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Abstract

Copulas which are invariant under transformations by means of increasing bijections on the unit interval are investig
the relationship to maximum attractors and Archimax copulas is discussed.To cite this article: E.P. Klement et al., C. R. Acad.
Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les copules Archimax et leur invariance par rapport aux transformations. On étudie les copules qui sont invariant
par rapport aux transformations par les bijections croissantes de l’intervalle unité, et on examine la relation entre les a
des valeurs maximales et les copules Archimax.Pour citer cet article : E.P. Klement et al., C. R. Acad. Sci. Paris, Ser. I 340
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Sklar’s Theorem [10,12,13] states that each random vector(X,Y ) is characterized by some copulaC in the
sense that for its joint distributionHXY and for the corresponding marginal distributionsFX and FY we have
HXY (x, y) = C(FX(x),FY (y)).
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In this Note we investigate transformations of copulas by functions in one variable. Such transformatio
a role in statistics: as an example, if(X1, Y1), (X2, Y2), . . . , (Xn,Yn) are iid random vectors (characterized
some copulaC) then the random vector(max(X1,X2, . . . ,Xn),max(Y1, Y2, . . . , Yn)) is characterized by theϕ1/n-
transform ofC in the sense of (2) below withϕ1/n(x) = x1/n [14].

Recall that a (two-dimensional) copula is a functionC: [0,1]2 → [0,1] such thatC(0, x) = C(x,0) = 0 and
C(1, x) = C(x,1) = x for all x ∈ [0,1], andC is 2-increasing, i.e., for allx, x∗, y, y∗ ∈ [0,1] with x � x∗ and
y � y∗ for the volume VolC of the rectangle[x, x∗] × [y, y∗] we have

VolC
([x, x∗] × [y, y∗]) = C(x, y) − C(x, y∗) + C(x∗, y∗) − C(x∗, y) � 0. (1)

Important examples of copulas are theFréchet–Hoeffding boundsM andW given byM(x,y) = min(x, y) and
W(x,y) = max(x + y − 1,0), respectively, and theproductΠ given byΠ(x,y) = x · y. Obviously, each copul
C satisfiesW � C � M .

2. Transformations of copulas

If Φ denotes the set of all increasing bijections from[0,1] to [0,1], then for eachϕ ∈ Φ and for each copulaC
consider the functionCϕ : [0,1]2 → [0,1] given by

Cϕ(x, y) = ϕ−1(C(
ϕ(x),ϕ(y)

))
. (2)

In general,Cϕ is not necessarily a copula: considerϕ ∈ Φ defined byϕ(x) = x2 thenWϕ is not Lipschitz (see
[8, Example 1.26]) and, therefore, not a copula. Evidently,D � C impliesDϕ � Cϕ . Moreover, for allϕ, ξ ∈ Φ

we always get(Cϕ)ξ = Cϕ◦ξ . The transition fromC to Cϕ preserves many algebraic properties, among th
commutativity and associativity as well as the existence of zero divisors and of idempotent elements.

If, for a copulaC and someϕ ∈ Φ, we haveCϕ = C thenC is calledϕ-invariant. As an immediate consequenc
eachϕ-invariant copula isϕ(n)-invariant for eachn ∈ Z, whereϕ(0) = id[0,1] and, for eachn ∈ N, ϕ(n) = ϕ ◦ ϕ(n−1)

andϕ(−n) = (ϕ(n))
−1. Also, if C is bothϕ-invariant andξ -invariant then it is(ϕ ◦ ξ)-invariant. Moreover,C is

ϕ-invariant if and only ifCξ is (ξ−1 ◦ ϕ ◦ ξ)-invariant for eachξ ∈ Φ. The only copula which isϕ-invariant for all
ϕ ∈ Φ is the minimumM .

