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ABSTRACT

Let R be a regular local ring containing an infinite field. Let G be a reductive group scheme over R. We prove
that a principal G-bundle over R is trivial if it is trivial over the fraction field of R. In other words, if K is the fraction field
of R, then the map of non-abelian cohomology pointed sets

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K has a trivial kernel.

1. Introduction

Assume that U is a regular scheme. Let G be a reductive U-group scheme, that
is, G is affine and smooth as a U-scheme and, moreover, the geometric fibers of G are
connected reductive algebraic groups (see [DG, Exp. XIX, Definition 2.7]).

Recall that a U-scheme G with an action of G is called a principal G-bundle over U,
if G is faithfully flat and quasi-compact over U and the action is simply transitive, that
is, the natural morphism G ×U G → G ×U G is an isomorphism (see [Gro5, Section 6]).
It is well known that such a bundle is trivial locally in the étale topology but in general
not in the Zariski topology. Grothendieck and Serre conjectured that if G is generically
trivial, then it is locally trivial in the Zariski topology (see [Ser, Remarque, p. 31], [Gro1,
Remarque 3, pp. 26–27], and [Gro4, Remarque 1.11.a]). More precisely, the following
conjecture is widely attributed to them.

Conjecture 1. — Let R be a regular local ring, let K be its field of fractions. Let G be a reductive

group scheme over U := Spec R, let G be a principal G-bundle. If G is trivial over Spec K, then it is

trivial. Equivalently, the map of non-abelian cohomology pointed sets

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K has a trivial kernel.

The main result of this paper is the following theorem.

Theorem. — The above conjecture holds if R is a regular local ring containing an infinite field.

The theorem has the following corollary.
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Corollary. — Notation as in the conjecture, two principal G-bundles over U that become isomor-

phic upon restriction to Spec K are isomorphic.

This result is new even for constant group schemes (that is, for group schemes coming
from the ground field).

1.1. History of the topic. — In his 1958 paper Jean–Pierre Serre asked whether a
principal bundle is Zariski locally trivial, once it has a rational section (see [Ser, Re-
marque, p. 31]). In his setup the group is any algebraic group over an algebraically
closed field. He gave an affirmative answer to the question when the group is PGL(n)

(see [Ser, Prop. 18]) and when the group is an abelian variety (see [Ser, Lemme 4]). In
the same year, Alexander Grothendieck asked a similar question (see [Gro1, Remarque 3,
pp. 26–27]).

A few years later, Grothendieck conjectured that the statement is true for any semi-
simple group scheme over any regular scheme (see [Gro4, Remarque 1.11.a]). Now by the
Grothendieck–Serre conjecture we mean Conjecture 1 though this may be slightly inac-
curate from historical perspective. Many results corroborating the conjecture are known.

• For some simple group schemes of classical series the conjecture is solved in
works of the second author, A. Suslin, M. Ojanguren, and K. Zainoulline;
see [Oja1, Oja2, PS1, OP, Zai, OPZ].

• The case of an arbitrary reductive group scheme over a discrete valuation ring
or over a Henselian ring is completely solved by Y. Nisnevich in [Nis1]. He also
proved the conjecture for two-dimensional local rings in the case when G is
quasi-split in [Nis2].

• The case where G is an arbitrary torus over a regular local ring was settled by
J.-L. Colliot-Thélène and J.-J. Sansuc in [CTS].

• The case where the group scheme G comes from an infinite ground field is com-
pletely solved by J.-L. Colliot-Thélène, M. Ojanguren, and M. S. Raghunathan
in [CTO] and [Rag1, Rag2]; O. Gabber announced a proof for group schemes
coming from arbitrary ground fields.

• Under an isotropy condition on G the conjecture is proved in a series of
preprints [PSV] and [Pan].

• The case of strongly inner simple adjoint group schemes of types E6 and E7 is
done by the second author, V. Petrov, and A. Stavrova in [PPS]. No isotropy
condition is imposed there.

• The case when G is of type F4 with trivial g3-invariant and the field is of charac-
teristic zero is settled by V. Chernousov in [Che]; the case when G is of type F4

with trivial f3-invariant and the field is infinite and perfect is settled by V. Petrov
and A. Stavrova in [PS2].
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In the case of anisotropic group schemes the conjecture remained wide open in
many cases, in particular, for group schemes of types Dn, F4, and E8. We will present a
uniform proof.

