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Abstract

Let £2 be a bounded open connected subseR®fwith a Lipschitz-continuous boundary and €t € CcY(2;R") be a
deformation of the se® satisfying deW@® > 0 in 2. It is established that there exists a consi@n®) with the following
property: for each deformatio® < HY(2;R") satisfying devV® > 0 a.e. in§2, there exist am x n rotation matrix
R = R(®,0) and a vectob = b(®, ®) in R" such that

T T 1/2

|® — &+ RO)| f1 ) <CO)|VP'VE -VO V@”Ll(m.

The proof relies in particular on a fundamental ‘geometric rigidity lemma’, recently proved by G. Friesecke, R.D. James, and
S. Muller. To citethisarticle: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé
Un majorant delanorme H1 desdéformations en fonction dela norme L1 deleurstenseursde Cauchy—Green. Soits2
un ouvert borné connexe @& a frontiere lipschitzienne et sa® € C1(£2: R") une déformation de I'ensembi@ satisfaisant

détve > 0 danss2. On établit I'existence d’une constanf&®) ayant la propriété suivante : quelle que soit la déformation
@ ¢ H1(2; R") satisfaisant d&¥ & > 0 p.p. dans?, il existe une matrica x n de rotationR et un vecteub € R”" tels que

T T 1/2

|® —®+RO)| 1 <CO)|VE'VE VO V@HLl(Q).

La démonstration repose en particulier sur un «lemme de rigidité géométrique» fondamental, récemmment établi par
G. Friesecke, R.D. James, et S. MullBour citer cet article: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. | 338

(2004).
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1. Notationsand other preliminaries

All spaces, matrices, etc., are real. The symbélsS”, S” , andQ”"} respectively designate the sets of all square
matrices of order., of all symmetric matrices of order, of all positive-definite symmetric matrices of order
and of all orthogonal matrice@ of ordern with detQ = 1. A matrix @ € Q" will be called arotation.

The Euclidean norm of a vectére R” is denotedb| and|A| := sup,—; |Ab| denotes the spectral norm of a
matrix A € M". The Euclidean and spectral norms are invariant under rotations, in the sende tha@»| and
|A| =|QA|=|AQ] for all rotationsQ € Q" .

Let £2 be an open subset &'. Given any matrix-valued mapping € L?(£2; M"), we let

1/2
1F 1l 200y = {/|F(x)|2dx} :
2
and, given any vector-valued mappi@ge H1(£2;R"), we let
1/2
1Ol 1 (:mm) = {/(|@(x)|2+ Vo) dx} :
2

whereVeO (x) e M" denotes the gradient matrix of the mappi@gat x. These norms are thus also invariant
under rotations in the sense thafiF|l 2.y = |QF 20y = IF @l 2oy aNd 1Ol g1 o.rny =
QO y1(o.rn) for all rotationsQ € O

In this Note, the spacél($2; R") is defined as that consisting of all vector-valued functiéhg C1(£2; R")
that, together with their partial derivatives of the first order, possess continuous extentions to theselafupe
and the definition of dounded open set with a Lipschitz-continuous boundamhe usual one, as found for
instance in Néas [14], Adams [1], or Grisvard [10].

2. A key inequality
The following theorem is the main result of this Note.

Theorem 2.1. Let 2 be a bounded connected open subsé&’bivith a Lipschitz-continuous boundary. Given any
mapping® € C1(2; R") satisfyingdetV® > 0in 2, there exists a constant(®) with the following property
given any mapping € H1(£2; R") satisfyingdetV® > 0 a.e. in£2, there exist a vectab = b(®, @) € R” and a
rotation R = R(®, @) € 0’} such that

1/2

| @ — b+ RO)| 1.5y <CO)|VETVO —VOTVO i, 5.

In this Note, we only give the proof of Theorem 2.1 under the additional assumption that the m@pjsng
injectivein £2. The proof in the general case, which is substantially more technical and relies on a methodology
reminiscent to that proposed in Ciarlet and Laurent [5], is found in Ciarlet and Mardare [8].

The proof of Theorem 2.1 in this special case is broken into those of four lemmas.

