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We present a generalization to an arbitrary number of subspaces of the cosine of the
Friedrichs angle between two subspaces of a Hilbert space. This parameter is used to
analyze the rate of convergence in the von Neumann–Halperin method of alternating pro-
jections.
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r é s u m é

On considère une généralisation à plusieurs espaces du cosinus de l’angle de Friedrichs
entre deux sous-espaces d’un espace de Hilbert. On utilise ce paramètre pour analyser
la vitesse de convergence dans la méthode des projections alternées de von Neumann–
Halperin.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M1, . . . , MN be N � 2 closed subspaces of a complex Hilbert space H , whose intersection is denoted by M = M1 ∩
M2 ∩ · · · ∩ MN . Throughout this Note we will denote by P S the orthogonal projection onto the closed subspace S of H .
The method of considering the convergence of the iterates of the product T = P MN · · · P M2 P M1 in order to obtain T ∞ = P M

is called the method of alternating projections. It was proved for N = 2 by J. von Neumann and in general for N � 3 by
I. Halperin [7] that for each x ∈ H

lim
n→∞

∥∥(P MN · · · P M2 P M1)
nx − P M x

∥∥ = 0.

For N = 2 we have a quite complete description of the rate of convergence involving the angle of the two subspaces (see
[5] and [9, Lecture VIII]).

Definition 1.1 (Friedrichs angle). Let H be a Hilbert space whose closed unit ball we denote by B H , and let M1 and M2
be two closed subspaces of H with intersection M = M1 ∩ M2. The Friedrichs angle between the subspaces M1 and M2 is
defined to be the angle in [0,π/2] whose cosine is given by
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c(M1, M2) := sup
{∣∣〈x, y〉∣∣: x ∈ M1 ∩ M⊥ ∩ B H , y ∈ M2 ∩ M⊥ ∩ B H

}
.

It was proved by Aronszajn [1] (upper bound) and by Kayalar and Weinert [8] (equality) that

∥∥(P M2 P M1)
n − P M

∥∥ = c(M1, M2)
2n−1 for any n � 1.

This formula shows that the sequence (T n) of iterates of T = P M2 P M1 converges uniformly to T ∞ = P M if and only if
c(M1, M2) < 1, that is if and only if the Friedrichs angle between M1 and M2 is positive. In this case the iterates of
T = P M2 P M1 converge “quickly” (as fast as a geometrical progression) to T ∞ = P M , in the following sense:

(QUC) (quick uniform convergence) There exist a positive constant C and an α ∈ ]0,1[ such that ‖T n − T ∞‖ � Cαn for any
n � 1.

It is also known [5] that c(M1, M2) < 1 if and only if M1 + M2 is closed, if and only if M⊥
1 + M⊥

2 is closed, if and only
if (M1 ∩ M⊥) + (M2 ∩ M⊥) is closed. When M1 + M2 is not closed, we have strong, but not uniform convergence of the
iterates of T to T ∞ . It was recently proved by Bauschke, Deutsch and Hundal (see [3] for the history of this result) that in
this case we have arbitrarily slow convergence of the iterates of T = P M2 P M1 to T ∞:

(ASC) (arbitrarily slow convergence) For every ε > 0 and every sequence (an)n�1 of positive numbers such that limn→∞ an =
0, there exists a vector x ∈ X such that ‖T nx − T ∞x‖ � an for every n � 1.

Thus the iterates of the product of two projections converge either quickly, or arbitrarily slowly. We call this alternative
the (QUC)/(ASC) dichotomy.

The results concerning the rate of convergence in Halperin’s theorem for N � 3 are far less complete than the results
described above for N = 2. We refer to [5,6], [4, Chapter 9], [10] and their references for several results concerning the rate
of convergence in the method of alternating projections for N � 3. An interesting fact is pointed out in [6, Example 3.7]: for
N � 3 the error of the method of cyclic alternating projections is not a function of the various Friedrichs angles c(Mi, M j)

between pairs of subspaces.
The aim of this Note is to announce several results concerning the rate of convergence in Halperin’s theorem for N �

3, including that the dichotomy (QUC)/(ASC) holds for N � 2, with several possible meanings for (ASC). We introduce a
generalization of the cosine of the Friedrichs angle to several subspaces, c(M1, . . . , MN ). Like for N = 2, the condition (QUC)
holds if and only if c(M1, . . . , MN) < 1. Estimates for the error ‖(P MN · · · P M2 P M1 )

n − P M‖ are given in this case as well as
several statements equivalent to the condition c(M1, . . . , MN ) < 1. We refer the reader to [2] for complete proofs and for
other related results.

2. Main results

The rate of convergence in the method of alternating projections for N � 3 is obtained in terms of the following param-
eter:

Definition 2.1. Let M1, . . . , MN be N � 2 closed subspaces of H with intersection M = M1 ∩ · · · ∩ MN . The Friedrichs number
c(M1, . . . , MN ) associated to these N subspaces is defined as

c(M1, . . . , MN) = sup

{
2

N − 1

∑
j<k Re〈m j,mk〉

‖m1‖2 + · · · + ‖mN‖2
: m j ∈ M j ∩ M⊥, ‖m1‖2 + · · · + ‖mN‖2 
= 0

}
.

It is not hard to show that this definition coincides with the classical one for two subspaces, and that the number
c(M1, . . . , MN ) always lies between 0 and 1. The Friedrichs number of M1, . . . , MN is related to the projections P M1 , . . . ,

P MN by the following formula:

c(M1, . . . , MN) = N

N − 1

∥∥∥∥ P M1 + · · · + P MN

N
− P M

∥∥∥∥ − 1

N − 1
·

We announce the following results which provide a fairly complete description of the rate of convergence in the method
of alternating projections.

