
C. R. Acad. Sci. Paris, Ser. I 348 (2010) 759–762
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations

Renormalized solutions of the fractional Laplace equation

Solutions renormalisées de l’équation de Laplace fractionnaire

Nathaël Alibaud a,b, Boris Andreianov a, Mostafa Bendahmane c

a Laboratoire de mathématiques, UMR CNRS 6623, 16, route de Gray, 25030 Besançon cedex, France
b École nationale supérieure de mécanique et des microtechniques, 26 chemin de l’Épitaphe, 25030 Besançon cedex, France
c Institut de mathématiques de Bordeaux, université Bordeaux 2, 3ter, place de la Victoire, 33076 Bordeaux, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 May 2010
Accepted 31 May 2010
Available online 23 June 2010

Presented by Jean-Michel Bony

We define renormalized solutions for the problems of the kind β(u)+ (−�)s/2u � f in R
n ,

f ∈ L1(Rn). Here β is a maximal monotone graph in R, and (−�)s/2, s ∈ (0,2), is the
fractional Laplace operator which is a particular case of Lévy diffusions. We prove well-
posedness in the framework of renormalized solutions. Then the Cauchy problem for
the associated evolution equations can be solved using the Crandall–Liggett semigroup
technique.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous introduisons une notion de solution renormalisée pour les problèmes du genre
β(u) + (−�)s/2u � f in R

n , f ∈ L1(Rn). Ici β est un graphe maximal monotone dans R,
et (−�)s/2, s ∈ (0,2), est l’opérateur de Laplace fractionnaire qui est un représentant type
des diffusions de Lévy. Nous montrons que le problème est bien posé dans le cadre des
solutions renormalisées. Le problème de Cauchy pour l’équation d’évolution associée peut
alors se traiter par les techniques de semigroupes.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Beyond the variational framework, the idea of truncation test functions led to well-posedness theories for L1 data (and
even for well-chosen measure data) for many classical elliptic and parabolic equations (Laplace equation, heat equation,
porous medium and fast diffusion equations, p-Laplacian and general Leray–Lions problems, viscous conservation laws, etc.).
The adequate notions of solutions are the renormalized solutions, introduced in an unpublished work of Lions and Murat
(cf. [6,4]), and the entropy solutions introduced by Bénilan et al. in [1]. A related notion is Stampaccia’s duality solutions
(see [5] and references therein). In [5], Karlsen et al. develop a duality solutions theory for equations involving fractional
diffusion elliptic operators, of which the fractional Laplace operator (−�)s/2, s ∈ (0,2), is the prototype. Here we give the
basics of a theory of renormalized solutions for such equations. While the function (−�)s/2u is easily defined in terms of
multiplication of the Fourier transform (F u)(ξ) by |ξ |s , we look at the more general definition in terms of integral Lévy
operators, namely, (−�)s/2 = L with
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(Lu)(x) = −
∫

Rn

[
u(x + z) − u(x) − z · ∇u(x)1{|z|<1}

]
dμ(z) for a.e. x ∈ R

n, (1)

where dμ(z) is the measure with the density Gs|z|−(n+s) with respect to the Lebesgue measure on R
n , Gs being a nor-

malization constant. For 0<s<1, the term z
|z|n+s · ∇u(x) in (1) can be omitted, since in this case it does not influence the

integrability of the expression in brackets, and its integral equals zero.
Formula (1) with the measure dμ specified above is known as the Lévy–Khintchine formula. In view of (1), the fractional

Laplacian falls within the wide class of Lévy integral diffusion operators. Our framework is the one of Lévy operators with
even density functions, more exactly, we take the assumptions

dμ(z) = g(z)dz with g � 0, g(z) = g(−z) for all z ∈ R
n, and

∫

Rn

min
{

1, |z|2}g(z)dz < +∞. (2)

