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Abstract

This Note deals with uniqueness and continuous dependence of solutions to the problem ut + divϕ(u) = f on (0, T ) × Ω with
initial condition u(0, ·) = u0 on Ω and with (formal) nonlinear boundary conditions ϕ(u) · ν ∈ β(t, x,u) on (0, T ) × ∂Ω , where
β(t, x, ·) stands for a maximal monotone graph on R. We suggest an interpretation of the formal boundary condition which gener-
alizes the Bardos–LeRoux–Nédélec condition, and introduce the corresponding notions of entropy and entropy process solutions
using the strong trace framework of E.Yu. Panov. We prove uniqueness and provide some support for our interpretation of the
boundary condition. To cite this article: B. Andreianov, K. Sbihi, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Lois de conservation scalaires avec des conditions non linéaires au bord. Cette Note est dédiée aux résultats d’unicité des
solutions du problème ut+ div ϕ(u) = f sur (0, T )×Ω avec la condition initiale u(0, ·) = u0 sur Ω et les conditions non linéaires
ϕ(u) · ν ∈ β(t, x,u) sur (0, T )× ∂Ω ; ici β(t, x, ·) désigne un graphe maximal monotone sur R. Nous proposons une interprétation
de la condition formelle « ϕ(u) ·ν ∈ β(t, x,u) » qui généralise celle de Bardos–LeRoux–Nédélec ; nous introduisons les notions de
solutions entropiques et solutions processus entropiques. Nous montrons l’unicité et argumentons en faveur de notre interprétation
de la condition au bord. Pour citer cet article : B. Andreianov, K. Sbihi, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider the (formal) problem

(Hβ)(u0, f )

{
ut + divϕ(u) = f in Q := (0, T ) × Ω,

u(0, ·) = u0 on Ω,

β(t, x,u) − ϕν(u) � 0 on Σ := (0, T ) × ∂Ω (condition abbreviated to ‘BC’).

Here T > 0, ν = ν(x) is the unit outward normal vector at the point x ∈ ∂Ω of a C1 domain Ω ⊂ RN (the results
remain valid for more general case of a locally Lipschitz deformable boundary in the sense of [5]). The flux ϕ : R →
RN is assumed Lipschitz continuous for the sake of simplicity, ϕν(·) denotes ϕ(·) · ν(x). We assume u0 ∈ L∞(Ω),
f ∈ L1(Q) with f (t, ·) ∈ L∞(Ω) for a.e. t ∈ (0, T ), and

∫ T

0 ‖f (t, ·)‖∞ dt < ∞. Finally, we assume that β(· , · , r) is
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measurable for all r ∈ R, and β(t, x, ·) is a maximal monotone graph on R for a.e. (t, x) ∈ Σ . The classical Neumann
(zero-flux) and Dirichlet BC correspond to the graphs β = R × {0} and β(t, x, ·) = {uD(t, x)} × R, respectively
(see [3,2]). General nonlinear boundary conditions include in particular mixed Dirichlet–Neumann conditions, as
well as conditions of the obstacle type.

It is well known that existence of entropy solutions for (H) generally fails if one interprets the Dirichlet BC
literally [2]. This is also the case for general β. Following [1,8], we consider that the ‘formal’ BC given by the graph
β gives rise to the ‘effective’ BC given in terms of the monotone graph β̃ defined by

β̃ :=
{(

z,ϕν(z)
) ∣∣∣∣ if z < m := infβ−1(ϕν(z)), then ϕν(k) � ϕν(z) ∀k ∈ [z,m[

if z > M := supβ−1(ϕν(z)), then ϕν(k) � ϕν(z) ∀k ∈ ]M,z]
}

. (1)

Here, as usual, inf∅ = +∞ and sup∅ = −∞. If β̄ denotes the maximal monotone extension of β on [−∞,+∞],
then β̃ can be visualized as the horizontal projection of β̄ on the graph of ϕν . In the Dirichlet case β = {uD(t, x)}×R,
the condition ‘(u,ϕν(u)) ∈ β̃ on Σ ’ is an equivalent way to state the celebrated Bardos–LeRoux–Nédélec condi-
tion [2]. Generally, the graph β̃ is a monotone subgraph of ϕν which is maximal, i.e., it does not possess a nontrivial
monotone extension which is still a subgraph of ϕν . Notice that (1) defines the mapping β 
→ β̃ which is a projection:

indeed, one checks that ˜̃
β = β̃.

