FISEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Complex Analysis/Algebraic Geometry

Microlocalization with growth conditions of holomorphic functions

Microlocalisation à croissance des fonctions holomorphes

Luca Prelli

Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy

ARTICLE INFO

Article history: Received 23 March 2010 Accepted after revision 8 November 2010 Available online 23 November 2010

Presented by Jean-Michel Bony

ABSTRACT

In this Note we give some applications related to the microlocalization of subanalytic sheaves. We show the existence of a natural action of microlocal operators on tempered and formal microlocalization, and we give some applications to \mathcal{D} -modules. We show also the invariance under contact transformations of tempered and formal microlocalization.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note on donne des applications liées à la microlocalisation des faisceaux sous-analytiques. On voit l'existence d'une action naturelle des opérateurs microlocaux sur la microlocalisation tempérée et formelle, et on donne des applications aux \mathcal{D} -modules. On voit aussi l'invariance par transformations de contact de la microlocalisation tempérée et formelle.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Sheaves on subanalytic sites

We use the notations of [5,8]. Let X be a real analytic manifold and let k be a field. Let X_{sa} be the subanalytic site, whose objects are open subanalytic subsets of X and coverings are locally finite in X. Denote by $\rho: X \to X_{sa}$ the natural morphism of sites.

Let $\operatorname{Mod}(k_{X_{sa}})$ be the category of subanalytic sheaves and $\operatorname{Mod}_{\mathbb{R}\text{-c}}(k_X)$ the category of \mathbb{R} -constructible sheaves on X. Consider the functors ρ^{-1} and ρ_* of inverse image and direct image associated to ρ . The functor ρ^{-1} admits a left adjoint, denoted by $\rho_!$. The sheaf $\rho_!F$ is the sheaf associated to the presheaf $\operatorname{Op}_{sa}(X)\ni U\mapsto F(\overline{U})$. The functor ρ_* is fully faithful and exact on $\operatorname{Mod}_{\mathbb{R}\text{-c}}(k_X)$ and we identify $\operatorname{Mod}_{\mathbb{R}\text{-c}}(k_X)$ with its image in $\operatorname{Mod}(k_{X_{sa}})$ by ρ_* .

Let X, Y be two real analytic manifolds, and let $f: X \to Y$ be a real analytic map. The six Grothendieck operations $\mathcal{H}om$, \otimes , f_* , f^{-1} , $f_!$, $f^!$ are well defined in the derived category of subanalytic sheaves.

2. Tempered and formal microlocalization

We use the notations of [3]. Let Δ be the diagonal of $X \times X$, denote by δ the diagonal embedding and let $q_1, q_2 : X \times X \to X$ be the projections. Set $p_i = q_i \circ p$, i = 1, 2. The normal deformation of the diagonal in $X \times X$ can be visualized by the following diagram

E-mail address: lprelli@math.unipd.it.

$$TX \xrightarrow{\sim} T_{\Delta}(X \times X) \xrightarrow{s} \widetilde{X \times X} \stackrel{i_{\Omega}}{\leqslant} \Omega$$

$$\downarrow^{\tau_{X}} \qquad \qquad \downarrow^{p} \qquad \widetilde{p}$$

$$\Delta \xrightarrow{\delta} X \times X \xrightarrow{q_{2}} X$$

$$(1)$$

Definition 2.1. Let $F \in D^b_{\mathbb{R}-c}(k_X)$ and $G \in D^b(k_{X_{So}})$. Denote by $^{\wedge}$ the Fourier–Sato transform for subanalytic sheaves of [9]. We set $\mu hom(F, G) := \rho^{-1}(s^{-1}R\mathcal{H}om((p_2^{-1}F)_{\Omega}, p_1^!G))^{\wedge}.$

This is isomorphic to $\rho^{-1}\mu_{\Delta}^{sa}R\mathcal{H}om(q_2^{-1}F,q_1^!G)$, where μ_{Δ}^{sa} is the microlocalization functor for subanalytic sheaves of [9]. Now let X be a complex manifold, $X_{\mathbb{R}}$ the underlying real analytic manifold and \overline{X} the complex conjugate manifold. One denotes by \mathcal{D}_X the sheaf of finite order differential operators with holomorphic coefficients, \mathcal{O}_X^t and \mathcal{O}_X^w the sheaves of

tempered and Whitney holomorphic functions of [5]. Let us consider the normal deformation of the diagonal in $X \times X$ as in diagram (1). Let $F \in D^b_{\mathbb{R}-c}(\mathbb{C}_X)$, set $D'F = \mathbb{C}_{\mathbb{R}-c}(\mathbb{C}_X)$ $R\mathcal{H}om(F,\mathbb{C}_X)$ and let $(\cdot)^a$ denote the direct image for the antipodal map. We have the isomorphisms

