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Abstract

We study here the equation H(Du) = H(0), x ∈ R
N . More precisely we investigate under which hypotheses the constant

functions are the only bounded solutions. In arbitrary space dimension we prove that this happens when convexity and coercivity
occur. In one space dimension we show that the above property holds true for Hamiltonians in a larger class. These results apply
when studying the long time behaviour of solutions for time-dependent Hamilton–Jacobi equations. To cite this article: M. Bostan,
G. Namah, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Quelques remarques sur les solutions bornées des équations stationnaires d’Hamilton–Jacobi. Dans cette Note on s’inté-
resse à l’équation H(Du) = H(0), x ∈ R

N et plus précisément à la question suivante : dans quels cas les fonctions constantes
sont-elles les seules solutions bornées de cette équation ? On démontre que tel est le cas sous des hypothèses de convexité et coer-
civité en dimension N quelconque. La preuve fait appel à la formule de Hopf–Lax. En une dimension d’espace on propose un
résultat pour des hamiltoniens seulement faiblement coercifs moyennant une condition supplémentaire. Dans la dernière partie on
utilise ces résultats pour identifier les limites asymptotiques en temps long des solutions des problèmes de Cauchy. Pour citer cet
article : M. Bostan, G. Namah, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Soit H : R
N → R une fonction vérifiant

H convexe, (1)

lim|p|→+∞
H(p)

|p| = +∞. (2)

On montre que les seules solutions (au sens de viscosité) bornées de l’équation stationnaire d’Hamilton–Jacobi
H(Du) = H(0), x ∈ R

N sont données par les fonctions constantes. Sans perte de généralité on peut supposer que
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H(0) = 0. La preuve utilise la formule de représentation de Hopf–Lax [4] p. 560. Il est bien connu que si l’hamiltonien
H vérifie (1), (2), alors toute solution au sens de viscosité de H(Du) = 0, x ∈ R

N vérifie

u(x) = inf
y∈RN

{
u(y) + tL

(
x − y

t

)}
(3)

où L : R
N → R est la fonction conjuguée à H par dualité convexe

L(q) = sup
p∈RN

{
q · p − H(p)

}
, q ∈ R

N. (4)

En une dimension d’espace il est possible d’étudier une classe plus large d’hamiltoniens, pas nécessairement convexes.
On considère H : R → R seulement faiblement coercif i.e.,

lim|p|→+∞H(p) = +∞ (5)

et vérifiant

0 /∈ H−1
(
H(0)

) \ {0}. (6)

On voit facilement que si la fonction H reste constante dans un voisinage de 0 alors on peut toujours construire
une solution bornée, non constante de H(ux) = H(0), x ∈ R (voir l’exemple (14)), ce qui justifie l’introduction de
l’hypothèse (6). En utilisant les notions de sous/sur-différentiel (la formule de Hopf–Lax n’étant plus valide, car H

n’est plus supposé convexe) on montre que les seules solutions (au sens de viscosité) bornées de

H(ux) = H(0), x ∈ R (7)

sont les fonctions constantes. Ces résultats s’appliquent lorsqu’on souhaite étudier le comportement en temps long
d’un problème d’évolution avec condition initiale{

∂tu + H(∂xu) = 0, (x, t) ∈ R×]0,+∞[,
u(x,0) = u0(x), x ∈ R.

(8)

1. Bounded stationary solutions

The subject matter of this Note concerns the stationary equation

H(Du) = H(0), x ∈ R
N (9)

where H : R
N → R is a continuous function.

Proposition 1.1. Let H = H(p) : R
N → R satisfying (1), (2) such that its conjugate function is C1 in a neighbourhood

of its minimum points. Then the constants are the only bounded solutions of (9) (in viscosity sense).

We appeal here to Hopf–Lax representation formula [4] p. 560. Before detailing the proof let us recall the following
standard results concerning the conjugate (by convex duality) function L associated to the Hamiltonian H . We have
(see [4] p. 122):

Proposition 1.2 (Convex duality of Hamiltonian and Lagrangian). Assume that H satisfies (1), (2). Then the mapping
L is convex and satisfies lim|q|→+∞ L(q)/|q| = +∞. Furthermore, the conjugate function associated do L coincides
with H .

