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r é s u m é

On montre une estimation precise pour quelques sommes exponentielles des coefficients
de Fourier des GL(3)-formes cuspidales.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let f be a GL(3) Maass form of type ν = (ν1, ν2) and a Hecke eigenform. It can be written in the form

f (z) =
∑

γ ∈U2(Z)\SL(2,Z)

∞∑
m1=1

∑
m2 �=0

A(m1,m2)

m1|m2| W J

(
M

(
γ

1

)
z, ν,ψ1,1

)
,

where U2(Z) is the group of 2 × 2 upper triangular matrices with integer entries and ones on the diagonal, W J (z, ν,ψ1,1)

is the Jacquet–Whittaker function and M = diag(m1|m2|,m1,1). Assume that the form is normalized in such a way that the
first Fourier coefficient is one. We are going to prove the following result:

Theorem 1.1. Let M2/3+ε � � � M, let d be a fixed positive integer, and let w(x) be a smooth weight function on the interval
[M, M + �], with w(x)( j) � �− j , for 0 � j � J , for a sufficiently large J . Now

∑
M�n�M+�

A(1,n)w(n)e

(
d1/3n

M2/3

)
= − A(d,1)i√

3πd−1/3

M+�∫
M

w(x)e

(
d1/3

M2/3
x − 3x1/3d1/3

)
(dx)−1/3 dx + O

(
�M−2/3),

where the constant implied by the O -notation depends on d.

As the integral on the right side of the equation is stationary when � is sufficiently small, we obtain the following
corollary:
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Corollary 1.2. Let M2/3+ε � � �
√

3
2 d−1/6M5/6 . Then

∑
M�n�M+�

A(1,n)w(n)e

(
d1/3n

M2/3

)
� M−1/3�

if A(d,1) �= 0, where f � g is understood to mean that both f = O (g) and g = O ( f ) hold. In particular, as A(1,1) = 1, the following
holds:

∑
M�n�M+�

A(1,n)w(n)e

(
n

M2/3

)
� M−1/3�.

When
√

3
2 d−1/6M5/6 � � � M , by using the second derivative test and partial integration, we have the estimate � M1/2

for the sum in question. On the other hand, we may use the triangle inequality to see that no better general upper bound
can be obtained for sums of the same length. While the lower bounds obtained here are better than trivial bounds, they are
weaker than the squareroot cancellation.

A similar question has been earlier tackled in the GL(2) setting by Karppinen and the author [1] together with estimates
for short exponential sums. Namely, we proved that

∑
M�n�M+�

a(n)w(n)e

(
n√
M

)
� M−1/4�,

when M1/2+ε � � � M3/4 and w(x) is a smooth weight function. Further, we showed that∑
M�n�M+�

a(n)e(αn) � �M−1/4

for any α ∈ [0,1] and M3/4−1/32+ε � � � M3/4 while also proving other non-trivial estimates for short sums. Already 1987
Jutila [3] had proved the estimate∑

n�M

a(n)e(αn) � M1/2,

which is sharp.
The question of this article is very different in the sense that we do not have sharp upper bounds for long sums. Miller’s

[6] bound M3/4+ε is the best we know. However, the expected bound is M1/2+ε .
Also, it is possible to prove something similar to Theorem 1.1 for sums over values of A(p,n), where p is a fixed prime.

However, the situation becomes messier. In general, if m is a fixed composite number, it is possible to obtain similar results
but the more factors m has, the more difficult the situation.

2. Lemmas and preliminaries

Let us first recall the definition of a Kloosterman sum:

S(a,b; c) =
∑

dd̄≡1 (mod c)

e

(
da + d̄b

c

)
.

The Voronoi-type summation formula in GL(3) is the following [7,2]:

Lemma 2.1. Let ψ(x) ∈ C∞
c (0,∞). Let A(m,n) denote the (m,n)th Fourier coefficient of a Maass form for SL(3,Z). Let d, d̄, c ∈ Z

with c �= 0, (d, c) = 1, and dd̄ ≡ 1 (mod c). Then we have

∑
n>0

A(m,n)e

(
nd̄

c

)
ψ(n) = cπ−5/2

4i

∑
n1|cm

∑
n2>0

A(n2,n1)

n1n2
S
(
md,n2;mcn−1

1

)
Ψ 0

0,1

(
n2n2

1

c3m

)

+ cπ−5/2

4i

∑
n1|cm

∑
n2>0

A(n2,n1)

n1n2
S
(
md,−n2;mcn−1

1

)
Ψ 1

0,1

(
n2n2

1

c3m

)
,

where

Ψ
j

0,1(x) = Ψ0(x) + (−1) j π
−3c3m

n2n i
Ψ1(x)
1 2
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and

Ψk(x) =
∫

	s=σ

(
π3x

)−s Γ ( 1+s+2k+α
2 )Γ (

1+s+2k+β
2 )Γ (

1+s+2k+γ
2 )

Γ (−s−α
2 )Γ (−s−α

2 )Γ (−s−α
2 )

∞∫
0

ψ(x)x−s−k dx

x
ds. (1)

The following, extremely useful lemma is due to Li [5]:

Lemma 2.2. Suppose ψ(x) is a smooth function compactly supported on [X,2X] and that Ψ0(x) is defined as in (1). Then for any fixed
integer K � 1 and xX 
 1, we have

Ψ0(x) = 2π4xi

∞∫
0

ψ(y)

K∑
j=1

c j cos(6πx1/3 y1/3) + d j sin(6πx1/3 y1/3)

(π3xy) j/3
dy + O

(
(xX)

−K+2
3

)
,

where d j and c j are certain constants, specifically, c1 = 0 and d1 = − 2√
3π

.