1.2. Overview of the proof. — Very roughly, the idea of the proof is to relate the
problem of triviality of the original principal bundle to the triviality of a principal bundle
over the affine line over U (see Theorem 2) and then to triviality of a principal bundle over
the projective line over U (see Theorem 3). The first reduction is based on the geometric
part of the paper [PSV] by the second author with A. Stavrova and N. Vavilov. We also
use results of the second author [Pan] to reduce our problem to the case when G is simple
and simply-connected (at a price of replacing a local ring by semi-local). Also, by a result
of Popescu [Pop, Swa, Spi] we may assume that U is of geometric origin.

The proof of Theorem 3 is inspired by the theory of affine Grassmannians. We do
not use the affine Grassmannians explicitly in this paper, however, the interested reader
is invited to look at [Fed], where an alternative proof of our Theorem 3 is sketched.

2. Main results

The theorem from the introduction follows from a slightly more general result.

Theorem 1. — Let R be a regular semi-local domain containing an infinite field, and let K be

its field of fractions. If G is a reductive group scheme over R, then the map

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K has a trivial kernel. In other words, under the above assumptions on

R and G, each principal G-bundle over R having a K-rational point is trivial.

Theorem 1 has the following corollary.

Corollary 1. — Under the same hypothesis as in Theorem 1, the map

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K is injective. Equivalently, two principal G-bundles over R that

become isomorphic upon restriction to K are isomorphic.

Proof. — Let G1 and G2 be two principal G-bundles over U := Spec R. Assume
that G1 and G2 are isomorphic over Spec K. Recall that the functor sending a U-scheme
T to the set of isomorphisms of principal G-bundles G1 ×U T → G2 ×U T is represented
by an affine U-scheme Iso(G1,G2). Consider also the scheme AutG2 := Iso(G2,G2) of
G-bundle automorphisms of G2. It is a reductive group scheme because it is étale locally
over R isomorphic to G.



172 R. FEDOROV, I. PANIN

It is easy to see that Iso(G1,G2) is a principal AutG2-bundle. By Theorem 1 it is
trivial, and we see that G1

∼= G2. �

While Theorem 1 was previously known for reductive group schemes G coming
from the ground field (see [CTO, Rag1, Rag2]), in certain cases the corollary is a new
result even for such group schemes. For example, it was not known for split group schemes
G of type E8. Also, the corollary was not known for Spin(A, σ ), where A is a skew-field
over a field k (char k �= 2) and σ is an involution of orthogonal type on A.

For a scheme U we denote by A1
U the affine line over U and by P1

U the projective
line over U. If T is a U-scheme, we will use the term “principal G-bundle over T” to
mean a principal G ×U T-bundle over T.

In Section 3 we deduce Theorem 1 from the following result of independent inter-
est (cf. [PSV, Theorem 1.3]).

Theorem 2. — Let R be the semi-local ring of finitely many closed points on an irreducible smooth

affine variety over an infinite field k and set U = Spec R. Let G be a simple, simply-connected group

scheme over U (see [DG, Exp. XXIV, Section 5.3] for the definition). Let Et be a principal G-bundle

over the affine line A1
U = Spec R[t], and let h(t) ∈ R[t] be a monic polynomial. Denote by (A1

U)h

the open subscheme in A1
U given by h(t) �= 0 and assume that the restriction of Et to (A1

U)h is a trivial

principal G-bundle. Then for each section s : U → A1
U of the projection A1

U → U the G-bundle s∗Et

over U is trivial.

The derivation of Theorem 1 from Theorem 2 is based on results of the second
author, A. Stavrova, and N. Vavilov, namely, on [Pan] and [PSV, Theorem 1.2].

Let Y be a semi-local scheme. We will call a simple Y-group scheme isotropic if
its restriction to each connected component of Y contains a proper parabolic subgroup
scheme. (Note that by [DG, Exp. XXVI, Cor. 6.14] this is equivalent to the usual def-
inition, that is, to the requirement that the group scheme contains a torus isomorphic
to Gm,Y.) Theorem 2 is, in turn, derived from the following statement.

Theorem 3. — Let R be the semi-local ring of finitely many closed points on an irreducible

smooth affine variety over an infinite field k and set U = Spec R. Let G be a simple, simply-connected

group scheme over U.