If, for a copulaC and someϕ ∈ Φ, the limit limn→∞ Cϕ(n)
exists and is a copula, thenC∗

ϕ = limn→∞ Cϕ(n)
is

called aϕ-attractor of C. It is immediately seen that a copulaD is aϕ-attractor of some copulaC if and only if D
is ϕ-invariant. Also, ifC∗

ϕ is a copula andC � C∗
ϕ then for all copulasD with C � D � C∗

ϕ we haveD∗
ϕ = C∗

ϕ .
Observe that for each jointly strictly monotone copulaC (i.e., C(x, y) < C(x∗, y∗) wheneverx < x∗ and

y < y∗) the diagonal sectionδC : [0,1] → [0,1] given by δC(x) = C(x, x) is an element ofΦ. Moreover, ifC
is also associative thenC is δC -invariant. In this statement, the associativity assumption may not be droppe
copulaC given byC(x, y) = 1

2(min(x, y) + max(x + y − 1,0)) is jointly strictly monotone but notδC -invariant.
Now we first are interested under which conditionsCϕ is a copula and under which conditions a copulaC is

ϕ-invariant. Observe that, ifp ∈]0,∞[ andϕp ∈ Φ is defined byϕp(x) = xp, then the productΠ is ϕp-invariant
for eachp ∈ ]0,∞[, whereas the Fréchet–Hoeffding lower boundW is ϕp-invariant only ifp = 1, andWϕp is a
copula only ifp ∈ ]0,1].

As a consequence of [9, Theorem 7] we have: ifC is an associative copula andϕ ∈ Φ, thenCϕ is a copula if
and only if for allx, y, z ∈ [0,1] we have|ϕ−1(C(x, z)) − ϕ−1(C(y, z))| � |ϕ−1(x) − ϕ−1(y)|.

The concave elements inΦ have the remarkable property that they transform each copula into a copula:

Theorem 2.1. For eachϕ ∈ Φ the following are equivalent:

(i) The functionϕ is concave.
(ii) For each copulaC the functionCϕ is a copula.
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3. Archimax copulas

Note that, because of the Lipschitz continuity, a copulaC is ϕp-invariant for eachp ∈]0,∞[ if and only if C is
ϕ1/n-invariant for eachn ∈ N. Following [6] (compare also [4]), a copulaC∗ is said to be themaximum attractor
of the copulaC (or, equivalently,C belongs to the maximum domain of attraction ofC∗) if for all (x, y) ∈ [0,1]2
we have limn→∞ Cn(x1/n, y1/n) = C∗(x, y).

Evidently, each copulaC which isϕp-invariant for eachp ∈]0,∞[ is a maximum attractor of itself, i.e.,C∗ = C.
The set of all maximum attractor copulas will be denoted byM. Putting

A = {
A : [0,1] → [0,1] | A is convex and max(x,1− x) � A(x) for all x ∈ [0,1]},

from [11,14] (compare also [5]) we know that each maximum attractor copulaC∗ can be expressed in the form

C∗(x, y) = elog(xy)·A((logx)/ log(xy)) (3)

for someA ∈A. Evidently,Π is the weakest maximum attractor andM is the strongest one. The classM is closed
under suprema and weighted geometric means. AlthoughW belongs to the maximum domain of attraction ofΠ ,
there are copulas not belonging to any maximum domain of attraction.

Example 1 [3]. For the strict copulaC whose additive generatort : [0,1] → [0,∞] is given by

t (x) = log2 x + 2n−5 sin
log2 x

2n
if n ∈ Z and 2n+1π � log2 x < 2n+2π,

limn→∞ Cn(x1/n, y1/n) does not exist for, e.g.,(x, y) = (1
2, 1

2).

Now we clarify the relationship betweenϕp-invariant copulas and the classM of maximum attractors (com
pare [1]):

Proposition 3.1. For a copulaC, the following are equivalent:

(i) C ∈M.
(ii) Cϕp = C for all p ∈]0,∞[.
(iii) Cϕp = Cϕq = C for somep,q ∈]0,∞[ such thatlogp

logq
is irrational.