In Section 3 we provide some support for our interpretation of the ‘effective BC’.

2. Definitions and main results

In the following, γ (resp. γw) denotes the strong trace operator in the sense of [7] and [1, Definition 1] (resp. the
weak trace operator in the sense of [5]). The graph β̃ ◦V −1

ϕν
is denoted by Γ ; notice that Γ depends in a measurable way

on (t, x), through ϕν(x) and β(t, x, ·). Further, Vϕν (·) denotes the singular mapping defined by Vϕν (0) = 0,V ′
ϕν

(z) =
1{ϕ′(z) 
=0}. It follows from the result of Panov in [7] that if u is an entropy solution of ut + divϕ(u) = f inside Q, then
the strong trace of Vϕν (u) exists; thus the normal component of the entropy flux

sign±(u − k)
(
ϕν(u) − ϕν(k)

) ≡ sign±(
Vϕν (u) − Vϕν (k)

)(
Ψν

(
Vϕν (u)

) − Ψν

(
Vϕν (k)

)) =: Q±(
Vϕν (u),Vϕν (k)

)
(here Ψν := ϕν ◦ V −1

ϕν
and Q± are continuous functions) has the strong trace Q±(γ Vϕν (u), Vϕν (k)) on Σ.

Definition 2.1. Denote q±(z, k) = sign±(z − k)(ϕ(z) − ϕ(k)). A function u ∈ L∞(Q) is called an entropy solution
for Problem (Hβ)(u0, f ) if for all (k, ξ) ∈ R × C∞

c (Q), ξ � 0, the local entropy inequalities hold :∫
Q

(
(u − k)±ξt + q±(u, k) · ∇ξ + sign±(u − k)f ξ

)
� 0, (2)

if u has the strong trace u0 on {t = 0}, and if the strong traces w̃ = γ ϕν(u), ṽ = γVϕν (u) on Σ of the functions ϕν(u),
Vϕν (u) verify(

ṽ(t, x), w̃(t, x)
) ∈ Γ (t, x) HN -a.e. on Σ. (3)

This definition can be reformulated so that to extend the test functions up to the boundaries:

Definition 2.2. A function u ∈ L∞(Q) such that strong traces ṽ := γVϕν (u), w̃ := γ ϕν(u) on Σ exist and satisfy (3)

is called an entropy solution for (Hβ)(u0, f ) if for all (k, ξ) ∈ R × C∞
c ([0, T ) × RN), ξ � 0,∫

Q

(
(u − k)±ξt + q±(u, k) · ∇ξ + sign±(u − k)f ξ

) +
∫
Ω

(u0 − k)±ξ(0) −
∫
Σ

Q±(
ṽ, Vϕν (k)

)
ξ � 0.

The next definition presents an equivalent solution concept in the spirit of Carrillo [4]. If the dependence of Γ on
(t, x) is not too irregular, it suffices to require (4) below for all (k, ξ) ∈ R × C∞

c ([0, T ) × RN), ξ � 0 such that ξ = 0
HN -a.e. on the set {(t, x) ∈ Σ |k /∈ Dom(β̃(t, x, ·))}; then the last term in (4) vanishes.
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Definition 2.3. Let u ∈ L∞(Q); for k ∈ R, set Mk = max{|k|,‖u‖∞}. Let ωMk
(·) be a modulus of continuity Q±(· , ·)

on [Vϕν (−Mk),Vϕν (Mk)]2. Then u is called an entropy solution for Problem (Hβ)(u0, f ) if∫
Q