Let Z ⊂ P1
U be a closed subscheme finite over U. Let Y ⊂ P1

U be a closed subscheme étale

over U. Assume that Y ∩ Z = ∅, and GY := G ×U Y is isotropic. Assume also that for every closed

point u ∈ U such that the algebraic group Gu := G|u is isotropic, there is a k(u)-rational point in

Yu := P1
u ∩ Y. (Here k(u) is the residue field of u.)

Let G be a principal G-bundle over P1
U such that its restriction to P1

U − Z is trivial. Then the

restriction of G to P1
U − Y is also trivial.

The proof of this result was inspired by the theory of affine Grassmannians
(see [Fed] for a proof using affine Grassmannians explicitly).



A PROOF OF THE GROTHENDIECK–SERRE CONJECTURE 173

Remarks. — 1. Assume that for every closed point u ∈ U the algebraic group Gu is anisotropic.

Then we can take Y = ∅.

2. It is not necessary to assume that Y∩Z = ∅. Indeed, let Y satisfy the conditions of the theorem

except that it may intersect Z. Since U is semi-local, there is a projective transformation θ : P1
U → P1

U
such that θ(Y) ∩ Y = θ(Y) ∩ Z = ∅. By the above theorem the restriction of G to P1

U − θ(Y) is

trivial. Now we can apply the theorem again with Z = θ(Y) to show that the restriction of G to P1
U −Y

is trivial.

3. In the situation of Theorem 3, let G be isotropic. Then it follows from the theorem that one

can take Y = {∞}× U ⊂ P1
U, that is, the restriction of G to A1

U is trivial. In fact, this is a partial case

of [PSV, Theorem 1.3]. On the other hand, if G is anisotropic, this restriction is not in general trivial.

For an example see [Fed].

2.1. Organization of the paper. — In Section 3, we reduce Theorem 1 to The-
orem 2. This reduction is based on [Pan], [PSV, Theorem 1.2], and a theorem of
D. Popescu [Pop, Swa, Spi]. In Section 4, we reduce Theorem 2 to Theorem 3.

In Section 5 we prove Theorem 3. The main idea is to modify the principal bundle
G in a neighborhood of Y so that G becomes trivial. We use the technique of Henseliza-
tion. One can give an essentially equivalent proof based on formal loops, see [Fed, Sec-
tion 6.2].

In Section 6 we give an application of Theorem 1.

3. Reducing Theorem 1 to Theorem 2

In what follows “G-bundle” always means “principal G-bundle”. Now we assume
that Theorem 2 holds. We start with the following particular case of Theorem 1.

Proposition 3.1. — Let R be the semi-local ring of finitely many closed points on an irreducible

smooth affine variety over an infinite field k and set U = Spec R. Let G be a simple, simply-connected

group scheme over U. Let E be a principal G-bundle over U, trivial at the generic point of U. Then E
is trivial.

Proof. — Under the hypothesis of the proposition, a particular case of [PSV, The-
orem 1.2] reads as follows: there exist

(a) a principal G-bundle Et over A1
U;

(b) a monic polynomial h(t) ∈ R[t].
Moreover, these data satisfy the following conditions:

(1) the restriction of Et to (A1
U)h is a trivial principal G-bundle;

(2) there is a section s : U → A1
U such that s∗Et = E .

Now it follows from Theorem 2 that E is trivial. �
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Proposition 3.2. — Let R be the semi-local ring of finitely many closed points on an irreducible

smooth affine variety over an infinite field k and set U = Spec R. Let G be a reductive group scheme

over U. Let E be a principal G-bundle over U trivial at the generic point of U. Then E is trivial.

Proof. — The following is proved in [Pan]:

• Denote by Gder the derived group scheme of G. If the Grothendieck–Serre con-
jecture holds for any inner form of Gder , then it holds for G. (Recall that an inner
forms of a group scheme H is a group scheme isomorphic to Aut(H), where H
is an H-bundle.)

• If the Grothendieck–Serre conjecture holds for any inner form of the simply-
connected cover of a semi-simple U-group scheme H, then it holds for H.