Notice that (2) guarantees that the supremum in (4) is attained for any q ∈ R
N and that the mapping L is locally

Lipschitz. We check easily that L(q) � −H(0), q ∈ R
N . If H is strictly convex, the dual function L enjoys other

interesting properties, see for e.g. [3]. Indeed, for any q ∈ R
N , there is a unique p ∈ R

N such that ∂H(p) � q and we
have for any element in ∂H(p)

L
(
∂H(p)

) = ∂H(p) · p − H(p), p ∈ R
N. (10)
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We also mention that the strict convexity of H ensures that L is C1 function and DL(∂H(p)) = p, p ∈ R
N .

Proof of Proposition 1.1. Without loss of generality we can assume that H(0) = 0. First notice that by the coercivity
condition (2) any bounded solution is in fact Lipschitz continuous so that it is a.e. differentiable. Therefore it suffices
to show that Du = 0 a.e. to conclude that u is a constant function. For this sake we are going to use the representation
Hopf–Lax formula (3) for convex coercive Hamiltonians. Let x0 be a differentiability point of u. We want to show
that Du(x0) = 0. Let yt

0 = yt
0(x0, t) be a minimum point in (3) i.e.,

u(x0) = u
(
yt

0

) + tL
(
zt

0

)
, zt

0 = x0 − yt
0

t
. (11)

Since u is bounded we have

L
(
zt

0

)
� 2‖u‖L∞

t
, t > 0. (12)

The boundedness of L together with its coercivity lead then to the boundedness of (zt
0)t>0. Thus there is a sequence

(tk)k diverging towards +∞ such that the sequence (z
tk
0 )k converges to some limit z∞. From (12) we deduce that

L(z∞) � 0. As L(q) � −H(0) = 0 for any q ∈ R
N , we conclude that L(z∞) = 0 saying that z∞ is a minimum point

for L, DL(z∞) = 0 and therefore

lim
k→+∞DL

(
z
tk
0

) = DL(z∞) = 0. (13)

The idea is to differentiate (11) with respect to x0 for any fixed k and then to let k → +∞. By the Hopf–Lax formula
(3) we have for any x ∈ R

N

u(x) − u
(
y

tk
0

) − tkL

(
x − y

tk
0

tk

)
� 0 = u(x0) − u

(
y

tk
0

) − tkL

(
x0 − y

tk
0

tk

)

saying that the function x → u(x) − tkL(
x−y

tk
0

tk
) has a maximum in x0. Since x0 is a differentiability point of u and L

is C1 around its minimum point z∞ = limk→+∞ z
tk
0 we deduce that

Du(x0) = DL
(
z
tk
0

) → DL(z∞) = 0, as k → +∞. �
We now propose a result in one dimension concerning the possible bounded solutions of (7) when H : R → R is

continuous and satisfies the coercivity condition (5). For this sake consider the set

IH = {
p ∈ R: H(p) = H(0)

}
.

Notice that IH is nonempty (0 ∈ IH ) and closed. We then have

Proposition 1.3. Let H = H(p) satisfy (5) such that 0 /∈ IH − {0}. Then the constants are the only bounded solutions
of (7).

Let us point out that strictly convex Hamiltonians satisfy 0 /∈ IH − {0}. Notice also that just convex is not sufficient
as is shown by the following example:

H(p) =
⎧⎨
⎩

−p − 1, p ∈]−∞,−1[,
0, p ∈ [−1,1],
p − 1, p ∈]1,∞[,

(14)

where possible solutions are (up to additive constants) any function v such that |v′(x)| � 1, x ∈ R. Here we have
IH − {0} = [−1,1] � 0 and as we see solutions other than constants exist (for e.g. u(x) = sinx, x ∈ R). The proof of
the above proposition relies on the notions of subdifferential and superdifferential for continuous functions v ∈ C(R)
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D−v(x) =
{
p ∈ R: lim inf

y→x

v(y) − v(x) − p(y − x)

|y − x| � 0

}
,

D+v(x) =
{
p ∈ R: lim sup

y→x

v(y) − v(x) − p(y − x)

|y − x| � 0

}
.

We use the following easy lemma:

Lemma 1.4. Let v ∈ C(R) be a continuous function and x1 < x2 two differentiability points for v such that v′(x1) �=
v′(x2).

