk−1 → Pk of algebras by substituting

f i(x j) =
{

x j, if 1 � j < i,

x j+1, if i � j < k.

Definition 3.2. Let (i; I) ∈ Nk , x(I,u) = x2r−1+...+2r−u

iu

∏
u<t�r x2r−t

it
for r = �(I) > 0, x(∅,1) = 1. For a monomial x in Pk−1, we 

define the monomial φ(i;I)(x) in Pk by setting

φ(i;I)(x) =
{

(x2r−1
i f i(x))/x(I,u), if there exists u such that x is u-compatible with (i, I),

0, otherwise.

Then we have an F2-linear map φ(i;I) : Pk−1 → Pk . In particular, φ(i;∅) = f i .

For a positive integer b, denote ω(k,b) = ((k − 1)(b)) and ω̄(k,b) = ((k − 1)(b−1), k − 3, 1).

Lemma 3.3. (See [14].) Let b be a positive integer and let j0, j1, . . . , jb−1 ∈ Nk. We set i = min{ j0, . . . , jb−1}, I = (i1, . . . , ir) with 
{i1, . . . , ir} = { j0, . . . , jb−1} \ {i}. Then, we have 

∏
0�t<b X2t

jt
≡ω(k,b)

φ(i;I)(X2b−1).

Definition 3.4. For any (i; I) ∈ Nk , we define the homomorphism p(i;I) : Pk → Pk−1 of algebras by substituting

p(i;I)(x j) =

⎧⎪⎨⎪⎩
x j, if 1 � j < i,∑

s∈I xs−1, if j = i,

x j−1, if i < j � k.

Then, p(i;I) is a homomorphism of A-modules. In particular, for I = ∅, p(i;∅)(xi) = 0 and p(i;I)( f i(y)) = y for any y ∈ Pk−1.

Lemma 3.5. If x is a monomial in Pk, then p(i;I)(x) ∈ Pk−1(ω(x)).

Proof. Set y = p(i;I)

(
x/xνi(x)

i

)
. Then, y is a monomial in Pk−1. If νi(x) = 0, then y = p(i;I)(x) and ω(y) = ω(x). Suppose 

νi(x) > 0 and νi(x) = 2t1 + . . . + 2tc , where 0 � t1 < . . . < tc, c � 1.
If I = ∅, then p(i;I)(x) = 0. If I �= ∅, then p(i;I)(x) is a sum of monomials of the form ȳ := (∏c

u=1 x2tu

su−1

)
y, where su ∈ I , 

1 � u � c. If αtu (νsu−1(y)) = 0 for all u, then ω( ȳ) = ω(x). Suppose there is an index u such that αtu (νsu−1(y)) = 1. Let u0
be the smallest index such that αtu0

(νsu0 −1(y)) = 1. Then, we have

ωi( ȳ) =
{
ωi(x), if i � tu0 ,

ωi(x) − 2, if i = tu0 + 1.

Hence, ω( ȳ) < ω(x) and ȳ ∈ Pk−1(ω(x)). The lemma is proved. �
Lemma 3.5 implies that if ω is a weight vector and x ∈ Pk(ω), then p(i;I)(x) ∈ Pk−1(ω). Moreover, p(i;I) passes to a 

homomorphism from QPk(ω) to QPk−1(ω). In particular, we have

Lemma 3.6. (See [14].) Let b be a positive integer and let ( j; J ), (i; I) ∈Nk with �(I) < b.

i) If (i; I) ⊂ ( j; J ), then p( j; J )φ(i;I)(X2b−1) = X2b−1 mod(P−
k−1(ω(k,b))).

ii) If (i; I) �⊂ ( j; J ), then p( j; J )φ(i;I)(X2b−1) ∈ P−
k−1(ω(k,b)).

For 0 < h � k, set Nk,h = {(i; I) ∈Nk : �(I) < h}. Then, |Nk,h| = ∑h
t=1

(k
t

)
.

Proposition 3.7. Let d be a positive integer and let p = min{k, d}. Then, the set B(d) := {[φ(i;I)(X2d−1)]ω(k,d)
: (i; I) ∈Nk,p} is a basis 

of the F2-vector space QPk(ω(k,d)). Consequently dim QPk(ω(k,d)) = ∑p (k).
t=1 t
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Proof. Let x be a monomial in Pk(ω(k,d)) and [x]ω(k,d)
�= 0. Then, we have ω(x) = ω(k,d) . So, there exist j0, j1, . . . , jd−1 ∈ Nk

such that x = ∏
0�t<d X2t

jt
. According to Lemma 3.3, there is (i; I) ∈ Nk such that x = ∏

0�t<d X2t

jt
≡ω(k,d)

φ(i;I)(X2d−1), where 
r = �(I) < p = min{k, d}. Hence, QPk(ω(k,d)) is spanned by the set B(d).

