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The topology of the space of symplectic balls in S2 × S2
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Abstract

In this Note we compute the full homotopy type of the space of symplectic embeddings of the standard ball B4(c) ⊂ R4 with
capacity c = πr2 into the 4-dimensional rational symplectic manifold Mμ = (S2 × S2,μω0 ⊕ ω0) where μ belongs to the interval
(1,2] and c is above the critical value μ − 1. To cite this article: S. Anjos, F. Lalonde, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La tolologie de l’espace des boules symplectiques dans S2 ×S2. Dans cette Note, nous calculons le type d’homotopie complet
de l’espace des plongements symplectiques de la boule standard B4(c) ⊂ R4 de capacité c = πr2 dans la 4-variété rationnelle
Mμ = (S2 × S2,μω0 ⊕ ω0) où μ appartient à l’intervalle (1,2] et c est plus grand que la valeur critique μ − 1. Pour citer cet
article : S. Anjos, F. Lalonde, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

This Note is the follow-up and conclusion of the paper [5]. All proofs can be found in [2]. Consider the rational
symplectic manifold Mμ = (S2 × S2,μω0 ⊕ ω0) where ω0 is the area form on the sphere with total area 1 and where
μ belongs to the interval (1,2]. Let B4(c) ⊂ R4 be the closed standard ball of radius r and capacity c = πr2 equipped
with the restriction of the symplectic structure ωst = dx1 ∧ dy1 + dx2 ∧ dy2 of R4. Let Embω(c,μ) be the space,
endowed with the C∞-topology, of all symplectic embeddings of B4(c) in Mμ. Finally, let �Embω(c,μ) be the space
of subsets of M that are images of maps belonging to Embω(c,μ) defined as the topological quotient

Symp
(
B4(c)

)
↪→ Embω(c,μ) −→ �Embω(c,μ)

where Symp(B4(c)) is the group, endowed with the C∞-topology, of symplectic diffeomorphisms of the closed ball,
with no restrictions on the behavior on the boundary (thus each such map extends to a symplectic diffeomorphism of
a neighborhood of B4(c) that sends B4(c) to itself). We may view �Embω(c,μ) as the space of all unparametrized
balls of capacity c of M .
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One knows from [5] that Embω(c,μ) retracts to the space of symplectic frames of M = S2 × S2 for all values
c < μ − 1 (hence the space �Embω(c,μ) retracts to S2 × S2 in this range of c’s). Recall that the Non-squeezing
Theorem implies that this space is empty for c � 1. It is shown moreover in [5,6] that, if � < μ � � + 1 where
� ∈ N, the homotopy type of �Embω(c,μ) changes only when μ passes an integer or c crosses the critical value
μ − � (and that it does change at those values). In this note we study the full homotopy type of �Embω(c,μ) for
values μ − 1 � c < 1 when 1 < μ � 2 and show, in particular, that it does not have the homotopy type of a finite
dimensional CW-complex. The generalization to all values of μ, that is to say to the cases in which μ lies in the
interval (n,n + 1] with n ∈ N, is treated in the forthcoming paper [3]. It requires a deeper study of the topology of the
group of symplectic diffeomorphisms of Mμ and its classifying space. In that paper we also study the topology of the

space of all symplectic embeddings of B4(c) in (CP2#CP2,ωμ) where the symplectic area of the exceptional divisor
is μ > 0 and the area of a projective line is μ + 1.

Now we briefly recall the background needed from [5]. Denote by ιc, c < 1, the standard symplectic embedding of
B4(c) in Mμ. It is defined as the composition B4(c) ↪→ D2(μ − ε) × D2(1 − ε) ↪→ S2(μ) × S2(1) = Mμ where the
parameters between parentheses represent the areas. It is shown in [4] and [5] that there is a Serre fibration

Symp(M̃μ,c) ↪→ Symp(Mμ) −→ �Embω(c,μ) (1)

where the space in the middle is the group of all symplectic diffeomorphisms of Mμ, M̃μ,c is the blow-up of Mμ at
the ball ιc and Symp(M̃μ,c) is the group of its symplectomorphisms.