$$\mu hom \big(F, \mathcal{O}_X^t\big) \simeq t \mu hom (F, \mathcal{O}_X) \quad \text{and} \quad \mu hom \big(F, \mathcal{O}_X^w\big) \simeq \big(D'F \overset{\mathsf{W}}{\underset{\mathcal{U}}{\otimes}} \mathcal{O}_X\big)^a,$$

where $t\mu hom(\cdot, \mathcal{O}_X)$ and $\overset{\mathsf{w}}{\otimes} \mathcal{O}_X$ denote tempered and formal microlocalization of [1] and [2] respectively.

3. Microlocal kernels

Let X be a complex manifold of complex dimension d_X . Consider the sheaves of rings over T^*X ,

$$\mathcal{E}_X^\mathbb{R} = H^{d_X} \big(\mu_\Delta \mathcal{O}_{X \times X}^{(0,d_X)} \big) \quad \text{and} \quad \mathcal{E}_X^{\mathbb{R},f} \simeq \rho^{-1} H^{d_X} \mu_\Delta^{sa} \mathcal{O}_{X \times X}^{t(0,d_X)}$$

of microlocal and tempered microlocal operators. They contain a subring, denoted by \mathcal{E}_X and called the ring of (finite-order)

sheaves $\mathcal{E}_X^{\mathbb{R}}$ and $\mathcal{E}_X^{\mathbb{R},f}$ are concentrated in degree d_X and one has the ring inclusions $\mathcal{E}_X \subset \mathcal{E}_X^{\mathbb{R},f} \subset \mathcal{E}_X^{\mathbb{R}}$. Let X,Y,Z be three manifolds. Let q_{ij} be the (i,j)-th projection defined on $X \times Y \times Z$ and let p_{ij} be the (i,j)-th projection defined on $T^*X \times T^*Y \times T^*Z$. Let p_{ij}^a be the composition of p_{ij} with the antipodal map a and let $\delta: X \times Y \times Z \to \mathcal{E}_X^{\mathbb{R},f}$ $X \times Y \times Y \times Z$ be the diagonal embedding. Consider the following diagram:

$$T^{*}(X \times Y) \times T^{*}(Y \times Z) \stackrel{p_{12}^{a} \times p_{23}^{a}}{\longleftarrow} T^{*}X \times T^{*}Y \times T^{*}Z$$

$$\downarrow id \times p_{2} \times a$$

$$T^{*}(X \times Y) \times_{Y} T^{*}(Y \times Z) \stackrel{\square}{\longleftarrow} T^{*}X \times T^{*}_{\Delta_{Y}}(Y \times Y) \times T^{*}Z$$

$$\downarrow t_{\delta'} \qquad \qquad \downarrow p_{13}^{a}$$

$$\uparrow T^{*}(X \times Y \times Z) \stackrel{t_{q'_{13}}}{\longleftarrow} T^{*}X \times Y \times T^{*}Z$$

$$\downarrow q_{13\pi}$$

$$\uparrow T^{*}X \times T^{*}Z \stackrel{q_{13\pi}}{\longleftarrow} T^{*}X \times T^{*}Z \stackrel{$$

The following proposition is the tempered analogue of Lemma 11.4.3 of [3]:

Proposition 3.1. Let $K_1 \in D^b_{\mathbb{R}-c}(\mathbb{C}_{X \times Y})$ and $K_2 \in D^b_{\mathbb{R}-c}(\mathbb{C}_{Y \times Z})$. Suppose that q_{13} is proper on $\operatorname{supp}(q_{12}^{-1}K_1 \otimes q_{23}^{-1}K_2)$. Set $K_1 \circ K_2 = 0$ $Rq_{13!}(q_{12}^{-1}K_1 \otimes q_{23}^{-1}K_2)$. There is a morphism

$$Rp_{13!}^{a}(p_{12}^{a-1}\mu hom(K_{1},\mathcal{O}_{X\times Y}^{t(0,d_{Y})})\otimes p_{23}^{a-1}\mu hom(K_{2},\mathcal{O}_{Y\times Z}^{t(0,d_{Z})}))[d_{Y}]\to \mu hom(K_{1}\circ K_{2},\mathcal{O}_{X\times Z}^{t(0,d_{Z})}). \tag{3}$$

Corollary 3.2.