Now, we prove that the set B(d) is linearly independent in QPk(ω(k,d)). Suppose that there is a linear relation ∑
(i;I)∈Nk,p

γ(i;I)φ(i;I)(X2d−1) ≡ω(k,d)
0, where γ(i;I) ∈ F2. By induction on �(I), using Lemma 3.5 and Lemma 3.6 with b = d, 

we can easily show that γ(i;I) = 0 for all (i; I) ∈ Nk,p . The proposition is proved. �
Set Ck = {x j1 x j2 . . . x jk−3 x2

j : 1 � j1 < j2 < . . . < jk−3 < k, j1 � j < k} ⊂ Pk−1. It is easy to see that |Ck| = (k − 3)
(k

2

)
.

Lemma 3.8. Ck is the set of the admissible monomials in Pk−1 such that their weight vectors are ω̄(k,1) = (k − 3, 1). Consequently, 
dim QPk−1(ω̄(k,1)) = (k − 3)

(k
2

)
.

Proof. Let z be a monomial in Pk−1 such that ω(z) = (k − 3, 1). Then, z = x j1 x j2 . . . x jk−3 x2
j with 1 � j1 < j2 < . . . < jk−3 <

k and 1 � j < k. If z /∈ Ck , then j < j1. Then, we have z = ∑k−3
s=1 x2

js
x j1 x j2 . . . x̂ js . . . x jk−3 x j + Sq1(x j1 x j2 . . . x jk−3 x j). Since 

x2
js

x j1 x j2 . . . x̂ js . . . x jk−3 x j < z for 1 � s � k − 3, z is inadmissible.
Suppose that z ∈ Ck . If there is an index s such that j = js , then z is a spike. Hence, by Lemma 2.7, it is admissible. 

Assume that j �= js for all s. If z is inadmissible, then there exist monomials y1, . . . , ym in Pk−1 such that yt < z for 
all t and z = ∑m

t=1 yt + ∑
u�0 Sq2u

(gu), where gu are suitable polynomials in Pk−1. Since yt < z for all t , z is a term of ∑
u�0 Sq2u

(gu) (recall that a monomial x in Pk is called a term of a polynomial f if it appears in the expression of f in 
terms of the monomial basis of Pk). Based on the Cartan formula, we see that z is not a term of Sq2u

(gu) for all u > 0. If z
is a term of Sq1(y) with y a monomial in Pk−1, then y = x j1 x j2 . . . x jk−3 x j := ỹ. So, ỹ is a term of g0. Then, we have

ȳ := x2
j1

x j2 . . . x jk−3 x j =
k−3∑
s=2

x2
js

x j1 x j2 . . . x̂ js . . . x jk−3 x j +
m∑

t=1

yt + Sq1(g0 + ỹ) +
∑
u�1

Sq2u
(gu).

Since j1 < j, we have yt < z < ȳ for all t . Hence, ȳ is a term of Sq1(g0 + ỹ) + ∑
u�1 Sq2u

(gu). By an argument analogous to 
the previous one, we see that ỹ is a term of g0 + ỹ. This contradicts the fact that ỹ is a term of g0. The lemma is proved. �
Proposition 3.9. Let d be a positive integer and let q = min{k, d − 1}. Then, the set B̄(d) := ⋃

z∈Ck
{[φ(i;I)(X2d−1−1z2d−1

)]ω̄(k,d)
:

(i; I) ∈ Nk,q} is linearly independent in QPk(ω̄(k,d)). If d > k, then B̄(d) is a basis of QPk(ω̄(k,d)). Consequently dim QPk(ω̄(k,d)) �
(k − 3)

(k
2

)∑q
u=1

(k
u

)
with equality if d > k.

Proof. We prove the first part of the proposition. Suppose there is a linear relation S := ∑
((i;I),z)∈Nk,q×Ck

γ(i;I),z ×
φ(i;I)(X2d−1−1z2d−1

) ≡ω̄(k,d)
0, where γ(i;I),z ∈ F2. We prove γ( j; J ),z = 0 for all ( j; J ) ∈ Nk,q and z ∈ Ck . The proof pro-

ceeds by induction on m = �( J ). Let (i; I) ∈ Nk,q . Since r = �(I) < q = min{k, d − 1}, X2d−1−1z2d−1
is 1-compatible 

with (i; I) and x2r−1
i f i(X2d−1−1) is divisible by x(I,1) . Hence, using Definition 3.2, we easily obtain φ(i;I)(X2d−1−1z2d−1