The full homotopy type of the middle group has been computed by Anjos–Granja in [1]. To explain their result,
recall first that the Hirzebruch surface Wi is given by Wi = {([z0, z1], [w0,w1,w2]) ∈ CP1 × CP2|zi

0w1 = zi
1w0} and

it is well known that the restriction of the projection π1 : CP1 × CP2 → CP1 to Wi endows Wi with the structure
of a Kähler CP1-bundle over CP1 which is topologically S2 × S2 if i is even. Moreover the group SO(3) × SO(3)

can be considered as a subgroup of Symp(Mμ) by letting each factor acts on the corresponding factor of Mμ and
the group SO(3) × S1 is also a subgroup of Symp(Mμ) by carrying through the symplectomorphism W2 → Mμ the
Kahler isometry group SO(3) × S1 of the Hirzebruch surface W2. Here the S1-factor is the rotation in the fibers of W2
– it is therefore the ‘rotation’ in Mμ = S2 × S2 of the fibers of the projection onto the first factor, whereas SO(3) is a
lift to W2 → CP1 = S2 of the group SO(3) on the base. This gives two subgroups of Symp(Mμ) and it turns out, by
a result of Abreu, that the first factor of SO(3) × S1 can be identified with the diagonal in SO(3) × SO(3). Hence we
have the following diagram

SO(3)
�

i

SO(3) × SO(3)

SO(3) × S1

(2)

where � denotes the inclusion of the diagonal and i is the inclusion of the first factor.
This induces a map from the pushout P = (SO(3) × SO(3))

∐
SO(3)(SO(3) × S1) (or amalgamated product) to

Symp(Mμ) by the universal property of pushouts. Recall that the pushout, in the category of topological groups, is
characterized as the initial object in the category of topological groups admitting compatible homomorphisms from
diagram (2). In [1], Anjos–Granja proved that if 1 < μ � 2 this H -map is a weak homotopy equivalence. In this
computation the tools of algebraic topology became very useful.

The computation of the homotopy type of Symp(M̃μ,c) as a topological group relies on results obtained in [5,6]
regarding the topology of this group together with techniques previously used in [1]. Using the same notations as
in [5], let the 2-torus T 2

i be the group of Kähler isometries of the blow up W̃i,c of the Hirzbruch surface Wi at a
standard ball of capacity c < 1 centered at a point on the zero section of Wi [5, Prop. 4.4 and Prop. 4.5]. Each torus T 2

i

gives rise to an abelian subgroup of Symp(M̃μ,c) that we will denote by T̃ 2
i . When μ ∈ (1,2] and c � μ − 1, only the

tori T̃ 2
0 and T̃ 2

1 exist. It turns out that the first torus is the product S1 × S1, that can be considered as subgroup of the
group SO(3) × SO(3) of diagram (2) (when Symp(M̃μ,c) is thought of as the subgroup of Symp(Mμ) that preserves
– not necessarily pointwise – the ball of capacity c – see [5]). The second torus may be viewed as the subgroup
S1 × S1 ⊂ SO(3) × S1 where the second factors are identified and where the first S1-factor is included in SO(3) as
the subgroup of the Kähler isometries of W2 that preserves a point on the section at infinity of W2. More precisely, we
show that the group Symp(M̃μ,c) has the homotopy type of a pushout.
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Theorem 1. If 0 < μ − 1 � c < 1, then the H-map

P̃ = T̃ 2
0

∐
S1

T̃ 2
1 → Symp(M̃μ,c)

is a weak homotopy equivalence of topological groups.

We can now state the main result:

Theorem 2. If 0 < μ − 1 � c < 1, the topological space �Embω(c,μ) is weakly homotopy equivalent to the quotient
P/P̃ of the two pushouts; moreover, this quotient space is the total space of a non-trivial fibration

ΩΣ2SO(3)/ΩS3 ı̄−→ P/P̃
π̄−→ S2 × S2 (3)

where the inclusion of the group ΩS3 in ΩΣ2SO(3) is induced by the map S3 → Σ2SO(3) that corresponds to the
generator of the fundamental group of SO(3). This fibration has a continuous section and splits homotopically, i.e.

πk

(�Embω(c,μ)
) 	 πk

(
ΩΣ2SO(3)/ΩS3) ⊕ πk(S

2 × S2).