Thus, we may assume that G is semi-simple and simply-connected. By [DG,
Exp. XXIV, Prop. 5.10] (which is valid for simply-connected group schemes as well, see
the beginning of [DG, Exp. XXIV, Section 5]) there is a sequence U1, . . . ,Ur of finite
étale U-schemes, and for each i = 1, . . . , r a simple simply-connected Ui-group scheme
Gi such that

G ∼=
r∏

i=1

RUi/U(Gi),

where RUi/U is the Weil restriction functor. Now the Faddeev–Shapiro Lemma (see [DG,
Exp. XXIV, Proposition 8.4]) shows that the Grothendieck–Serre conjecture for G holds,
if for each i the conjecture holds for Gi . For more details, see [PSV, Theorem 11.1].
Thus, we may assume that G is simple and simply-connected. Now the proposition is
reduced to Proposition 3.1. �

Remark 3.3. — Even if we start with a local scheme U, the schemes Ui are only semi-local in

general. This is why we have to work with semi-local schemes from the beginning.

Proof of Theorem 1 assuming Theorem 2. — Let us prove a general statement first. Let
k′ be an infinite field, X be a k′-smooth irreducible affine variety, H be a reductive group
scheme over X. Denote by k′[X] the ring of regular functions on X and by k′(X) the field
of rational functions on X. Let H be a principal H-bundle over X trivial over k′(X). Let
p1, . . . ,pn be prime ideals in k′[X], and let Op1,...,pn

be the corresponding semi-local ring.

Lemma 3.4. — The principal H-bundle H is trivial over Op1,...,pn
.

Proof. — For each i = 1,2, . . . , n choose a maximal ideal mi ⊂ k′[X] containing pi .
One has inclusions of k′-algebras

Om1,...,mn
⊂Op1,...,pn

⊂ k′(X).



A PROOF OF THE GROTHENDIECK–SERRE CONJECTURE 175

By Proposition 3.2 the principal H-bundle H is trivial over Om1,...,mn
. Thus it is trivial

over Op1,...,pn
. �

Let us return to our situation. Let m1, . . . ,mn be all the maximal ideals of R. Let
E be a G-bundle over R trivial over the fraction field of R. Clearly, there is a non-zero
f ∈ R such that E is trivial over Rf . Let k′ be the algebraic closure of the prime field of
R in k. Note that k′ is perfect. It follows from Popescu’s theorem [Pop, Swa, Spi] that R
is a filtered inductive limit of smooth k′-algebras Rα . Modifying the inductive system Rα

if necessary, we can assume that each Rα is integral. There exist an index α, a reductive
group scheme Gα over Rα , a principal Gα-bundle Eα over Rα , and an element fα ∈ Rα

such that G = Gα ×Spec Rα
Spec R, E is isomorphic to Eα ×Spec Rα

Spec R as principal G-
bundle, f is the image of fα under the homomorphism ϕα : Rα → R, and Eα is trivial over
(Rα)fα .

If the field k′ is infinite, then for each maximal ideal mi in R (i = 1, . . . , n) set
pi = ϕ−1

α (mi). The homomorphism ϕα induces a homomorphism of semi-local rings
(Rα)p1,...,pn

→ R. By Lemma 3.4 the principal Gα-bundle Eα is trivial over (Rα)p1,...,pn
.

Whence the G-bundle E is trivial over R.
If the field k′ is finite, then k contains an element t transcendental over k′. Thus R

contains the subfield k′(t) of rational functions in the variable t. So, if R′
α := Rα ⊗k′ k′(t),

then ϕα can be decomposed as follows

Rα → Rα ⊗k′ k′(t) = R′
α

ψα−→ R.

Let G′
α = Gα ×Spec Rα

Spec R′
α , E ′

α = Eα ×Spec Rα
Spec R′

α , f ′
α = fα ⊗ 1 ∈ R′

α , then the G′
α-

bundle E ′
α is trivial over (R′

α)f ′
α
.

Let qi = ψ−1
α (mi) for i = 1, . . . , n. The ring R′

α is a k′(t)-smooth algebra over the
infinite field k′(t), and the G′

α-bundle E ′
α is trivial over (R′

α)f ′
α
. By Lemma 3.4 the G′

α-
bundle E ′

α is trivial over (R′
α)q1,...,qn

. The homomorphism ψα can be factored as

R′
α → (

R′
α

)
q1,...,qn

→ R.

Thus the G-bundle E is trivial over R. �

Remark. — If k is perfect, we can use it instead of k′, and the above proof simplifies.

