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Abstract

This work is devoted to the study of a new Liouville-type phenomenon for entire subsolutions of elliptic partial differential
equations of the form

A(u)=0.
Typical examples of the operatar(u) are thep-Laplacian forp > 1 and its well-known modificationgo cite this article:
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Résumé

Autour d’'un phénomeéne de type Liouville. Ce travail est consacré a I'étude d’un nouveau phénomene de type Liouville
pour des sous-solutions entiéres d’équations aux dérivées partielles elliptiques de la forme

A(u)=0.

Des exemples typiques de I'opératedii) sont le p-laplacien pourp > 1 et ses modifications bien connu@sur citer cet
article: V.V. Kurta, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2003 Published by Elsevier SAS on behalf of Académie des sciences.

1. Introduction

Due to the famous Liouville theorem it is well known that any subharmonic functioR%hounded below
by a constant is itself a constant. On the other hand it is also well known thatfd@ there exist non-constant
subharmonic functions dR” bounded below by a constant. The purpose of this work is to determinef@ “the
sharp distance at infinity” between the non-constant subharmonic functi@istoounded below by a constant and
this constant itself in the form of a Liouville-type theorem and to characterize basic properties of quasilinear elliptic
partial differential operators, which make it possible to obtain such a Liouville-type theorem for subsolutions of
quasilinear elliptic partial differential equations of the form

Aw)=0 (1)
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onR".
Typical examples of the operatdru) are thep-Laplacian
A @) :=div(|VulP~2Vu) (2)
for p > 1 and its well-known modification (see, e.g., [1, p. 155])
. "0 (] oul|P? ou
A = —|— — 3
p(u) Z ox; < ax; axl’> ( )

i=1
forn>2andp > 1.

2. Definitions

Let A(u) be a differential operator defined formally by
n
d
A(u):;d—XiAi(x,u,Vu). (4)
Here and in what follows: > 2. We assume that the functions (x,n,&), i = 1,...,n, satisfy the usual
Carathéodory conditions d&" x R x R". Namely, they are continuousin & for a.e.x € R” and measurable in
x for anyn € Rt and¢ € R™.

Definition 2.1. Let « > 1 be a given number. The operatd(u), defined by (4), belongs to the clagdgw) if for
allp e Ry allg, ¥ e R*, and almost alk € R” the inequality

0< ) &Aix,n,8), (5)
i=1
with equality only in the case wheén= 0, and the inequality

n o n a—1
D YiAiGx. . §) <K|¢|“(Z&Ai(x,n,s>) : (6)
i=1 i=1
with a certain positive constaitt, hold.

It is easy to see that condition (6) is fulfilled whenever the inequality

n a/2 n a—1
(ZA?(x, mé)) <K<Z&Ai(x, mé)) 7)
i=1

i=1
holds for ally € RY, all £, € R", and almost alk € R". Hence, the operatot(u) defined by (4) and satisfying
conditions (5) and (7) belongs to the clas6x).

Remark 1. Conditions (6) and (7) on the behavior of the coefficients of partial differential operators were
introduced in [2].

It is not difficult to verify that for any giverp > 1 the differential operators (2) and (3) as well as the differential
operator defined by (4) and satisfying the well-known growth conditions

n 1/2
(Z AZ(x,m, s)> < Kylg[P? ®
i=1
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and

n
6P <K2) & Ai(x,n.8), 9)
i=1
with some positive constanis;, K2, belong to the clasgl(«x) with « = p.
It is also easy to see that a linear divergent elliptic partial differential operator

“ 9 3
L:= — | aij(x)— 10
2 G (“f(x)ax,) (10)
i,j=1
with a;;(x) measurable bounded coefficients and with the (possibly non-uniformly) positive-definite quadratic
form

Z a;ij(x)&;&; (11)
i,j=1
belongs to the clasd(«) with « = 2 but does not satisfy condition (9) for any fixged> 1.
In connection with this we give another example of an operator that belongs to theAgtassvith a certain
a > 1 but does not satisfy condition (9). Letx,n,&) be a positive bounded function which satisfies the
Carathéodory conditions d&" x R! x R”. It is evident that for a givep > 1 the weightecp-Laplacian

Ap(u) = div(a(x, u, Vu) |[VulP Vi) (12)

belongs to the clasd(«) with @ = p but does not satisfy condition (9) for any fixed> 1 if the functiona(x, n, &)
is assumed to be only positive, but not bounded below away from zero.

It can happen that an operatdtu) given by (4) belongs simultaneously to several different clagges. For
example, the well-known mean curvature operator

= (u) div< vu ) (13)
ZU) = y—
V14 |Vul?
belongs to the classe$(«) for all 1 < o < 2; similarly its modification forp > 2,
Vu|P=2v
Ep(u) = div<|u|7M>, (14)
V14 |Vu)?

belongs to the classe$(«) foralla € (p — 1, p] andp > 2.
Obviously, operators (13) and (14) do not satisfy conditions (9), (10) for any fixed.

Definition 2.2. Let « > 1 be a given number, and let the operatdr), given by (4), belong to the clasé(x).

A functionu : R" — (—o0, +00) is called an entire subsolution of Eq. (1) if it belongs to the spﬁéﬁ‘(R”) and
satisfies the integral inequality

n
/Z(pxl.Ai(x,u,Vu)dx>0 (15)
Rr i=1

for every non-negative functione W1 (R") with compact support.

3. Results

Theorem 3.1.Leta > n be a given number, and let the operatbfu), given by(4), belong to the classl(«). Let
u(x) be an entire subsolution ¢1) bounded below by a constant. Thefx) = const, a.e. onR".
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Theorem 3.2 Leta € (1, n) be a given number, and let the operatbfu), given by(4), belong to the classl(«).
Letu(x) be an entire subsolution ¢i) bounded below by a constantand such that: € L5 (R"). Then either
u(x) =c, a.e. onR", or the equality

Iiminf[ sup (u(x)—c)]r(”_“)/(a_l_”)=+oo (16)

retool Lxigar

holds with any fixea € (0, « — 1).

Theorem 3.3.Leta € (1, n) be a given number, and let the operatbfu), given by(4), belong to the classl(«).
Letu(x) be an entire subsolution ¢1), bounded below by a constantThen eithet:(x) = ¢, a.e. onR”, or the
equality

liminfr= / (u(x) — c)a_l_v dx = 400 a7)
r——400
r<x|<2r

holds with any fixed € (0, « — 1).

Remark 2.1t is important to note that for any givene (1, n) the function

u(x) = (1+ |x|a/(a—l))(a—n)/a (18)
is a non-negative entire subsolution of the equation

Ap(u)=0 (19)
with p = « such that the equality

P - -1

'JTL@I[ sup (u(x) — 0)]r(" /@D _ ¢ (20)

r< x| <2r
holds with a certain positive constafit
Remark 3. The statements of Theorems 3.2 and 3.3 with 2 are new results even for entire classical subsolutions
of the equation
Au=0. (21)

Remark 4. Similar results to those of Theorem 3.1 for entire continuous subsolutions of (1) were obtained in [3].
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