Sketch of the proof. The topological group G = SO(3) × SO(3) × S1 sits in the obvious square diagram obtained
from diagram (2) with continuous homomorphisms g1 : SO(3) × SO(3) → G and g2 : SO(3) × S1 → G given by
g1(a, b) = (a, b,1) and g2(c, d) = (c, c, d). It follows from the universal property of the pushout that there is a
canonical continuous homomorphism P → G. Its kernel is the free group generated by the set of commutators [c, x] =
c−1x−1cx ∈ P with c ∈ S1 −{1} and x ∈ SO(3)−{1}. Therefore one has a short exact sequence of topological groups
F [S1,SO(3)] → P

π→ G.

In a similar way we obtain another short exact sequence of topological groups F [S1, S1] → P̃
π̃→ S1 × S1 × S1.

Notice that F [S1,X] 	 ΩΣ[S1,X] 	 ΩΣ2X. Hence the quotient of the two short exact sequences yields the desired
fibration (3). Although both π and π̃ have continuous sections σ and σ̃ , the section σ is not a homomorphism and
therefore does not immediately descend to a section of π̄ . However the restriction of σ to the first two factors is
a group homomorphism and therefore descends to a section σ̄ . This implies the splitting of homotopy groups. The
non-triviality of the fibration is an immediate consequence of the computation of the rational cohomology ring of
�Embω(c,μ) (see Theorem 4). �

From this theorem it follows easily that:

Theorem 3. If 0 < μ − 1 � c < 1 then the topological space Embω(c,μ) is weakly homotopy equivalent to the pull-
back of fibration (3) by the fibered map Fω → S2 ×S2 where Fω is the space of symplectic frames over Mμ = S2 ×S2.

Then, using the minimal models of Symp(M̃μ,c) and Symp(Mμ), we compute the minimal model of �Embω(c,μ).
This computation together with Theorem 2 gives its rational cohomology ring.

Theorem 4. The minimal model of �Embω(c,μ) is given by

Λ
(�Embω(c,μ)

) = Λ(a,b, e, f, g,h) = Λ(S2 × S2) ⊗ Λ(g,h)

with generators in degrees 2,2,3,3,3,4 and with differential de = a2, df = b2, dg = da = db = 0, dh = kbg, where
Λ(S2 × S2) is the minimal model for S2 × S2 and k is a non-zero rational number.

Then the rational cohomology ring of �Embω(c,μ) is equal to the algebra

H ∗(�Embω(c,μ);Q
) = Λ(a,b, c, gh, . . . , ghn, . . . , bh, . . . , bhn, . . .)/〈a2, b2, bg〉

where n ∈ N. It is therefore not homotopy equivalent to a finite-dimensional CW-complex.

Sketch of the proof. As first step, recall that any fibration V ↪→ P → U for which the theory of minimal models
applies (i.e. each space has a nilpotent homotopy system and the π1 of the base acts trivially on the higher homotopy
groups of the fiber) gives rise to a sequence(

Λ(U), dU

) −→ (
Λ(U) ⊗ Λ(V ), d

) −→ (
Λ(V ), dV

)
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where the differential algebra in the middle is a model for the total space. We apply this theory to the fibration (1).
In order to compute the differential d , we need to use different methods. For the generators a, b, g, a simple method
of dimension counting gives the answer. Since the model is minimal, there is no linear term in the differential and
Sullivan’s duality can be expressed by dbk = ∑

i,j 〈bk, [bi, bj ]〉bibj where 〈c1, c2〉 denotes the c1-coefficient in the
expression of c2, and where the brackets denote the Whitehead product.

One can show that [a, b] = 0, [a, a] = e and [b, b] = f . This gives de and df . Finally, a more sophisticated
argument using the Eilenberg–Moore spectral sequence shows that dh does not vanish (see [2] for details and acknowl-
edgments). A careful comparison of the Serre spectral sequence of fibration (3) and the minimal model computation
gives the rational cohomology ring of �Embω(c,μ). �

A simple calculation using the fibration U(2) → Embω(c,μ) → �Embω(c,μ), which is the restriction to Bc of
fibration (1), then yields the minimal model of Embω(c,μ).

Theorem 5. A minimal model of Embω(c,μ) is (Λ(d̃a,b, ẽ, f̃ , g̃, v, h̃), d0) with generators of degrees 2,3,3,3,3,4
and with differential given by

d0d̃a,b = d0f̃ = d0g̃ = d0v = 0, d0ẽ = d̃2
a,b and d0h̃ = −kd̃a,bg̃

where k is a non-zero rational number.

See [2] for the computation of the cohomology rings of �Embω(c,μ) and Embω(c,μ) with any field coefficients.
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