Fix a Lévy operator given by (1) with a measure dμ as in (2). Fix a maximal monotone graph β on R with 0 ∈ β(0); we
make the simplifying assumptions Dom β = R and β(R) = R. Consider the problem

b + Lu = f , b ∈ β(u), (3)

with data f ∈ L1(Rn). Our results are: existence and uniqueness of a renormalized solution, and the L1-contraction and
comparison property for solutions u and û of (3) associated with data f and f̂ , resp.:∫

Rn

(b − b̂)+ �
∫

[b �=b̂]

sign+(b − b̂)( f − f̂ ) +
∫

[b=b̂]

( f − f̂ )+ =: [b − b̂, f − f̂ ]+
L1(Rn)

�
∫

Rn

( f − f̂ )+. (4)

Precise definition and result are stated in Section 2, along with some basic comments explaining the definitions. In Section 3,
the proof is sketched. We refer to a forthcoming paper for technical details and generalizations.

Notice that, on the basis of property (4) and of the existence result for (3), one defines an m − T -accretive operator
Aβ,L in L1(Rn) associated with the formal expression b �→ Lβ−1(b). It is easy to see that Aβ,L is densely defined; by
the standard nonlinear semigroup techniques (see e.g. [2]), it follows that there exists a unique mild and integral solution
b(·) ∈ C([0,+∞); L1(Rn)) of the associated abstract evolution problem

d

dt
b + Aβ,Lb � f , b(0) = b0

(
with data b0 ∈ L1(

R
n), f ∈ L1

loc

([0,+∞); L1(
R

n))).
E.g. in the case where β is the identity graph and L is the fractional Laplacian (−�)s/2, the function u(t, x) ≡ b(t)(x) is
a formal solution of the fractional heat equation ∂t u + (−�)s/2u = f , u|t=0 = b0. One can show that under the natural
integrability assumptions on f and u0, the function u(t, x) ≡ b(t)(x) is also the L2(0, T ; Hs/2(Rn)) solution of the fractional
heat equation. In general, the semigroup solution b(·) can be characterized in terms of renormalized solutions of parabolic
equations driven by Lévy diffusions; this question will be addressed elsewhere, along with a study of entropy solutions in
the spirit of [1].

2. Renormalized solutions for the nonlocal elliptic problem (3)

Before turning to definitions, we need some notation. We denote by dπ(x, y) the measure 1
2 g(x − y)dx dy on R

2n (recall
that g(·) is described in (2); we assume g �≡ 0). For k > 0, set

Tk : r �→ sign r min
{
k, |r|} and Φk : r �→ Tk(r + 1) − Tk(r);

Tk(·) is the truncation function at level k > 0. We will write Tku(x), Hu(x) for Tk(u(x)), H(u(x)), etc.

Definition 2.1. Let f ∈ L1(Rn). A measurable function u : R
n → R is called renormalized solution of problem (3) if there

exists a function b ∈ L1(Rn) such that b(x) ∈ β(u(x)) for a.e. x ∈ R
n , and

(i)

for all k > 0,

∫ ∫

R2n

(
u(x) − u(y)

)(
Tku(x) − Tku(y)

)
dπ(x, y) < +∞; (5)

lim
k→+∞

∫ ∫

R2n

(
u(x) − u(y)

)(
Φku(x) − Φku(y)

)
dπ(x, y) = 0; (6)
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(ii) for all compactly supported renormalization functions H ∈ W 1,∞(R), for all test functions φ ∈ D(Rn)∫

Rn

bHuφ +
∫ ∫

R2n

(
u(x) − u(y)

)(
Hu(x) − Hu(y)

)φ(x) + φ(y)

2
dπ(x, y)

+
∫ ∫

R2n

(
u(x) − u(y)

)(
φ(x) − φ(y)

) Hu(x) + Hu(y)

2
dπ(x, y) =

∫

Rn

f Huφ. (7)

A careful analysis shows that thanks to (5), (6) and to the choice of H(·), all terms in (7) make sense (cf. (8) be-
low). Let us explain the different points of the definition, as compared to the well-known case L = −� (cf. [6,4]). Bound
(5) replaces the regularity property Tku ∈ H1(Rn) of the truncates of a renormalized solution u, while the constraint
limk→∞