(i) If v′(x1) < k < v′(x2) there is x3 ∈]x1, x2[ such that D−v(x3) � k.
(ii) If v′(x1) > k > v′(x2) there is x4 ∈]x1, x2[ such that D+v(x4) � k.

Proof. Without loss of generality we can assume k = 0 (replace the function v(x) by v(x) − kx, x ∈ R).
(i) We assume that v′(x1) < 0 < v′(x2). Consider x3 ∈ [x1, x2] such that v(x3) = min{v(x): x ∈ [x1, x2]}. Obvi-

ously we have x3 �= x1, x3 �= x2 and therefore

lim inf
y→x3

v(y) − v(x3)

|y − x3| � 0,

saying that 0 ∈ D−v(x3).
(ii) In the case v′(x1) > 0 > v′(x2) take x4 ∈ [x1, x2] such that v(x4) = max{v(x): x ∈ [x1, x2]}. We easily check

that 0 ∈ D+v(x4). �
Now we are ready to prove Proposition 1.3.

Proof of Proposition 1.3. Let u be a bounded solution of (7). Since the Hamiltonian satisfies the coercivity condition,
u is a Lipschitz function and therefore it is differentiable a.e. on R. We show that the first derivative of u has constant
sign. More precisely we prove that if there is x1 ∈ R such that u′(x1) �= 0 then u′(x)u′(x1) > 0, for a.a. x ∈ R. To fix
the ideas assume that there is x1 ∈ R such that u′(x1) < 0, the other case following in similar way. Suppose that there
is x2 such that u′(x2) > 0 and let us search for a contradiction.
Case 1. Consider that x1 < x2. By Lemma 1.4 we know that for any p ∈]u′(x1), u

′(x2)[ there is xp ∈]x1, x2[ such
that D−u(xp) � p. Since u is in particular a supersolution of (7) we deduce that

H(p) � H(0), ∀p ∈ ]
u′(x1), u

′(x2)
[
. (15)

We use now the hypothesis 0 /∈ IH − {0} which is equivalent to

∃ε > 0: H(p) �= H(0), ∀p ∈]− ε,0[∪ ]0, ε[. (16)

Obviously since u′(x1) < 0, u′(x2) > 0, H(u′(x1)) = H(u′(x2)) = H(0) we obtain u′(x1) � −ε < ε � u′(x2). It re-
mains to notice that u′(x3) � ε for a.a. x3 > x2. Indeed if there is x3 > x2 such that u′(x3) < ε � u′(x2) by Lemma 1.4
we know that for any p ∈]u′(x3), u

′(x2)[ there is yp ∈]x2, x3[ such that D+u(yp) � p. Since u is in particular a
subsolution of (7) we deduce that

H(p) � H(0), p ∈ ]
u′(x3), u

′(x2)
[
. (17)

Combining (15), (17) we obtain H(p) = H(0) for any

p ∈ ]
max

{
u′(x1), u

′(x3)
}
, u′(x2)

[
,

which is not possible in view of (16) and of the inequalities max{u′(x1), u
′(x3)} < ε, u′(x2) � ε. Thus the inequality

u′(x3) � ε holds for a.a. x3 > x2 leading to a contradiction since in this case u(x3) becomes unbounded when x3 goes
to +∞

u(x3) � u(x2) + ε(x3 − x2), ∀x3 > x2.

Case 2. Consider now that x1 > x2. Combining Lemma 1.4 and the fact that u is a subsolution for (7) yields
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H(p) � H(0), ∀p ∈ ]
u′(x1), u

′(x2)
[
. (18)

Assume that there is x3 < x2 such that u′(x3) < ε. By Lemma 1.4 combined with the fact that u is a supersolution for
(7) we obtain

H(p) � H(0), p ∈ ]
u′(x3), u

′(x2)
[
, (19)

and therefore

H(p) = H(0), p ∈ ]
max

{
u′(x1), u

′(x3)
}
, u′(x2)

[
,

which is not possible in view of (16). Thus u′(x3) � ε for a.a. x3 < x2 leading to a contradiction since in this case
u(x3) becomes unbounded when x3 goes to −∞

u(x3) � u(x2) − ε(x2 − x3), ∀x3 < x2.