3. Proof of the main result

Write ψ(n) = w(n)e( d1/3n
M2/3 ). Let us use the Voronoi-type summation formula 2.1:

∑
M�n�M+�

A(1,n)ψ(n) = π−5/2

4i

∑
m>0

A(m,1)

m
S(0,m;1)Ψ 0

0,1(m) + π−5/2

4i

∑
m>0

A(m,1)

m
S(0,−m;1)Ψ 1

0,1(m). (2)

Now

S(0,m;1) = 1 = S(0,−m;1).

Therefore, the right side of (2) simplifies to

π−5/2

2i

∑
m>0

A(m,1)

m
Ψ0(m).

Now we need the asymptotic expansion of Ψ0(m) (remember that ψ(x) = w(x)e( d1/3x
M2/3 )):

Ψ0(m) = 2π4mi

M+�∫
M

w(x)e

(
d1/3x

M2/3

) K∑
j=1

c j cos(6πm1/3x1/3) + d j sin(6πm1/3x1/3)

(π3mx) j/3
dx + O

(
(mM)

−K+2
3

)
. (3)

Let us first choose K to be the smallest positive integer satisfying the condition
∣∣A(m,1)

∣∣ � m(K−2)/3−ε

for some arbitrarily small but fixed ε > 0. Substituting expression (3) into (2) and summing over the error term of (3)
yields � M(−K+2)/3. Let us now write the cosine and sine as sums of exponent functions. Therefore, we may now consider
integrals

M+�∫
M

g( j)
m (x)w(x)e

(
d1/3x

M2/3

)
dx,

where

g( j)
m (x) =

K∑

=1

a
, je
(
(−1) j3x1/3m1/3)(mx)−
/3.

Here a
, j are some constants; in particular, a1,1 = −i√
3π

. Let us only consider the case with j = 1 as the other case (for all

values of m) can be treated in the same way with the case j = 1 and m �= d. Let us first assume d �= m. Using Jutila’s and
Motohashi’s Lemma 6 [4], we obtain

∣∣∣∣∣
M+�∫

g(1)
m (x)e

(
d1/3x

M2/3

)
w(x)dx

∣∣∣∣∣ � �−P m−1/3−P/3M−1/3+2P/3
M
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for arbitrarily large but fixed P . Substituting this to (2) yields

∑
M�n�M+�

A(1,n)w(n)e

(
d1/3n

M2/3

)
= π−5/2

4i
A(d,1)

M+�∫
M

g(1)

d (x)e

(
d1/3x

M2/3

)
w(x)dx + O (1).

Let us now consider the case with d = m and 
 � 2. Using integration over absolute values, we obtain

M+�∫
M

∣∣∣∣a
,1 w(x)e

(
d1/3

M2/3
x − 3x1/3d1/3

)
(dx)−
/3

∣∣∣∣dx � d−
/3�M−
/3.

Hence,

∑
M�n�M+�

A(1,n)w(n)e

(
d1/3n

M2/3

)
= − A(d,1)i√

3πd−1/3

M+�∫
M

w(x)e

(
d1/3

M2/3
x − 3x1/3d1/3

)
(dx)−1/3 dx

+ O
(
�M−2/3). (4)

Acknowledgements

The author would like to thank the referee for valuable suggestions, corrections, and for generally making this article
much better and clearer.

References

[1] A.-M. Ernvall-Hytönen, K. Karppinen, On short exponential sums involving Fourier coefficients of holomorphic cusp forms, Int. Math. Res. Not. 2008
(2008), Art. ID rnn022, 44 pp.

[2] D. Goldfeld, X. Li, Voronoi formulas on GL(n), Int. Math. Res. Not. (2006), Art. ID 86295, 25 pp.
[3] M. Jutila, On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci. Math. Sci. 97 (1–3) (1987) 157–166.
[4] M. Jutila, Y. Motohashi, Uniform bound for Hecke L-functions, Acta Math. 195 (2005) 61–115.
[5] X. Li, The central value of the Rankin–Selberg L-functions, arXiv:0812.0035v1.
[6] S.D. Miller, Cancellation in additively twisted sums on GL(n), Amer. J. Math. 128 (3) (2006) 699–729.
[7] S.D. Miller, W. Schmid, Automorphic distributions, L-functions, and Voronoi summation for GL(3), Ann. of Math. (2) 164 (2) (2006) 423–488.


	On certain exponential sums related to GL(3) cusp forms
	Introduction
	Lemmas and preliminaries
	Proof of the main result
	Acknowledgements
	References