∫
[k<|u|<k+1] |∇u|2 = 0 is replaced by relation (6) (see also the reformulation (8)). Next, the set of integral identi-

ties (7) expresses the weak formulation of Eq. (3) formally multiplied by H(u). At this stage, we give sense to the nonlocal
term (Lu)Huφ through the following representation of the quadratic form (Lu, v)L2(Rn) (cf. [3, Lemma A.2]):

Proposition 2.2. For all u, v ∈ D(Rn),
∫

Rn (Lu)v = ∫∫
R2n (u(x) − u(y))(v(x) − v(y))dπ(x, y).

Then symmetrization of the difference (Huφ)(x) − (Huφ)(y) yields the two middle terms in (7). Proposition 2.2 makes
the link between sufficiently regular renormalized solutions of (7) and classical solutions.

Theorem 2.3. For all f ∈ L1(Rn), there exists a renormalized solution u of (3). The contraction and comparison inequality (4) holds
for renormalized solutions u, û associated with data f , f̂ ; in particular, the function b in Definition 2.1 is unique.

3. Techniques and arguments in use

For v measurable, we write (δx,y v) for (v(x) − v(y)). Set Hμ := {v | δx,y v ∈ L2(R2n,dπ)}; the quotient space Hμ/{v ≡
const} is a Hilbert space under the scalar product (φ,ψ) �→ ∫∫

R2n (δx,yφ)(δx,yψ)dπ(x, y).

Integrability constraints: A close examination shows that Definition 2.1(i) is equivalent to the properties

Tku ∈ Hμ and lim
k→+∞

∫ ∫

[(u(x),u(y))∈Ak]

∣∣u(x) − u(y)
∣∣ dπ(x, y) = 0, (8)

where Ak := {(u, v) ∈ R
2 | k + 1 � max{|u|, |v|} and (min{|u|, |v|} � k or uv < 0)}.

Existence of variational solutions: Let j : R → [0,+∞] be the convex l.s.c. function of which β is the subdifferential; we first
replace β by its bi-Lipschitz approximation βi , βi(0) = 0, βi = ∂ ji . For f in the space L∞

c (Rn) of compactly supported
bounded functions, there exists a variational solution ui ∈ L2(Rn) ∩ Hμ with ji(ui) ∈ L1(Rn) and bi := βi(ui) ∈ L2(Rn);
ui minimizes the associated coercive convex l.s.c. functional J i : v �→ ∫

Rn ( ji(v) − f v) + ∫∫
R2n | δx,y v|2 dπ(x, y) =: J i[v] ∈

(−∞,+∞] on L2(Rn) ∩ Hμ .

Estimates: For the above f , for u = ui , b = bi , testing the Euler–Lagrange equation with Tku, Φku we get∫

Rn

|bTku| +
∫ ∫

R2n

(δx,yu)(δx,y Tku)dπ(x, y) � k

∫

Rn

| f |;
∫ ∫

R2n

(δx,yu)(δx,yΦku)dπ(x, y) �
∫

[|u|�k]
| f |. (9)

A variational solution is also a renormalized one: It is enough to take Huφ as test function in the variational formulation of (3)
to get Definition 2.1(ii). Properties (i) are straightforward from estimates (9).

A partial comparison inequality: Let u, û be two renormalized solutions (we also allow for constant solutions) of (3). Assume
that one of them is in L∞(Rn); then by (8), this solution also belongs to Hμ .

Let ξ ∈ D(Rn), 0 � ξ � 1. Then ξ ∈ Hμ and for all k > 0, φ := 1
k Tk(u − û + kξ) ∈ L∞(Rn) ∩ Hμ . By approximation, take

φ for the test function in the renormalized formulations (7) for both u and û. Using the fact that one of the solutions is
bounded, exploiting the constraint (8) we can let H(·) go to 1 on R. Then we subtract the so obtained equalities, drop the
nonnegative terms, let k go to zero, and derive

∀ξ ∈ D
(
R

n), 0 � ξ � 1,

∫

Rn

(
sign+(u − û) + ξ1[u=û]

)
(b − b̂) �

∫

Rn

(
sign+(u − û) + ξ1[u=û]

)
( f − f̂ ). (10)

Letting ξ go to sign+(b − b̂), we obtain (4). As a byproduct, we get
∫

Rn |b| �
∫

Rn | f | (a weaker bound stems from (9)).

