C.R. Acad. Sci. Paris, Ser. | 334 (2002) 889-892

Géométrie différentielle/Differential Geometry
(Géométrie algébrique/Algebraic Geometry)

Symplectic capacities of toric manifolds
and combinatorial inequalities

Guangeun Lu?
Department of Mathematics, Beijing Normal University, Beijing 100875, PR China

Received 6 November 2001; accepted after revision 7 March 2002

Note presented by Jean-Pierre Demailly.

Abstract We shall give concrete estimations for the Gromov symplectic width of toric manifolds in
combinatorial data. As by-products some combinatorial inequalities in the polytope theory
are obtainedTo citethisarticle: G. Lu, C. R. Acad. Sci. Paris, Ser. | 334 (2002) 889-892.
O 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Capacités symplectiques de variétés toriques et inéqualités
combinatoires

Résumé On obtient des estimations concretes pour le largeur symplectique de Gromov pour
les variétés toriques par ses données combinatoires. Comme un sous-produit, quelques
inéqualités combinatoires dans la théorie de polytope sont obtdtmus. citer cet
article: G. Lu, C. R. Acad. Sci. Paris, Ser. | 334 (2002) 889-892. O 2002 Académie des
sciences/Editions scientifiques et médicales Elsevier SAS

The toric manifolds are a very beautiful family of K&hler manifolds. Since they admit a combinatorial
description it is very interesting to estimate their (pseudo) symplectic capacities in terms of combinatoral
data. Recall that the Gromov symplectic widthg (M, ) of a 2z-dimensional symplectic manifold
(M, w) is defined by the supremum of all numbers? for which there exists a symplectic embedding
from a ball BZ'(r) in (R?*, wp) of radiusr into (M, w). It is the first symplectic capacity. Recently, the
author introduced the notion gseudo symplectic capacity [6]. Let us begin by briefly recalling it. For
its properties and applications the reader refer to [6]. Given a connected symplectic mamifail of
dimension 2 and a smooth functio®/ on it let Xy denote the symplectic gradient &f. An isolated
critical point p of H is calledadmissable if the spectrum of the linear transformatiénX 4 (p) : T,M —

T,M is contained irC\ {1i | 2r < £ < +o0}. For two given nonzero homology classes oo, € Hi (M)
we denote byH,q(M, w; ag, ttoo) (resp.’I—A{ad(M,w; ap, ®eo)) the set of all smooth functions ol for
which there exist two smooth compact submanifaRland Q of M with connected smooth boundaries
and of codimension zero such that the following condition groups (a)—(f) (resp. (a)—(e), (g)) are satisfied:
(@) P CInt(Q) andQ C Int(M);

(b) H|p=0 andH|M_|m(Q) = maxH,

(c) O H < maxH,;

(d) There exist chain representativesfanda, still denoted by, o, Such that supfxg) C Int(P)

and supfe) C M\ Q;
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(e) H has only finitely many critical points in 160) \ P and each of them is admissible in the above
sense;
(f) The Hamiltonian system = Xz (x) on M has no nonconstant periodic solutions of period less than 1;
(g) The Hamiltonian system = Xy (x) on M has no nonconstant contractible periodic solutions of pe-
riod less than 1.
If ap € Ho(M) can be represented by a point we alléwio be an empty set. I§7 is a closed manifold and
o € Ho(M) is represented by a point, we also allgv= M.
The pseudo symplectic capacities of Hofer—Zehnder type are defined by

CE (M, w; a, ao) 1= SUAMAXH | H € Haa(M, »; a0, @oo)},
6§§)Z(M, w; 0, Uoo) :=SUPMaxH | H € 7—A{ad(M, w; AQ, Uoo) ).

In this Note we denote by: the generator ofip(M) represented by a point, and always make the
convention that supp= 0 and infj = +o0.

)

1. The pseudo symplectic capacity of toric manifolds

For the following related knowedge on the toric manifolds the reader may refer to [1,2,5]. beta
complete regular fan iR” andG(Z) = {u1, ..., ug} the set of all generators of 1-dimensional conexin
Denote by R the toric manifold associated witf. It is well known that every Kéhler form onsPcan be
represented by a strictly convex support functiofor ¥ and that every strictly convex support function
for X represents a Kahler form ongP Therefore, in this Note we shall use the same letter to denote a
Kahler form on R, and the corresponding strictly convex support functionfowhen the context makes
our meaning clear. In the following we denote By the set of all nonnegative integers.