Lemma 2.2. Let a matrixF € M" be such thatletF > 0. Then
dist(F,0%):= inf |F— Q| <|FTF—1I["%
0c0’

Proof. Itis known that
dis(F,0%) = |(FTF)"* 1.
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Let 0< v1 < v2 < --- < v, denote the singular values of the matfix Then

(FTF)Y? — 1| = max{|vi — 1, v, — 1]}

1 - 12 = PR - 1

< max{[v? —

Lemma 2.3. Let £2 be a bounded connected open subsé’ofvith a Lipschitz-continuous boundary. Then there
exists a constani(£2) with the following propertygiven any mapping € H1(£2; R") satisfyingdetVé® > 0
a.e. ing2, there exists a rotatio® = R(®) € O’ such that

1/2

IV — Rll 200 < AS)|[VOTVE —T| 12, o

Proof. By the ‘geometric rigidity lemmiof Friesecke, James and Miller [9, Theorem 3.1], there exists a constant
A(£2) depending only on the s with the following property: for eackb € H1(£2; R"), there exists a rotation
R = R(®) € O] such that

IV® — Rl 2(0,mm) < A(R)||dis(V o, @ﬁ-)HLz(.Q)'

If in addition the mapping € H1(£2; R") satisfies de¥ @ > 0 a.e. ins2, then Lemma 2.2 implies that

dis( Ve (x),0") < |[Vo () TV (x) — I|"?
for almost allx € £2. Hence
|dist(Ve,0%) ”LZ(SZ) ||Vq>Tvq> IH%‘;Q O

Lemma 2.4. Let 2 be a bounded connected open subseRbfwith a Lipschitz-continuous boundary. Given
any injective mapping® € C1(£2;R") satisfyingdetV® > 0 in £2, there exists a constant(®@) with the
following property given any mapping € H1(£2; R") satisfyingdetVe > 0 a.e. in$2, there exists a rotation
R = R(®,0) € 0’ such that

Ve - RV, 1) < c(@)|[VOTVS — V@TV@H%Z(Q o

Proof. Since the boundary of? is Lipschitz-continuous, any mappir@ in the spac&(2; R") as defined in
Section 1 can be extended to a mapp®gin the space(R”; R") (for a proof, see, e.g., Ciarlet and Mardare
[6, Theorem 4.2], where this property is derived from the extension theorem of Whitney [16] combineatiwith
hoc Taylor formulas along paths). Moreover, since 4@ > 0 in 22 and£2 is bounded, there exists a connected
open subseR2? containings2 such that the restrictio®® e C1(£2%; R") to 22 of such an extensio®" satisfies
detve* > 0in 2°.

Consequently, the sé? := ©(£2) is also a bounded connected open subs@"ofvhose boundar® (352) =
©%(3£2) is Lipschitz-continuous. Besides, the inverse mapp@g{ﬁ}— — 2 of O belongs to the space
C1({£2}~; R"), since each point of the boundary @f possesses a neighborhdﬁobver which@t‘,V is invertible
and® g 5 = (@) Igna)-

Given any mapping® € H1(22; R"), the composite mapping := @ o @ belongs to the spacH1(2; R")
since the bijectior® : 2 — {2}~ is bi-Lipschitzian. Moreover,

Vo () =V (x)VOR)=VP(x)VO(x) ! foralmostalli = @(x) e 2,

the notationv indicating that differentiation is performed with respect to the variabldence deVe® >0 a.e.in
£2 if in addition detVv® > 0 a.e. ins2.
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By Lemma 2.3, there exists a constan{®) := A(£2) with the following property: given any mapping
@ ¢ HY(2; R") satisfying deW @ > 0 a.e. ing2, there exists a rotatioR = R(®, @) € 0" such that the mapping
& = & o O satisfies

IV® — Rll 2100 < c0(@)|[VE'VE — 1|17

Ll(ﬂ S”

The injectivity of the mappin@® e C1(£2; R") and the relation d&f @ > 0 in 2 together imply that

IV = RIZ, 5.0, :/W?p?()e) _ R|2d)2:/|V¢(x)V@(x)_1—R|2detV@(x)dx
8

> /|Vq>(x) —RVOMX)[|[VO®X)|

detve (x) dx

>c1(@)|Ve — RVOIZ; s

wherec1(@) := infx@(—z{lV@(x)r2 detvVeO (x)} > 0. Likewise,

198798 — 1,150, = / Ve®)TVRE) — 1| dk

=/|V@(x)_T(V(b(x)TV(b(x) ~VOx)'VO(x))VO(x) | detve (x) dx
2

<c2(@)|Ve'Ve —ve've |1 eisms

where c2(0@) = sugeﬁ{lV@(x)‘TllV@(x)‘l|detV@(x)} < 0o. The announced inequality thus holds with

c(@) :=co(@)c1(0) V2,02, o

Lemma 2.5. Let the assumptions on the getand the mappin@® be as in Lemma.4. Then there exists a constant
C(O) with the following propertygiven any mapping € H(£2; R") satisfyingdetV® > 0a.e. in2, there exist
avectorb = b(®, ©) € R" and a rotationR = R(®, ©) € O’} such that

1/2

| @ — &+ RO)| 165y <C@O)|VOTVE —VOTVO | 1, .