(
(u − k)±ξt + q±(u, k) · ∇ξ + sign±(u − k)f ξ

) +
∫
Ω

(u0 − k)±ξ(0, ·) � −
∫
Σ

ξRk (4)

for all k ∈ R, for all ξ ∈ C∞
c ([0, T ) × RN), ξ � 0, where Rk(t, x) = ωMk

(dist(Vϕν (k),Dom(Γ (t, x, ·)))).
It is proved in [1] that Def. 2.1 and Def. 2.2 are equivalent. To prove that Def. 2.2 implies Def. 2.3, one uses

the monotonicity of Γ and the definition of Rk . To show that Def. 2.3 implies Def. 2.1, first note that (4) im-
plies (2) and the initial trace condition. Since u is an entropy solution inside Q, then by [7], the strong traces ṽ, w̃

of the functions Vϕν (u), ϕν(u) on Σ exist, and (ṽ, w̃) ∈ ϕν ◦ V −1
ϕν

. To prove that ṽ ∈ Dom(Γ ), one takes ξh sup-
ported in the h-neighbourhood of ∂Ω such that (1 − ξh) ∈ C∞

c (Ω) and ∇ξh converges as h → 0 to the Hausdorff
measure HN−1 on ∂Ω multiplied by the exterior unit normal vector ν to ∂Ω (such sequence (ξh)h is constructed
using a partition of unity on Ω̄ and local coordinates near the boundary). As h → 0, (4) with test function ξξh

yields γwQ±(Vϕν (u),Vϕν (k)) � −Rk for all k ∈ Q, for HN -a.e. (t, x) ∈ Σ . The map k 
→ Rk being continuous,
γwQ±(Vϕν (u),Vϕν (k)) � 0 for all k ∈ Dom(β̃(t, x)). Now,

γwQ±(
Vϕν (u),Vϕν (k)

) = Q±(
γVϕν (u),Vϕν (k)

) = sign±(
ṽ − Vϕν (k)

)(
Ψν(ṽ) − Ψν

(
Vϕν (k)

));
since Γ is a maximal monotone subgraph of Ψν = ϕν ◦ V −1

ϕν
, it follows that ṽ(t, x) ∈ Dom(Γ (t, x)) HN -a.e. on Σ.

The main subject of this Note is the uniqueness and comparison result for entropy solutions of (Hβ)(u0, f ) given
below. In order to allow for a perturbation of the graph β , we introduce the following order relation:

β1 � β2 if d−(β̃1, β̃2) := sup
{(

ϕν(a) − ϕν(b)
)−|a ∈ Dom(β̃1), b ∈ Dom(β̃2), a > b

}
equals zero.

Theorem 2.4. Let ui be an entropy solution for Problem (Hβi
)(ui

0, fi), i = 1,2. Then for a.e. t ∈ (0, T )

∫
Ω

(u1 − u2)
+(t) �

∫
Ω

(u1
0 − u2

0)
+ +

t∫
0

∫
Ω

(f1 − f2)
+ +

t∫
0

∫
∂Ω

d−(β̃1, β̃2). (5)

In particular, if u1
0 � u2

0 a.e. on Ω , f1 � f2 a.e. on Q and if β1(t, x, ·) � β2(t, x, ·) HN -a.e. on Σ , then one has
u1 � u2 a.e. on Q. In particular, there exists at most one entropy solution to (Hβ)(u0, f ).

For the proof, by the Kruzhkov’s doubling of variables argument one deduces from (2) the inequality
t∫

0

∫
Ω

(
q+(u1, u2) · ∇ξ + sign+(u1 − u2)(f1 − f2)ξ

)
�

∫
Ω

(u1 − u2)
+(t)ξ −

∫
Ω

(u1
0 − u2

0)
+ξ(0, ·)

for all ξ ∈ C∞
c ([0, t] × Ω). With ξ(t, x) = 1 − ξh(x), where the sequence (ξh)h is described hereabove,

t∫
0

∫
Ω

q+(u1, u2) · ∇(1 − ξh)−→
h→0

t∫
0

∫
∂Ω

−γwQ+(
Vϕν (u1),Vϕν (u2)

) =
t∫

0

∫
∂Ω

−Q+(ṽ1, ṽ2),

because Q+(ṽ1, ṽ2) is the strong trace of the function q+(u1, u2) · ν ≡ Q+(Vϕν (u1), Vϕν (u2)) on Σ . Since by
(3), (ṽi , w̃i) ∈ β̃i ◦ V −1

ϕν
, which are subgraphs of ϕν ◦ V −1

ϕν
, using the definition of d−(· , ·) one gets Q+(ṽ1, ṽ2) =

sign+(ṽ1 − ṽ2)(w̃1 − w̃2) � −d−(β̃1, β̃2). Hence the claims of the theorem follow.
Notice that Definition 2.3 permits to define a notion of entropy process solutions, following [6]:

Definition 2.5. Let μ ∈ L∞((0,1)×Q); take Rk of Def. 2.3 with Mk = max{|k|,‖μ‖∞}. Then μ is called an entropy
process solution to Problem (Hβ)(u0, f ) if for all k ∈ R, for all ξ ∈ C∞

c ([0, T ) × RN), ξ � 0,

1∫ ∫ (
(μ − k)±ξt + q±(μ, k) · ∇ξ + f sign±(μ − k)ξ

) +
∫

(u0 − k)±ξ(0, ·) � −
∫

ξRk. (6)
0 Q Ω Σ
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It turns out that if μ(α, t, x) is an entropy process solution for Problem (Hβ)(u0, f ), and u(t, x) is an entropy
solution of (Hβ)(u0, f ), then μ(α, t, x) = u(t, x) for almost every (α, t, x) ∈ (0,1) × Q.

Indeed, following the lines of the proof of Theorem 2.4, we need to show that

γw

1∫
0

Q+(
Vϕν (μ),Vϕν (u)

) ≡ γw

1∫
0

Q+(
Vϕν (μ), γ Vϕν (u)

)

is nonnegative. This is true since γVϕν (u) ∈ Dom(Γ ) and because (6) gives γw

∫ 1
0 Q+(Vϕν (μ), Vϕν (k)) � 0

∀k ∈ Dom(β̃(t, x))}, in the same way as (4) implies (3).

3. Justification of the ‘effective’ boundary condition

Now we argument in favor of our interpretation of the BC in (Hβ)(u0, f ). The idea is, as usual, to accept as
solutions the limits of “natural” approximations of (Hβ)(u0, f ) (such as the vanishing viscosity limit, solutions of
well-behaving numerical schemes, limits of various perturbed problems). In [8,1], the standard vanishing viscosity
approximation combined with the nonlinear semigroup techniques was considered. Under many simplifying assump-
tions on Ω , ϕ and β , it was proved that the ‘formal BC’ graph β does transform into the ‘effective BC’ graph β̃

of (1) (this phenomenon, explained by the presence of a boundary layer, is well known for the vanishing viscosity ap-
proximation of (Hβ)(u0, f ) with Dirichlet BC). In order to get a uniform L∞ bound on the sequence of approximate
solutions, we assumed that

there exists a constant C such that
∣∣β(z)

∣∣ � sign(z)ϕν(z) ∀|z| > C, (7)

which excludes e.g. the zero-flux BC even for linear ϕ (similar restrictive assumptions are made in [3]).
Let us support definition (1) of β̃ in some cases where (7) fails. Assume that one can approximate the maximal

monotone extension of β on R̄ by graphs βm,n such that: βm+1,n � βm,n � βm,n+1; for all k ∈ Dom(β̃) and m,n

large enough, k ∈ Dom(β̃m,n); and (7) holds with β replaced by β̃m,n, uniformly in m,n. Such approximation is
possible e.g. if ϕν is monotone on (−∞,C] and on [C,+∞), since the choice of βm,n := β + I[−m,n] yields β̃m,n ≡ β̃

as soon as m,n > C. With the arguments of [8,1] there exists a uniformly bounded on Q sequence (um,n)m,n of
solutions of (Hβm,n)(u0, f ) in the sense of Definitions 2.1–2.3. By Theorem 2.4, one has um,n+1 � um,n � um+1,n

a.e. on Q. One concludes that um,n converges in L1(Q) to a function u ∈ L∞(Q), as m → +∞ and then n → +∞;
passing to the limit in inequalities (4) corresponding to (Hβm,n)(u0, f ) one deduces that u is an entropy solution of
Problem (Hβ)(u0, f ).

Example 1. The reader can check easily that the “effective BC” graphs corresponding to the simplest zero-flux
problem ut + ux = 0 in (0, T ) × (0,1), u(t,0)ν(0) = 0 = u(t,1)ν(1), are given by β̃(t,1, ·) = {(z, z)|z ∈ R},
β̃(t,0, ·) = {0} × R. This interpretation of the BC is consistent with the classical approach by characteristics.
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