Observe thatCϕp = C for some singlep ∈ ]0,∞[ is not sufficient to guaranteeC ∈ M (see Example 1 fo
p = 2).

If t : [0,1] → [0,∞] is a convex, decreasing bijection (and, therefore, an additive generator of some strict
C(t)) and ifA ∈ A then the copulaCt,A defined by

Ct,A(x, y) = t−1
((

t (x) + t (y)
) · A

(
t (x)

t (x) + t (y)

))
(4)

was called anArchimax copulain [4]. It is obvious that the classA t = {Ct,A | A ∈ A} contains bothM and the
strict copulaC(t), and we always haveC(t) � Ct,A � M . Moreover,M = A− log (note thatC(− log) = Π ).

For a fixed convex, decreasing bijectiont : [0,1] → [0,∞] and forp ∈ ]0,∞[ defineτp : [0,1] → [0,1] by
τp(x) = t−1(p · t (x)). Evidently,τp ∈ Φ for eachp ∈]0,∞[. Note that a strict copula isC(t) is ϕ-invariant with
respect to someϕ ∈ Φ if and only if t ◦ ϕ = p · t , i.e., if ϕ = τp for somep ∈ ]0,∞[.

In complete analogy to Proposition 3.1 we have:

Corollary 3.2. Let t : [0,1] → [0,∞] be a convex, decreasing bijection such thattp is not convex wheneve
p ∈]0,1[. Then for each copulaC the following are equivalent:
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(i) Cτp = C for eachp ∈ ]0,∞[.
(ii) Cτp = Cτq = C for somep,q ∈ ]0,∞[ such thatlogp

logq
is irrational.

Proposition 3.3. Each Archimax copulaCt,A is τp-invariant for eachp ∈ ]0,∞[.

However, not each copula which isτp-invariant for eachp ∈]0,∞[ is an element ofAt : take the function
t : [0,1] → [0,∞] given by t (x) = log2 x (which generates someGumbel copula, see [10, Table 4.1, (4.2.4
and [7]); thenτp(x) = x

√
p andΠ is τp-invariant for eachp ∈ ]0,∞[, butΠ /∈At .

PuttingB = {A t | t : [0,1] → [0,∞] is a convex, decreasing bijection}, we can determine maximal elemen
of B:

Theorem 3.4. Let t : [0,1] → [0,∞] be a convex, decreasing bijection and defineλ∗ = inf{λ ∈ ]0,1] | tλ is convex}.
ThenA tλ

∗ is a maximal element ofB with the property that all of its elements areτp-invariant for eachp ∈]0,∞[.

Example 2. Consider the convex, decreasing bijectiont : [0,1] → [0,∞] defined byt (x) = 1
x

− 1 (observe that
it satisfiest ′(1−) = −1) which generates the copulaC(t) given byC(t) = xv

x+y−xy
. The corresponding famil

(τp)p∈]0,∞[ is then determined byτp(x) = x
p+(1−p)x

. Therefore,C(t) is the weakest copula which isτp-invariant
for all p ∈]0,∞[, and eachCt,A ∈ A t is given by

Ct,A(x, y) = xy

xy + A((1− x)y/(x + y − 2xy)) · (x + y − 2xy)
.

Note that the functionsτp are multiplicative generators of the family of Ali–Mikhail–Haq copulas[2,10].

Evidently,C(tλ
∗
) is the weakest associative copula which isτp-invariant for allp ∈ ]0,∞[. Whether it is also

the weakest copula which isτp-invariant for allp ∈]0,∞[ is still an open problem. As a partial answer to this
have the following result:

Theorem 3.5. Let t : [0,1] → [0,∞] be a convex, decreasing bijection such thatt ′(1−) �= 0. ThenC(t) is the
weakest copula which isτp-invariant for all p ∈ ]0,∞[.
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