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Abstract

We give a sharp asymptotics of the instability zones of the Hill opetfatee —y” + (a cos & + b cos 4) y for arbitrary real
a,b # 0. Tocitethisarticle: P. Djakov, B. Mityagin, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Estimation asymptotique des intervalles d’instabilité d’ opérateurs de Hill avec potentiels & deux termes. Dans cette
Note on donne une estimation asymptotique des inlless/al'instabilité d'opéreeurs de Hill de la formelLy = —y" +
(acos + bcos4k)y, oua etbh sont des réels non nuls arbitrairé®ur citer cet article: P. Djakov, B. Mityagin, C. R.

Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1.

The Schrédinger operatdry = —y” + v(x)y, —oo < x < oo, With real valued periodid.?([0, 7 ])-potential
v(x), v(x + ) = v(x), has spectral gaps, or instability zon@g, A,7),n > 1, close ton? if n is large enough.
The pointsi,,, A, could be determined as well as eigenvalues of the Hill equatipa= —y” + v(x)y = Ay,
considered orf0, ] with boundary condition®er*: y(0) = y (), y'(0) = y'(x) for n even, andPer—: y(0) =
—y(m), ¥y'(0) = —y’(sr) for n odd. See details and basics in [15,17,18,21].

Let y, = A} — A, be the lengths of the spectral gaps. The decay ratég,0fare in a close relation with
smoothness of the potential(see [11,12,22,4—-6]). Sometimes the Lyapunov function, or the Hill discriminant
(see [17], Sections 2.1-2.2)(A) can be written explicitly as it happens in the Kronig—Penney model, made of
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a periodic array of andé§’ functions, or onionlike scatterers with several channels (see details in [2] and the
bibliography there). Then the asymptotics of the roots of Lyapunov functions (trigonometric polynomials (7),
(8) in [2]) and consequently the asymptotics of gapd &ands become a question about roots of elementary
trigonometric functions. Without explicit Lyapunov function this task is much more difficult.

2.
In 1980 Harrell [10], and then Avron and Simon [1] gave the asymptotics of spectral gaps of the Mathieu
operator—d‘jc—z2 + 2a cos . They showed that

—i =) e (0(2)
Y=t k”_8<4 -2\ T2 )

In [1] the question was raised about these asymptotics in the case of two term potential
v(x) =acosX + bcos4. (1)

Later, Grigis [9] gave generic asymptotics of spectral gaps of the Schrédinger ope%zﬁo% v(x) whenv is a
real-valued trigopnometric polynomial. For him, the two term potential

u(x)=csin2zx+dcos4k, d=>0, (2)

was of special interest as well. (Notice that the shift- x + /4 transforms:(x) € (2) into v € (1) with a =,
b = —d. Their Schroédinger operators are isospectral, sacareconsider without loss of generality just potentials
(2); howeverp could be positive or negative.)

3.
Recently, we found [7,8] the asymptotics @f,) for a potential of the form (2) whee? = 84 > 0. Our proofs
were based on the relationship of Dirac operator with pote(ﬁialf(’)) and Hill operators with potentiad = +p’ +

p?, the Ricatti transform op. In terms ofa, b in (1), if we introduce a parameteby
a® 4 8bt* =0, 3)

thenc? = 84 > 0 is a special case of (3) with= +1. Generally, for real, b # 0 we seta® + 8612 =0, b =
—20%, a = —4at, where

() o andr arerealifb <O,
(i) o andr are pure imaginary ib > 0.

Now, this parametrization plays a special role in asymptotic behavior ofigaéps both fore — 0 andn — oo.

Theorem 3.1. Let y,, n € N, be the spectral gaps (Iengths of instability zones) of the operator
Ly =—y" — [4at coS X + 20> cos 4]y. (4)

If r and n arefixed, then for even n

+80" n/2

_ 2 R RYA
"= D 1)!]2]!1(: (2 — 1)?)(1+ O(w)), (5)
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and for odd n

(n—1)/2
+8a"t 2 2
= t°— (2k)°)(1+ O()). 6
v 2”[(n—1)!]2 ]!:[1 ( )( ) ( )
Remark 1. In the case (ii), if we put =i, t =it, 8, t real, then we can rewrite, say, (6), as
(n—1)/2

=TT (2 + @)1+ 0p).
k=1

Y= o - DI

Of course, (5) could be rewritten in terms@fr in the same way.

Proof is based, on the one hand, on our analytic methods [3—6], and on the other hand, on using the approach t
coexistence problem of Magnus and Winkler (see [16], [17], Chapter 7, in particular, Theorem 7.9) and sharpening
their result about the multiplicities of eigeriuas of the operator (4) in the case wheis an integer.

4.

The essential components of the asymptotics (5) and (6) are polynomiatsf megreen. The combinatorial
meaning of their coefficients uneaetth in the course of the proof of Theorem 3.1 leads to a series of algebraic
identities.

Theorem 4.1. The following formulae hold:
Yo =i mP—ip= Y Ria-D*2i—-D> (7)
I<i<<jk<m

where thefirst sumisover all indiciesi; such that

—_m<it<-o-<ip<m, liy—i|>=2

Slem-12-@i1-03 - [@n-D2- @ -D¥ = Y @4 @i ®)

I<ji<<jk<m—1
where thefirst sumisover all indicies i such that
—-m+l<ig<---<ip<m, |ig—i|=2.
The terms in (7) and (8) look to be similar to the terms in the identity conjectured by Kac and Wakimoto [13]
and proved by Milne [19], and later by Zagier [23]; see details and further bibliography in [20], in particular,
Section 7 and Corollary 7.6, pp. 120-121. Our asymptotic analysis involves eigenvalues of Schrédinger operators

This occurrence of eigenvalues suggests a possible link with advanced determinant calculus developed by Andrew
(see Krattenthaler [14] and references &#)end Hankel determinants in Milne [20].

5. Asymptoticsfor n — oo

Theorem 5.1. Under the notations of Theorem 3.1, let « £ 0 and ¢ # 0 be fixed. Then for even n

_ 8a” g logn
= = 2P COS(?> [HO( n ﬂ ®)
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and for odd n

_ 8a” 2  (m logn
r=trmeamrs o (2) o) 4o

[Letus recall that2k — )!'=1-3---(2k — 1), (2k)!'=2-4...2k.]

Remark 2. As in Remark 1, in the case (i), cosr/2) = cosh(mt/2) and if n is odd, then the product
o sin(t/2) = "% sinh(rt/2) is real.
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