Theorem 2.2. Let M1, . . . , MN be N � 2 closed subspaces of a complex Hilbert space H with intersection M = M1 ∩ M2 ∩ · · · ∩ MN .
Let T = P MN P MN−1 · · · P M1 denote the product of the projections on these successive subspaces. Then the following alternative holds:
either the range Ran(T − I) is closed and the iterates T n converge uniformly to T ∞ = P M , and in this case (QUC) holds, or Ran(T − I)
is not closed and then the convergence of T n to T ∞ is arbitrarily slow in each one of the following senses:
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(ASC1: arbitrarily slow convergence, variant 1) For every ε > 0 and every sequence (an)n�1 of positive numbers such that limn→∞ an

= 0, there exists a vector x ∈ X such that ‖x‖ < supn an + ε and ‖T nx − T ∞x‖ � an for all n;
(ASC2: arbitrarily slow convergence, variant 2) For every sequence (an)n�1 of positive numbers such that limn→∞ an = 0, there exists

a dense subset of points x ∈ X such that ‖T nx − T ∞x‖ � an for all but a finite number of n’s;
(ASCH: arbitrarily slow convergence, Hilbertian version) For every ε > 0 and every sequence (an)n�1 of positive numbers such that

limn→∞ an = 0, there exists a vector x ∈ H such that ‖x‖ < supn an + ε and Re〈T nx − T ∞x, x〉 � an for all n � 1;
(ASCHR: arbitrarily slow convergence for random products) For every ε > 0, every sequence (an)n�0 of positive reals with limn→∞ an

= 0, and every sequence of indices (ik)k�1 in {1,2, . . . , N}, there exists x ∈ H with ‖x‖ < supn an +ε such that Re〈P Min
· · · P Mi1

−
P M x, x〉 � an for each n � 1.

More precisely, the next theorem characterizes in several ways when the above dichotomy occurs. We denote by σ(A)

the spectrum of A, by ‖ · ‖e the essential norm and by σe the essential spectrum.

Theorem 2.3. With the same notation as in the previous theorem, the following assertions are equivalent:

(1) the range Ran(T − I) of T − I is not closed;
(1′) for every k � N and every sequence of indices (ik)k�1 such that {i1, . . . , ik} = {1,2, . . . , N}, Ran(P Mik

· · · P Mi1
− I) is not closed;

(2) one/all of the conditions (ASC1), (ASC2), (ASCH) hold for T ;
(2′) the condition (ASCHR) holds;
(3) c(M1, . . . , MN ) = 1;
(4) for every ε > 0, every closed subspace K ⊂ M⊥ of finite codimension (in M⊥), there exists a vector x ∈ K such that ‖x‖ = 1 and

max{dist(x, M j): j = 1, . . . , N} < ε;
(5) 1 ∈ σ(T − P M);

(5′) for every k and every i1, . . . , ik ∈ {1,2, . . . , N} we have 1 ∈ σ(P Mik
· · · P Mi1

− P M);
(6) ‖T − P M‖ = 1;

(6′) for every k and every sequence of indices (ik)k�1 with {i1, . . . , ik} = {1,2, . . . , N} we have ‖P Mik
· · · P Mi1

− P M‖ = 1;
(7) ‖T − P M‖e = 1;

(7′) for every k and every i1, . . . , ik ∈ {1,2, . . . , N} we have ‖P Mik
· · · P Mi1

− P M‖e = 1;
(8) 1 ∈ σe(T − P M);

(8′) for every k, every i1, . . . , ik ∈ {1,2, . . . , N} we have 1 ∈ σe(P Mik
· · · P Mi1

− P M);

(9) for every ε > 0, every closed subspace K ⊂ M⊥ of finite codimension (in M⊥), there exists a vector x ∈ K such that ‖T x− x‖ � ε;
(9′) for every ε > 0, every closed subspace K ⊂ M⊥ of finite codimension (in M⊥), there exists a vector x ∈ K such that

‖P Mik
· · · P Mi1

x − x‖ � ε for every k and every i1, . . . , ik ∈ {1,2, . . . , N};

(10) the sum of diag(M1) := {(y, . . . , y): y ∈ M1} ⊂ H N−1 and M2 ⊕ · · · ⊕ MN ⊂ H N−1 is not closed in H N−1 (and equivalent
statements for diag(M j) ⊂ H N−1 , 2 � j � N);

(11) M⊥
1 + · · · + M⊥

N is not closed in H.

The conditions (1), (2), (5), (6), (7), (8) and (9) (most of which are of spectral nature) are conditions about the product
T = P MN · · · P M1 , while the corresponding conditions denoted with primes are analog conditions concerning random products
P MiN

· · · P Mi1
. The conditions (3), (4), (10) and (11) concern the geometry of subspaces. The last theorem gives an estimate

on the rate of convergence when we have (QUC) in terms of the Friedrichs parameter:

Theorem 2.4. Let M1, . . . , MN be N � 2 closed subspaces of H with intersection M = M1 ∩ M2 ∩ · · · ∩ MN , and T = P MN · · · P M1 .
Suppose that c := c(M1, . . . , MN ) < 1. Then we have quick uniform convergence of the powers T n to P M , and more precisely

∥∥T n − P M
∥∥ �

(
1 −

(
1 − c

4N

)2)n/2

for any n � 1.

Acknowledgements

This work has been partially supported by ANR Project Blanc DYNOP, Grant No. 201/06/0128 of GA ČR and Institutional
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