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In this short note we establish new refinements of multidimensional Szemerédi and
polynomial Van der Waerden theorems along the shifted primes.
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r é s u m é

Nous présentons de nouveaux résultats du type Szemerédi multidimensionnel et Van der
Waerden polynomial multidimensionnel le long des ensembles P − 1 et P + 1.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The goal of this short note is to establish new refinements of multidimensional Szemerédi and polynomial Van der
Waerden theorems. Let P be the set of positive prime integers. We provide a short derivation of the following statements:

Theorem 1. Let �m1, . . . , �mk ∈ Z
d and let E be of positive upper Banach density in Z

d, namely d∗(E) = lim sup |E∩B|
|B| > 0, where the

limsup is taken over parallelepipeds B ⊂ Z
d, B = ∏d

i=1[Mi, Ni] with mini |Ni − Mi | → ∞. Then the set

R(E) = {
n ∈ N: d∗(E ∩ (E − n �m1) ∩ · · · ∩ (E − n �mk)

)
> 0

}

has a nonempty intersection with P − 1 and with P + 1.

Theorem 2. Let (X, B,μ) be a finite measure space and let T1, . . . , Tk be pairwise commuting measure preserving transformations of
X . Let A ∈ B, μ(A) > 0; then the set

R(A) = {
n ∈ N: μ

(
A ∩ T −n

1 A ∩ · · · ∩ T −n
k A

)
> 0

}

has a nonempty intersection with P − 1 and with P + 1.
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Theorems 1 and 2 are equivalent via the Furstenberg correspondence principle. (See, for example, Theorem 6.4.17 in [1]
or Theorem 2.1 in [4].) We also remark that for any integer a 	= ±1 one can easily construct counter examples via periodic
sets/systems, so that Theorems 1 and 2 do not hold true for P + a.

IPr and IP∗
r sets (in N) are defined as follows:

Definition. For r ∈ N, an IPr set in N is a set of the form {�n · �w} �w∈{0,1}r\{�0} , where �n = (n1, . . . ,nr) ∈ N
r . A subset of N is an

IP∗
r set if it has a nonempty intersection with every IPr set in N.

For example, an IP3 set is a 7-element set of the form {n,m,k,n + m,n + k,m + k,n + m + k} ⊂ N.
Our proof of Theorem 1 is based on the following two very deep theorems. The first was obtained by Furstenberg and

Katznelson in [6] (see Theorem 10.1 and the remark on page 168):

Theorem 3. For any probability measure space (X, B,μ), any commuting measure preserving transformations T1, . . . , Tk, and any
set A ∈ B of positive measure, there exists an integer r such that the set R(A) is an IP∗

r set.

The second was obtained in a series of papers by Green, Tao and Ziegler in [8–10].

Theorem 4. Let ψ1, . . . ,ψl be affine linear forms in r variables with integer coefficients, ψi(�x) = ∑r
j=1 mi, j x j + ci , no two of which

are affinely dependent. Then there exists an �n ∈ Z
r such that ψ1(�n), . . . ,ψl(�n) ∈ P iff for any k ∈ N, k � 2, there exists an �x ∈ Z

r such
that ψ1(�x), . . . ,ψl(�x) are all nondivisible by k.

As a corollary, we get that the set P − 1 (as well as the set P + 1) contains an IPr set in N for every r ∈ N. Indeed, for
any r, since 1 is not divisible by any k � 2, by Theorem 4 there exists �n ∈ Z

r such that the integers �w · �n +1, �w ∈ {0,1}r \{�0},
are all prime.

Proof of Theorem 2. By Theorem 3, R(A) nontrivially intersects any IPr set in N for r large enough, and by Theorem 4, the
sets P − 1 and P + 1 contain IPr sets for all r. �

We remark that in the case d = 1 and Ti = T i , i = 1, . . . ,k, Theorems 1, 2 were proved in [5] conditional on the inverse
conjecture for the Gowers norms which was recently obtained in [10]. However, in their full generality, Theorems 1, 2 cannot
be obtained by the methods in that paper.

We also remark that one cannot obtain polynomial extensions of Theorems 1 and 2 by the methods of the present short
note, since there is so far no polynomial version of Theorem 3. (See however, [12], where such an extension has been
obtained for the case Ti are all equal to the same transformation.) On the other hand, a “partition” version of Theorem 1
(and of the topological version of Theorem 2) can be extended to polynomials:

Theorem 5. For any d ∈ N and any finite partition Z
d = ⋃c

s=1 Cs, at least one of the sets Cs has the property that for any finite set of

polynomials �f i : Z → Z
d, i = 1, . . . ,k, satisfying �f i(0) = 0 for all i, there exist p ∈ P and �a ∈ Z

d such that

�a, �a + �f1(p − 1), . . . , �a + �fk(p − 1) ∈ Cs,

and there exist q ∈ P and �b ∈ Z
d such that

�b, �b + �f1(q + 1), . . . , �b + �fk(q + 1) ∈ Cs.

A parallel topological dynamical result is the following refinement of Theorem C in [2]:

Theorem 6. Let (X,ρ) be a compact metric space and let T ( �m), �m ∈ Z
d, be an action of Z

d on X by continuous transformations. Then
for any finite set of polynomials �f i : Z → Z

d, i = 1, . . . ,k, with �f i(0) = 0 for all i, and any ε > 0 there exist a point x ∈ X and a prime
integer p ∈ P such that ρ(x, T (�f i(p − 1))x) < ε for all i = 1, . . . ,k, and there exist a point y ∈ X and a prime integer q ∈ P such that
ρ(y, T (�f i(q + 1))y) < ε for all i = 1, . . . ,k.

(See [7] and [11] for a discussion of equivalence of Ramsey-theoretical and topological-dynamical results.)
The proof of Theorem 5 is the same as of Theorem 1, based on the following version of the polynomial Van der Waerden

theorem:

Theorem 7. For any partition Z
d = ⋃c

s=1 Cs at least one of the sets Cs has the property that for any finite set of polynomials �f i : Z →
Z

d, i = 1, . . . ,k, with �f i(0) = 0 for all i,
{
n ∈ N: �a, �a + �f1(n), . . . , �a + �fk(n) ∈ Cs for some �a ∈ Z

d}

is an IP∗
r set for r large enough.
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Remark. The polynomial Van der Waerden theorem, proved in [2], was formulated in a slightly weaker form: it was only
claimed there (see [2], Corollary 1.12) that the set

{
n ∈ N: �a, �a + �f1(n), . . . , �a + �fk(n) ∈ Cs for some �a ∈ Z

d and some s
}

is an IP∗ set. (An IP∗ set in N is a set that has a nonempty intersection with every IP set, where an IP set is an IP∞ set, that
is, a set of the form

⋃∞
k=1{�n · �w} �w∈{0,1}k\{�0} for some �n = (n1,n2, . . .) ∈ N

N .) However, Theorem 7 can be easily derived from
the results of [2]. Namely, the proof of Corollary 1.9 in [2] actually shows that the set P in the formulation of this corollary
is an IP∗

r set for r large enough, and a standard application of this corollary to a minimal closed shift-invariant subset of
the space of c-partitions of Z

d gives the desired result. Another way to get it is by utilizing the polynomial Hales–Jewett
theorem [3].
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