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Abstract

R. Pellikaan (Arithmetic, Geometry and Coding Theory, Vol. 4, Walter de Gruyter, Berlin, 1996, pp. 175-184) introduced a
two variable zeta-functio (¢, u) for a curve over afinite fieldl, which, foru = ¢, specializes to the usual zeta-function and he
proved rationalityZ (1, u) = (1— 1)~ 11— ur) "1 P(¢, u) with P(¢, u) € Z[t, u]. We prove thatP (¢, u) is absolutely irreducible.

This is motivated by a question of J. Lagarias and E. Rains about an analogous two variable zeta-function for number fields.
citethisarticle: N. Naumann, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé
R. Pellikaan (Arithmetic, Geometry and Coding Theory, Vol. 4, Walter de Gruyter, Berlin, 1996, pp. 175-184) a introduit
une fonction z&ta (¢, u) en deux variables pour une courbe définie sur un corp&finPouru = g on obtient la fonction
zéta habituelle et Pellikaan démontre gdé, ) est une fonction rationelle Z(¢,u) = (1 — N1 - un~1P@,u) ou
P(t,u) € Z[t,u]. Nous démontrons qué (¢, u) est absolument irréductible. Nous avons été motivés par une question de
J. Lagarias et E. Rains concernant une fonction zéta en deux variables analogue pour des corps deRoombites.cet
article: N. Naumann, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

Let X be a proper, smooth, geometrically connected curve of gemwsr the finite fieldr,. The zeta-function
of X/IF, can be written as a power series
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-1
Z(t) — Z q dEgD)

Here the sum is ovef,-rational divisor classes of andi%(D) := dimg, H(X, O(D)).
Writing b, for the number of divisor classes of degreand withx%(D) = k this becomes

Z(r)—Zankq — L

n>20k>1

In [6] R. Pellikaan observed that the classical proof of rationality and the functional equatidf(fiprgo
through whery is treated as a variable in this expression. He thus introduced the following power series in [6],
Definition 3.1:

Ztu):=3" 3 b w1,
u—1

n>0k>1

This is called the two variable zeta-function of the curve. We will denoté bye class-number ot /F,, i.e.,
h = | Pid(X)|. Then Pellikaan proved:

Theorem 1.1. We have Z(r, u) = (1 — 1) "Y1 — ut) "1 P (¢, u) with P € Z[t, u]. Furthermore

(1) deg P =2g,deg, P =g.

(2) Inthe expansiorP (¢, u) = Z P;(u)t' one hasPy(u) =1, deg, P;(u) <i/2+ land Pog_i(u) =us~ TP (u)
for0<i < 2g.

3) P(Lu)y=h

Here deg and deg denote the degree of a polynomial in the indicated variable. The above results are all taken
from [6], Proposition 3.5, and we copied only those needed later on. Note that the statemeni@ed i /2 in
[loc. cit.] is a misprint. Indeed, we will see below that one always hag #e@) = 1 (unlesg = 0). As expected
we haveP(t,u) =1 in caseg = 0.

We note that Theorem 1.1(2) means that the familiar functional equation holds true:

1
Z(t,u) = ug—erg—Zz<—, u)
tu

In [3] van der Geer and R. Schoof used analogies from Arakelov-theory to define a two variable zeta-function for
number fields along the above lines. As the number field case will serve only as a motivation in this note we refer
to the original sources [3] and [5] for definitions and to [1] for a comparison between them. Suffice it to say that
in [5], Section 8, we find an entire functidg (w, s) of two complex variables which fav = 1 equals Riemann’s
&-function. In particular, the zeroes §§(1, s) are precisely the non-trivial zeros of the Riemann zeta-function.
One is thus led to study the zero-locusgiw, s). Lagarias and Rains [5] ask whether it might be the closure of a
single irreducible complex-analytic variety of multiplicity one. The corresponding question in the geometric case
seems to be whether the zero-locusPaf, u) is irreducible. This is indeed the case:

Theorem 1.2. In the above situation? (¢, u) is irreducible inC(u)[z].

Note that the usual.-series ofX/F, L(t) = P(t,q) € Z[t] may well be reducible. For example, X is an
elliptic curve the fundamental result of Tate [7] shows thas reducible ovef) if and only if X is supersingular
and all of its endomorphisms are defined oifgr

As an illustration of Theorem 1.2 we discuss the casesl andg = 2:
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Forg = 1 settingV := | X (F,)| we haveP(t, u) = 1+ (N — 1—u)t +ut?, cf. [6], Example 3.4. This polynomial
is reducible inC(u)[¢] if and only if N = 0 in which case we have(z, u) = (1 — t)(1 — ut). But it is well known
that a curve of genus one over a finite field always has a rational pointyi-&.0.