- (i) Morphism (3) induces the ring structure on $\mathcal{E}_X^{\mathbb{R},f}$.
- (ii) There is a morphism $\mathcal{E}_X^{\mathbb{R},f} \otimes \mu hom(F,\mathcal{O}_X^t) \xrightarrow{\Lambda} \mu hom(F,\mathcal{O}_X^t)$ which endows $H^k \mu hom(F,\mathcal{O}_X^t)$ with a structure of $\mathcal{E}_X^{\mathbb{R},f}$ -module for each $k \in \mathbb{Z}$ and $F \in D^b_{\mathbb{R}_{-r}}(\mathbb{C}_X)$.

Let *X* be a complex manifold. There is a natural morphism induced by the multiplication between tempered functions and functions vanishing up to infinity

$$\rho^{-1}R\mathcal{H}om(F, (\mathcal{O}_X^t)_S) \otimes \rho^{-1}R\mathcal{H}om(D'(F \otimes G)_S, \mathcal{O}_X^w) \rightarrow \rho^{-1}R\mathcal{H}om(D'G_S, \mathcal{O}_X^w),$$

for $F,G\in D^b_{\mathbb{R}^-c}(\mathbb{C}_X)$ and S closed subanalytic, the analogue of Proposition 10.6 of [4]. From this morphism we obtain a morphism

$$\rho^{-1}R\mathcal{H}om\big(\big(p_2^{-1}F\big)_{\varOmega},p_1^{-1}\mathcal{O}_X^t\big)\otimes\rho^{-1}R\mathcal{H}om\big(\big(p_2^{-1}D'(F\otimes G)\big)_{\varOmega},p_1^{-1}\mathcal{O}_X^w\big)\rightarrow\rho^{-1}R\mathcal{H}om\big(\big(p_2^{-1}D'G\big)_{\varOmega},p_1^{-1}\mathcal{O}_X^w\big)$$

which is the key point for the construction of (4) below.

Let us consider the diagram (2) with $Z = \{\text{point}\}$. Set $p_X : T^*X \times T^*Y \to T^*X$, $p_Y : T^*X \times T^*Y \to T^*Y$, $q_X : X \times Y \to X$, $q_Y : X \times Y \to Y$.

Proposition 3.3. Let $G \in D^b_{\mathbb{R}_{-c}}(\mathbb{C}_X)$ and $K \in D^b_{\mathbb{R}_{-c}}(\mathbb{C}_{X \times Y})$ such that $\operatorname{supp}(q_X^{-1}G) \cap \operatorname{supp}(K)$ is proper over Y. There is a morphism

$$Rp_{X!}^{a}\big(\mu hom\big(K,\mathcal{O}_{X\times Y}^{t(0,d_{Y})}\big)^{a}[d_{Y}]\otimes p_{Y}^{a-1}\mu hom\big(D'(K\circ G),\mathcal{O}_{Y}^{w}\big)\big)\rightarrow \mu hom\big(D'G,\mathcal{O}_{X}^{w}\big). \tag{4}$$

Corollary 3.4. There is a morphism $\mathcal{E}_X^{\mathbb{R},f} \otimes \mu hom(F,\mathcal{O}_X^{\mathsf{W}}) \to \mu hom(F,\mathcal{O}_X^{\mathsf{W}})$ which endows $H^k \mu hom(F,\mathcal{O}_X^{\mathsf{W}})$ with a structure of $\mathcal{E}_X^{\mathbb{R},f}$ -module for each $k \in \mathbb{Z}$ and $F \in D^b_{\mathbb{R},f}(\mathbb{C}_X)$.

Let X, Y be two complex analytic manifolds of the same complex dimension n and let $\Omega_X \subset T^*X$, $\Omega_Y \subset T^*Y$ be two open subanalytic subsets. Let χ be a contact transformation from Ω_X to Ω_Y and let Λ be the Lagrangian manifold associated to its graph. We follow the notations of [3], Chapter VII.

It is well known that then there exists $K \in D^b_{\mathbb{C}-c}(X \times Y, (p_X, p_Y^a))$ simple with shift 0 along Λ with $SS(K) \subseteq \Lambda$ and $s \in \mu hom(K, \mathcal{O}^{t(0,n)}_{X \times Y})_{(p_X,p_Y^a)}$ such that the correspondence $\mathcal{E}_{X,p_X} \ni P \mapsto Q \in \mathcal{E}_{Y,p_Y}$ such that Ps = sQ is an isomorphism of rings. For the construction of such an s see [10], Chapter I.