THEOREM 1. —Under the assumptions above let w be a strictly convex support function for 3. Then it
holds that

d d

1
T(2, w):= > Inf{kz_:lw(uk)ak >0 ;akuk =0, ax €Zxo, k=1,. ..,d} >0, (2)

and that for every n > 2,
Wq (Ps, w) < Crz(Ps, @; pt, PD([w])) <27 - Y(Z, 0). (3)
In particular, let us consider a Delzant polytop&Rt )*
d
A= m{xe (R”)*|lk(x) ::x(uk)—kkko} (4)
k=1

(cf. [1,5]), whered is the number of théz — 1)-dimensional faces of, u; is a uniquely primitive element
of the latticeZ" c R”" (the inward-pointing normal to thieth face ofA), and is a real number. Denote
by X A the toric manifold associated with the fan generated\bgnd byw, the canonical symplectic form
onit.

THEOREM 2. —Under the assumptions above, it holds that

d
Y(A) = inf{— Z,\kak >0

k=1

d
ZakukZO, ak€Z>o,k=l,...,d}>0, (5)
k=1
and that for any n > 2,

W6 (Xa, 0p) <Crz(Xa,wa; pt,PD([wal)) <21 - Y(A). (6)
Moreover, if Vert(A) denotesthe set of all vertexesof A and E,(A) isthe shortest distance from the vertex
p tothe adjacent n vertexes, then for any capacity function ¢,

27 - max E,(A) <c(Xa, . 7
onax, p(D) <c(Xa,wp) (7
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Remark 3. — For ther-simplexA = A, in (R")* spanned by the origin and the dual bagis. . ., e the
associated toric manifoldX 5, , wa, ) is (CP", 2wrs) with f(cpl wrs = 7. Itis easily seen thar(a,) =1.
Thus the estimates in (6) are optimal. In particular, it follows from the proof of Theorem 2 that

We (A" (1) x O"(27), wo) < W (A" (D) x T", wean) < 27,
where A"(a) = {(x1,...,x,) € R%y | Y f_1xx <a} CR" and0"(a) ={(61,...,6,) €eR" |0 <6 <a,
V1< k < n} for anya > 0. But from Theorem 5.1 in [10] one can only gét (A" (1) x 0"(27), wo) <
8nr.

Examples. — (i) Let e1, e, e3 be the standard basis & andu; = eq, up = —e1, uz = ez, ug = e3,
us = —ep — e3 — 2e1. Consider a fant ¢ R3 in which G(X) = {u1, u2, us, ua, us} is the set of all
generators of 1-dimensional cones and whose set of primitive collectidfgiis:z}, {13, ua, us}}. It is
easily checked that this fan is complete and regular. Its associated toric manifddte Fano threefold
P(Op2(2) ® 1). Note that each strictly convex support function ©rcan be determined by its values at
pointsu;,i =1,...,5. Letw be aX-piecewise linear function such thatu;) =1,i =1,...,5. Itis easy
to prove that it is a strictly convex support function orand thatY' (X, w) = 1/x. Thus by Theorem 1 we
getWes (Ps, w) < Crz(Ps, w; pt, PD([w])) < 2.

(i) Consider a Delzant polytopa ¢ (R3)* with verticesvg =0, v1 = et v2=-e5,v3=(1l—a)es+ae3,
v4 = ae3, vs = (1—a)ej+ael. Here O< a < 1 andey, e3, e3 are the dual basis of the standard basgj?,
e3in R3. Itis easy to see that the normal vectors to the 2-dimensional faces arey, up =e5, u3=e3,
us = —e3, us = —ej — e5 — e3. Furthermore A can be expressed as the intersection of the half spaces
(x,uj)=20,j=123,and(x, us) > —a, (x,us) = —1. ThusY(A) =a and it follows from Theorem 2
that the associated toric manifald o, wa) has the capacities

W6 (Xa,0p) <Crz(Xa, wa; pt, PD([wp])) < 27a.

Notice that the toric manifoldX s, wa) is exactly the blow-up of CP3, 2wpy) of weight 21 —q) at a
point. That is, it is obtained by removing the interior of a symplectic embedding B%(\/2(1 — a)), wo)

of radius/2(1— a) in (CP3, 2wrs) and collapsing the bounding sphere to the exceptional divisor by the
Hopf map.