) =
φ(i;I)(X2d−1−1) f i(z2d−1

). A simple computation shows that if g ∈ P−
k−1(ω(k,d−1)), then gz2d−1 ∈ P−

k−1(ω̄(k,d)); if (i; I) ⊂ ( j; ∅), 
then (i; I) = ( j; ∅); by Lemma 3.5, p( j;∅)(S) ≡ω̄(k,d)

0. Hence, applying Lemma 3.6 with b = d − 1, we get p( j,∅)(S) ≡ω̄(k,d)∑
z∈Ck

γ( j;∅),z X2d−1−1z2d−1 ≡ω̄(k,d)
0. Since z is admissible in Pk−1, X2d−1−1z2d−1

is also admissible in Pk−1. Hence, the 
last relation implies γ( j;∅),z = 0 for all z ∈ Ck . Suppose 0 < m < q and γ(i;I),z = 0 for all z ∈ Ck and (i; I) ∈ Nk,q
with �(I) < m. Let ( j; J ) ∈ Nk,q with �( J ) = m. Note that by Lemma 3.5, p( j; J )(S) ≡ω̄(k,d)

0; if (i; I) ∈ Nk,q , �(I) � m
and (i; I) ⊂ ( j; J ), then (i; I) = ( j; J ). So, using Lemma 3.6 with b = d − 1 and the inductive hypothesis, we obtain 
p( j, J )(S) ≡ω̄(k,d)

∑
z∈Ck

γ( j; J ),z X2d−1−1z2d−1 ≡ω̄(k,d)
0.

From this equality, one gets γ( j; J ),z = 0 for all z ∈ Ck . The first part of the proposition follows.
The proof of the second part is similar to the one of Proposition 3.3 in [14]. However, the relation ≡ω̄(k,d)

is used in the 
proof instead of ≡. �

For k = 5, we have the following result.

Theorem 3.10. Let n = 4(2d −1) with d a positive integer. The dimension of the F2-vector space (QP5)n is determined by the following 
table:

n = 4(2d − 1) d = 1 d = 2 d = 3 d = 4 d � 5
dim(QP5)n 45 190 480 650 651
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Since n = 4(2d − 1) = 2d+1 + 2d + 2d−1 + 2d−1 − 4, for d � 5, the theorem follows from Theorem 2.9 and a result in 
[14]. For 1 � d � 4, the proof of this theorem is based on Theorem 2.8 and some results of Kameko [3]. It is long and very 
technical. The detailed proof of it will be published elsewhere.

Proof of Main Theorem. For k = 3, the theorem follows from the results of Kameko [3]. For k = 4, it follows from the results 
in [13,14]. Theorem 3.10 implies immediately this theorem for k = 5.

Suppose k � 6. Lemma 3.8 implies that QPk(ω̄(k,1)) �= 0. Hence,

dim(QPk)k−1 � dim QPk(ω(k,1)) + dim QPk(ω̄(k,1)) > dim QPk(ω(k,1)) = k = c(k,1).

So, the theorem holds for d = 1.
Now, let d > 1 and ω̃(k,d) = ((k − 1)(d−2), k − 3, k − 4, 2). Since ω̃(k,d) is weakly decreasing, by Lemma 2.7, QPk(ω̃(k,d)) �= 0. 

We have deg(ω(k,d)) = deg(ω̄(k,d)) = deg(ω̃(k,d)) = (k − 1)(2d − 1) = n and (QPk)n ∼= ⊕
deg ω=n QPk(ω). Hence, using Proposi-

tions 3.7 and 3.9, we get

dim(QPk)n =
∑

deg ω=n

dim QPk(ω) � dim QPk(ω(k,d)) + dim QPk(ω̄(k,d)) + dim QPk(ω̃(k,d))

> dim QPk(ω(k,d)) + dim QPk(ω̄(k,d)) � c(k,d).

The theorem is proved. �
Denote by N(k, n) the number of spikes of degree n in Pk . Note that if (i; I) ∈ Nk and I �= ∅, then φ(i;I)(x) is not a spike 

for any monomial x. Hence, using Propositions 3.7 and 3.9, we easily obtain the following.

Corollary 3.11. Under the hypotheses of the Main Theorem,

dim(QPk)n � N(k,n) +
p∑

t=2

(
k

t

)
+ (k − 3)

(
k

2

) q∑
u=2

(
k

u

)
.

This corollary implies Mothebe’s result.

Corollary 3.12. (See Mothebe [4,5].) Under the above hypotheses,

dim(QPk)n � N(k,n) +
p∑

t=2

(
k

t

)
.
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