Theorem 3.5. For each $F \in D^b_{\mathbb{R}^+ \mathbb{C}}(Y, p_Y)$ and $G \in D^b_{\mathbb{R}^+ \mathbb{C}}(X, p_X)$ the morphisms associated to s induced by (3) and (4)

$$\varphi_{s}: \mu hom(F, \mathcal{O}_{Y}^{t})_{p_{Y}}[n] \rightarrow \mu hom(\Phi_{K}^{\mu}F, \mathcal{O}_{X}^{t})_{p_{X}}, \qquad \psi_{s}: \mu hom(D'(\Phi_{K}^{\mu}G), \mathcal{O}_{Y}^{w})_{p_{Y}}[n] \rightarrow \mu hom(D'G, \mathcal{O}_{X}^{w})_{p_{X}}$$

are isomorphisms. Here Φ_{K}^{μ} denotes the microlocal integral transform associated to K.

A consequence of the action of \mathcal{E}_X on tempered and formal microlocalization is the following.

Corollary 3.6. Let $F \in D^b_{\mathbb{R}^+ \mathbb{C}}(\mathbb{C}_X)$ and let \mathcal{M} be a coherent \mathcal{D}_X -module. Assume that $SS(F) \cap \operatorname{Char}(\mathcal{M}) \subseteq T_X^*X$. Then for $\lambda = t$, w we have the isomorphism

$$R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, D'F \otimes \mathcal{O}_X) \xrightarrow{\sim} R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \rho^{-1}R\mathcal{H}om(F, \mathcal{O}_X^{\lambda})).$$
 (5)

Let \mathcal{M} be a \mathcal{D}_X -module and let $\lambda = t$, w. One sets for short $Sol^{\lambda}(\mathcal{M}) := R\mathcal{H}om_{\rho_!\mathcal{D}_X}(\rho_!\mathcal{M}, \mathcal{O}_X^{\lambda})$. Let SS(F) be the microsupport for subanalytic sheaves of [6,7]. As a consequence of Corollary 3.6 we have

Corollary 3.7. *Let* \mathcal{M} *be a coherent* \mathcal{D}_X *-module. Then* $SS(Sol^{\lambda}(\mathcal{M})) = Char(\mathcal{M})$.

Let $f: X \to Y$ be a morphism of complex manifolds. Using Corollary 3.7, the fact that $f^!F \simeq f^{-1}F[2\dim_{\mathbb{C}} X - 2\dim_{\mathbb{C}} Y]$ if f is non-characteristic for SS(F), $F \in D^b(\mathbb{C}_{X_{sa}})$, and inverse image formulas for holomorphic functions with growth conditions we obtain an analogue with growth conditions of the Cauchy–Kowalevskaya–Kashiwara theorem. Here \underline{f}^{-1} denotes the inverse image for \mathcal{D} -modules.

Theorem 3.8. Let \mathcal{M} be a coherent \mathcal{D}_Y -module, and suppose that f is non-characteristic for \mathcal{M} . Then there is a natural isomorphism $f^{-1}R\mathcal{H}om_{\rho_!\mathcal{D}_Y}(\rho_!\mathcal{M},\mathcal{O}_Y^\lambda) \cong R\mathcal{H}om_{\rho_!\mathcal{D}_X}(\rho_!f^{-1}\mathcal{M},\mathcal{O}_X^\lambda)$ for $\lambda=t$, w.

References

- [1] E. Andronikof, Microlocalisation tempérée, Mém. Soc. Math. Fr. 57 (1994).
- [2] V. Colin, Formal microlocalization, C. R. Acad. Sci. Paris, Ser. I 327 (1998) 289-293.
- [3] M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren Math., vol. 292, Springer-Verlag, Berlin, 1990.
- [4] M. Kashiwara, P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. Fr. 64 (1996).

- [5] M. Kashiwara, P. Schapira, Ind-sheaves, Astérisque 271 (2001).
- [6] M. Kashiwara, P. Schapira, Microlocal study of ind-sheaves I: Microsupport and regularity, Astérisque 284 (2003) 143-164.
- [7] A.R. Martins, Functorial properties of the microsupport and regularity for ind-sheaves, Math. Z. 260 (3) (2008) 541-556.
- [8] L. Prelli, Sheaves on subanalytic sites, Rend. Semin. Mat. Univ. Padova 120 (2008) 167–216.
- [9] L. Prelli, Microlocalization of subanalytic sheaves, C. R. Acad. Sci. Paris, Ser. I 345 (2007) 127–132.
- [10] P. Schapira, Microdifferential Systems in the Complex Domain, Grundlehren Math., vol. 269, Springer-Verlag, Berlin, 1985.