Proof. Let there be given any mappir®y € H1(£2; R") satisfying deW @ > 0 a.e. inf2. By Lemma 2.4, there
exists a rotatioR = R(®, @) € O’ such that

1/2

IV — RVO| 120100 < c(@)|[VOTVE —VOTVO| ¥ .-

Let the vectob = b(®, ©) € R" bedefined by

b:= (/dx>_l/(¢(x)— RO (x)) dx

2 Q
By the generalized Poincaré inequality, there exists a condtamth that, for alr € H1(2; R"),

”lI’”Hl(_Q;R”) < d<||V.I’||L2(_Q’M”) + ‘/ lI’()C) d)C >
2

Applying this inequality to the mapping := & — (b + RO) yields the desired conclusion, with(®) :=
de(®). O
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3. Commentary

A mapping® e H(£2;R"), resp.@ e C1(2; R"), is orientation-preservingf detv® > 0 a.e. in{2, resp.
detv® > 0 in 2. Two orientation-preserving mappmgase H(£2;R") and® e H(22; R") areisometrically
equivalenif there exist a vectob in R” and a rotationR € Q" such that

(:)(x) =b+ RO(x) foralmostallx € £2.

Clearly, two such isometrically equivalent mappings share the same Cauchy—Green tensoffiefd;if").
One application of the key inequality of Theorem 2.1 is the followsggjuential continuity propertylet
OF ¢ HY(2;R"), k > 1, and® e C1(22; R") be orientation-preserving mappings. Then there exist a constant
C(®) and orientation-preserving mappinésk € HY(2;R"), k > 1, that are isometrically equivalent @* such
that

1/2

18"~ €] 1.5, <C@)](VOH)'VO' —VOTVO| Ly .

Hencethe sequence@k),fil converges to® in H1(2;R") as k — oo if the sequence{(V(~9")TV9");§11
converges t? © VO in L1(2;S") ask — oo.

In nonlinear three-dimensional elasticity, such a sequential continuity could thus prove to be useful when
consideringinfimizing sequencesf the total energy, in particular for handling the part of the energy that takes
into account the applied forces and the boundary conditions, which are both naturally expressed in terms of the
deformation itself.

Indeed, an alternative approach to the existence theory of Ball [3] could conceivably tieg&duchy—Green
tensor as the primary unknowimstead of the deformation itself as is usually the case. This observation, already
made by Antman [2], is one of the reasons underlying the present study, the other being differential ggemetry
se As such, it is a continuation of the works initiated in Ciarlet and Laurent [5] and Ciarlet and Mardare [6]. Note
that a similar study, this time motivated ipnlinear shell theoryand accordingly carried out faurfaces inRk3
has been also undertaken in Ciarlet [4] and then extended in Ciarlet and Mardare [7].

More precisely, the continuity of (equivalence classes of isometrically equivalent) mappings in the space
C3(£22; R") as functions of their Cauchy—Green tensor in the sg#¢e2; S”), both spaces being equipped with
their standard Fréchet topologies, has been established in Ciarlet and Laurent [5]. Note that, in the same spirit bu
by means of a different approach, the local Lipschitz-continuity of (equivalence classes of isometrically equivalent)
mappings in the Banach spag¥2; R") as functions of their Cauchy—Green tensor in the Banach gfac& S)
has been recently established by Ciarlet and Mardare [6].

Such results are to be compared with the earlier, pioneering estimates of John [11,12] and Kohn [13], which
implied continuity at rigid body deformationge., at a mappin@ that is isometrically equivalent to the identity
mapping off2. The recent and noteworthy result of Reshetnyak [15§fasi-isometric mappings similar to the
one obtained here (as it also deals with Sobolev type norms) and is thus particularly relevant to the present study.

The authors are also grateful to Olivier Pantz for his very helpful comments.
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