2. Seshadri constants

For a compact complex manifol@/, J) of dimensionz, and an ample line bundle — M Demailly
[4] defined theSeshadri constant of L at a pointx € M to be the nonnegative real number
o feenD)
L = inf 8
e(L, %) o mult,C ’ ®)
where the infimum is taken over all irreducible curves passing through the poarid mul;C is the
multiplicity of C atx. The global Seshadri constant is defined by

e(L) ::xiQLE(L,x). 9)

For more details the reader should refer to [4,3] and the references therein.

Let the toric manifold R be as in Theorem 1 antl, = Ly (X) — Py the corresponding line bundles
to the standard toric divisor®;(X), k = 1,...,d. It is well known that the Chern class (L) is
Poincaré dual tqDy] € Ha(Ps, Z) for eachk. Form = (m1, ..., mg) € Z¢ consider the line bundle
L=L1"®: - ®L;"". By the toric manifold theory it is ample if and only if ti&-piecewise linear function
OL = Qmy--my)) € PL(X) determined by, (ux) =myi, k=1,...,d, is a strictly convex support function.

THEOREM 4. —Let Py be the toric manifold associated with a complete regular fan X in R” and
L — Py an ampleline bundle on it. If ¢, be any strictly convex support function in PL(X) representing
theclassc1(L) then

e(L)<2m-Y(Z, ¢p). (10)
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Furthermore, if m = (m1, ..., my) € Z¢ is such that the =-piecewise linear function @(my--mg) IN(L0)isa
strictly convex support function, then

d
s(Lrln1 @...®LZ“) < inf{kaak >0
k=1

d
ZakukZO, ClkGZ;O, k=l,...,d}.
k=1

3. The strategiesof proof of the main results

We only outline the proof of Theorem 1. For a closed symplectic maniféddw), by Proposition 1.8,
Theorem 1.12 and Remark 1.13 in [6] we know that if there exist homology cldssd$;(M, 7Z) andw; €
H.M,Q),i=1,...,m, such that the Gromov-Witten invariamg’f%f;jfﬂ(pt; pt,a1,...,an) # 0 then
We(M,w) < Cxgz(M,w; pt, PD([w])) < w(A). Since suchA has always the representives of rational
curves it follows from the Gromov compactness theorem that the infimung(@M; pt, P D([w])) of
all w(A) when A taking over such classes is more than zero. If §6M, w; pt, PD([w])) is finite the
symplectic manifold(M, w) is called strong 0-symplectic uniruled in Definition 1.16 of [6]. Batyrev's
compuation for the quantum cohomology rings of toric manifolds ¢2][B8] for a rigorous explanation)
showed that the toric manifolds are strong 0-symplectic uniruled. Precisely, under the assumptions of
Theorem 1 let us denote BA(X) = {i = (u1, ..., na) € Z¢ | paur + - - - + nqug = 0y and Dy (X) the toric
divisorsof B;,k=1,...,d. ForA € H>(Ps, Z) let ur (A) denote the intersection numbets Dy (X), k =
1,...,d. Then(ui(A), ..., na(A)) € R(X) and the mapH2(Px, Z) — R(Z), A — (n1(A), ..., na(A))
is an isomorphism. Denote b¥y the inverse map of the isomorphism. It was proved in [2] that for
everyA = Ex(a) € EE(Z‘;O N R(X)) C H2(Px,Z) and any Kahler formw on R; the Gromov-Witten

invariantlllxa’,‘;ﬂrl(pt; pt, PD(c{Y), ..., PD(c")) = 1, wherem = 1 + Zleak andc; € H2(Px, Z)

are the Poincare dual ¢D;(2)], k = 1,...,d. On the other hand each Kahler formon Py may be

represented by a strictly convex support functionIpralso denoted byw. By the arguments in 83 of [2]

we havew(A) = ([w], A) = Zzzlw(uk)ak. Now Theorem 1 may be derived from these arguments.
Theorem 2 may be derived from Theorem 1, the main result in [9] and Lemma 3.11 in [7]. The proof of

Theorem 4 may be completed by using Proposition 6.3 in [3] and Theorem 1.39 in [6].
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