Once we have proved that u′ has constant sign it is easily seen that every bounded solution for (7) is constant. Indeed
if there is x1 ∈ R such that u′(x1) > 0 we know that u′(x) > 0 for a.a. x ∈ R. Since H(u′(x)) = H(0) for a.a. x ∈ R

we deduce by (16) that u′(x) � ε for a.a. x ∈ R and therefore u does not remain bounded. If there is x2 ∈ R such that
u′(x2) < 0 we obtain a contradiction in a similar manner. Thus u′(x) = 0 for a.a. x ∈ R saying that u is constant. �
2. An application: explicit limiting solutions

The previous results enable us in certain cases to give explicitly the limiting solutions of initial value problems. We
give here two examples.

Example 1. Consider the initial value problem{
∂tu + H(∂xu) = 0, (x, t) ∈ R×]0,+∞[,
u(x,0) = u0(x), x ∈ R,

(20)

such that

H(0) = 0, 0 /∈ IH − {0}. (21)

Then we have the following:

Proposition 2.1. Let H = H(p) satisfy (5), (21), u0 ∈ W 1,∞(R) and u be the solution of (20).

(i) If u0 is a subsolution of H(ux) = 0, x ∈ R then

lim
t→+∞u(x, t) = sup

y∈R

u0(y) =: ϕM, uniformly for x in compact sets of R.

(ii) If u0 is a supersolution of H(ux) = 0, x ∈ R then

lim
t→+∞u(x, t) = inf

y∈R

u0(y) =: ϕm, uniformly for x in compact sets of R.

Proof. First notice that under the above assumptions, the problem (20) admits a unique bounded Lipschitz continuous
solution. If u0 is a subsolution of H(ux) = 0, then one knows that u(x, t) is nondecreasing in time and converges as
t goes to infinity, uniformly for x in compact sets of R, towards the minimal solution ϕ of H(ux) = 0 which satisfies
ϕ(x) � u0(x), x ∈ R. But as (21) holds, Proposition 1.3 applies and therefore ϕ is necessarily a constant. Thus
ϕ(x) ≡ ϕM = supy∈R u0(y). The second part (ii) follows in similar way. For results concerning long time behaviour
of solutions of Hamilton–Jacobi equations, one can for example refer to the papers [1] and [6], see also [2]. �
Remark 1. Notice that the Hamiltonian of the above example can be quite general with no particular property of
convexity or superlinearity type.
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Now let us turn to an example with a periodic source term. Consider the initial value problem{
∂tu + √

1 + (∂xu)2 − 1 = cos t, (x, t) ∈ R×]0,+∞[,
u(x,0) = u0(x), x ∈ R.

(22)

Proposition 2.2. For any u0 ∈ W 1,∞(R) the solution of (22) verifies

lim
t→+∞

{
u(x, t) − sin t

} = inf
y∈R

u0(y), uniformly for x in compact sets of R.

Proof. We will again use known results on the existence of time periodic solutions and on their asymptotic behaviour.
We refer to [2] for example. First we know that (22) admits 2π periodic solutions. This comes from the solvability of√

1 + (u′)2 − 1 = (2π)−1
∫ 2π

0 cos(t)dt = 0, x ∈ R (constants are solutions). Then observe that any u0 ∈ W 1,∞(R) is

a supersolution of
√

1 + (u′)2 − 1 = 0 so that

lim
t→+∞

{
u(x, t) − sin t

} = ψ(x), uniformly for x in compact sets of R,

where ψ is the maximal solution of
√

1 + (u′)2 − 1 = 0, x ∈ R such that ψ(x) � u0(x), x ∈ R. Now as 0 /∈
IH − {0} = ∅, by Proposition 1.3 we deduce that ψ can only be a constant. The maximal constant ψ verifying
ψ(x) � u0(x), x ∈ R is necessarily given by the infimum of {u0(y): y ∈ R}. �
Remark 2. In fact in the above example we are just recovering known results for convex Hamiltonians, see [5] p. 251.
Indeed, as in this case H is convex in p, one can obtain explicitly the solution via the Hopf–Lax formula applied to
the equation satisfied by v(x, t) = u(x, t) − sin t .
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