In caseg = 2 let the usual zeta-function &f be Z(t) = (1 — )11 — g) " 1L(¢) with L(t) = 1+ at + br® +
gat® + ¢?t* for certaina, b € Z. As X is hyperelliptic, Proposition 4.3. of [6] can be used to compute

Pt,uy=1+((a+q)—u)t+((¢qlg—D+ag+b)—(a+q— 1)14)t2 +((a+q) - u)ut3+u2t4.

This will not be used in the sequel and we omit the proof.

In order not to lead intuition astray we point out that in genetél, u) is not determined by (¢), see [6],
Example 4.4.

After a lengthy computation with discriminants one sees that a neccessary condition féX(this to be
reducible ish 4+ a(g + 1) + (g% + 1) = 0. However, this expression equalél) = / = 0!

The fact thath £ 0 enters in the general proof of Theorem 1.2 precisely through the congitigrO of
Lemma 2.1 below. Note, however, that condition (2) of this lemma cannot be dropped. So one needs one more
result onP (¢, u), contained in Proposition 2.2, which follows from Clifford’s theorem.

2. Proof
We will use the following criterion for irreducibility:

Lemma 2.1. Letk be afield,F € k[u, ] and assume

(1) F is monicint;
(2) the leading coefficient of as a polynomial ins is irreducible ink[¢];
(3) there arex, 8 € k, B # 0 with F(u, @) = B.

ThenF is irreducible ink(u)[z].

This lemma will be applied t& = P (¢, u) := 1?6 P(t~, u) € C[u, ¢]. Note that the irreducibility of in C(u)[¢]
will imply the irreducibility of P becauseP (0, u) = Po(u) = 1# 0 by Theorem 1.1. The advantagel%ﬁs that
it is monic int and so satisfies condition (1) of Lemma 2.1. Also (3) is satisfied (withl, 8 = k) according to
Theorem 1.1(3).

Proof of Lemma 2.1. Assume to the contrary that = fg in k(u)[z] with f andg of positive degree and monic.
One knows, cf., for example, [2], Proposition 4.11, that the coefficieritafidg are integral ovek[u] and ask[u]

is integrally closed we havé g € k[u, t]. SO we can consider the decompositi®a= fg as polynomials inc and
infer from (2) that the leading coefficient gfas a polynomial in lies ink[z]* = k* (upon exchanging andg if
neccessary). In particular:= deg, f (u, r) = deg, f (u, «). Substituting (3) giveg = f(u, ®)g(u, a) in k[u]. As

B #0we getn =0, i.e., f is constant int hencef € k*, contradiction. O

We are left with verifying condition (2) of Lemma 2.1 for the givéh i.e., the leading coefficient of as a
polynomial inu is irreducible ink[¢]. We will in fact determine this coefficient:

Proposition 2.2. For g > 1: ﬁ(t, u)=(1—1)us +0ws™ 1.

Proof. We already know degP = g. Also the assertion is clear fgr= 1 from the formula forP (7, u) recalled in
the introduction. We assume> 2. Looking at

P(t,u) =12 + PLa)t® 4o 4 Pt +uPy_1(u)r8 1 4 4 uSe0

and using the bound dg@®; (1) <i/2+ 1 we see thai® can only occur in the last three term& 2Py ()12 +
ut~1Py(u)t + u8. So the proof is completed by the following result BpandP,. O
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Proposition 2.3. For g > 1:

(1) deg, P1(x) =1 and the leading coefficient is1.
(2) deg, P2(u) < 1.

Proof. This is again clear fog = 1. We assumg > 2 and writeP; (u) =), aipuk, i € 7. As we already know
deg, P1(#) <1 and deg P>(#) < 2 we need to show;; = —1 andapz = 0. Recalling the notatioh,,; from the
introduction we have the following

Claim. b12 = ago+ 11 and bz = coo + 11 + 22

Granting this we observe that Clifford’s thorem, cf. [4], IV, Theorem 5.4, ges= bo3 = 0. Recalling also
apo =1, becauseéy(u) = 1, and substituting gives indeed; = —1 andaz2=0. O

To prove the above claim we write the rational expressior¥f@r «) in Theorem 1.1 in terms of coefficients:

o= STl = () (S ) (ST )

u—
n>20k>1 i=0 j=0 1>20k>0

This gives

Lemma?2.4.

(1) fOl' V,0 2 0. Zk2a+lb‘)k = ZM,I?O,M-‘HgV a[’a_u,
(2) forv=0,u=>1:by, = Zrzo(ai,u—v—lﬂ' — ip).

We omit the details of this straightforward computation except to say that for (1) ongufsesl)/(u — 1) =
1+---+u*"1and (2) follows from (1) by a telescope-summation. In the formulation of the lemma it is understood
thata,; = 0 whenevek < 0. We get from (2):

brz=oapo— o3+ a11 —a13+ a2 — a2z and bip=ogo— o2 + a11 — @12

However, we knowrps = ap3 = a12 = 13 = 23 = 0 because degpP; (u) <i/2+ 1.
This concludes the proof of the claim, hence of Theorem 1.2.
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