Moreover, if f � f̂ , using the test function Tk(u − û)+ with k → +∞, we get (u − û)+ ≡ const.
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The maximum principle: Clearly, a constant c ∈ Dom(β) is a bounded renormalized solution of (3) with datum f ∈ β(c). By
the above comparison principle, using the surjectivity of β , we see that the previously constructed variational (and thus,
renormalized) solutions u with L∞ data f do belong to L∞(Rn).

Existence: Keeping f ∈ L∞
c (Rn), with the uniform bounds on ui in Hμ , on bi (thus also on ui ) in L∞ , with classical con-

vexity/monotonicity arguments we pass to the limit in (ui)i , (bi)i and deduce existence of a variational and renormalized
solution u ∈ L∞(Rn) with b ∈ L1(Rn), b ∈ β(u) a.e., and (9) holds.

Bi-monotone sequence of variational solutions, compactness: For given f ∈ L1(Rn), consider the bounded compactly supported
data f l,m = min{ f +, l}1|x|<l − min{ f −,m}1|x|<m; the sequence ( f l,m)l,m is monotone in l and in m, and | f l,m| � | f |. Hence
associated variational solutions ul,m obey uniform estimates of the form (9); recall that (10) yields a uniform L1 bound.
By the above results, ul,m ∈ L∞(Rn); thus (bl,m)l,m is monotone in l,m. Going back to ul,m

i , we see that (ul,m)l,m is also
bi-monotone. We deduce the a.e. convergence of bl,m to an L1 function b. By (9), there exists an R̄-valued u such that for
all k, Tkul,m converge to Tku weakly in Hμ and a.e. The subdifferential relation “∀v , j(ul,m) − j(v) � bl,m(ul,m − v)” holds
a.e.; by passage to the limit, it follows that b ∈ β(u). Since b(R) = R, u is finite a.e.

Passage to the limit in (5)–(7): We already have a renormalized formulation for ul,m . Since | f l,m| � | f | and ul,m converge
pointwise to an a.e. finite limit u, one shows that the bounds (9) for ul,m are uniform. Hence by the Fatou lemma, u fulfills
(5) and (6). From the identities (7)l,m (let us denote this way the identities (7) written for ul,m), for the limit u we first get
a “rough” version of identity (7) with the second term replaced by oH (1) as H(·) goes to 1. Within, we take φ = Tku for
the test function; and we take φ = Tkul,m for the test function in (7)l,m . Letting H(·) go to 1 on R (here (9), (8) are used),
we find that∫ ∫

R2n

(δx,yu)(δx,y Tku)dπ(x, y) � lim sup
l→∞

lim sup
m→∞

∫ ∫

R2n

(
δx,yul,m)(

δx,y Tkul,m)
dπ(x, y).

Hence the sequence ((δx,yul,m)(δx,y Tkul,m))l,m converges in L1(R2n,dπ), thus it is equi-integrable. Now using the a.e. con-
vergence and (8), we can pass to the limit in all the terms of (7)l,m and get (7) for u.

Extension of the comparison property: Let f ∈ L1(Rn); let û be a renormalized solution with datum f . A renormalized solu-
tion u was constructed as the limit of bounded solutions ul,m . Passing to the limit in the previously obtained comparison
inequality for ul,m, û, we find that b = b̂ (further analysis shows that

∫∫
R2n |δx,y(u − û)|2 = 0, and in many cases we get

u = û). Hence by the density argument, using the upper semi-continuity of the bracket [·,·]+
L1(Rn)

w.r.t. the L1 convergence,

one justifies (4) in full generality.
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