4. Reducing Theorem 2 to Theorem 3

Now we assume that Theorem 3 is true. Let U and G be as in Theorem 2. Let
u1, . . . , un be all the closed points of U. Let k(ui) be the residue field of ui. Consider the
reduced closed subscheme u of U, whose points are u1, . . . , un. Thus

u ∼=
∐

i

Spec k(ui).
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Set Gu = G×U u. By Gui
we denote the fiber of G over ui; it is a simple simply-connected

algebraic group over k(ui). Let u′ ⊂ u be the subscheme of all closed points ui such that
the group Gui

is isotropic. Set u′′ = u − u′. It is possible that u′ or u′′ is empty.

Proposition 4.1. — There is a closed subscheme Y ⊂ P1
U such that Y is étale over U, GY =

G ×U Y is isotropic, and for all ui ∈ u′ there is a k(ui)-rational point yi ∈ Y lying over ui .

Proof. — If u′ is empty, we just take Y = ∅.
Otherwise, for every ui in u′ choose a proper parabolic subgroup Pui

in Gui
. Let

Pi be the U-scheme of parabolic subgroup schemes of G of the same type as Pui
. It is a

smooth projective U-scheme (see [DG, Cor. 3.5, Exp. XXVI]). The subgroup Pui
in Gui

is a k(ui)-rational point pi in the fibre of Pi over the point ui .
We claim that there is a closed subscheme Yi of Pi such that Yi is étale over U

and pi ∈ Yi . Indeed, let r be the dimension of Pi over U and take an embedding of Pi

into the projective space PN
U = Proj(R[x0, . . . , xN]). Let mj be the maximal ideal in R

corresponding to uj ∈ u. Since k is infinite, by a variant of Bertini’s theorem (see [SGA,
Exp. XI, Thm. 2.1]), for each j there is a sequence of homogeneous quadratic polyno-
mials Hj

1, . . . ,Hj
r ∈ (R/mj)[x0, . . . , xN] such that the subscheme Tj of PN

k(uj )
given by the

equations Hj

1 = · · · = Hj
r = 0 intersects the fiber of Pi over uj transversally. Moreover, we

may assume that pi ∈ Ti . By the Chinese Remainder Theorem for each m ∈ {1, . . . , r}
there is a common lift of polynomials Hj

m to a quadratic polynomial Hm ∈ R[x0, . . . , xN].
Let T be the scheme given by H1 = · · · = Hr = 0. Then Yi := T ∩Pi is the required sub-
scheme. Indeed, we only need to check that Yi is étale over U. However, for every closed
point of U the fiber of Yi over this point is étale by construction. Hence, it is enough to
check that Yi is flat over U. The flatness follows immediately from [Mat, Thm. 23.1].

Now consider Yi just as a U-scheme and set Y = ∐
ui∈u′ Yi . Next, GYi

is isotropic
by the choice of Yi . Thus GY is isotropic as well. Since the field k is infinite and Y is finite
étale over U, we can choose a closed U-embedding of Y in A1

U. We will identify Y with
the image of this closed embedding. Since Y is finite over U, it is closed in P1

U. �

Proof of Theorem 2 assuming Theorem 3. — Set Z := {h = 0} ∪ s(U) ⊂ A1
U. Note that

{h = 0} is closed in P1
U and finite over U because h is monic. Further, s(U) is also closed

in P1
U and finite over U because it is a zero set of a degree one monic polynomial. Thus

Z ⊂ P1
U is closed and finite over U.
Let Y be as in Proposition 4.1. Since U is semi-local, there exists a projective trans-

formation θ : P1
U → P1

U such that Z ∩ θ(Y) = ∅. Thus, replacing Y by θ(Y) we may
assume that Z ∩ Y = ∅.

Since the principal G-bundle Et is trivial over (A1
U)h, and G-bundles can be glued

in the Zariski topology, there exists a principal G-bundle G over P1
U such that

(i) its restriction to A1
U coincides with Et ;

(ii) its restriction to P1
U − Z is trivial.
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Applying Theorem 3 with the above choice of Y and Z, we see that the restriction
of G to P1

U − Y is a trivial G-bundle. Since s(U) is in (P1
U − Y) ∩ A1

U, and G|A1
U

coincides
with Et , we conclude that s∗Et is a trivial principal G-bundle over U. �

5. Proof of Theorem 3

We will be using notation from Theorem 3. Let u, u′, and u′′ be as in Section 4.
For u ∈ u set Gu = G|u.

Proposition 5.1. — Let E be a G-bundle over P1
U such that E |P1

u
is a trivial Gu-bundle for all

u ∈ u. Assume that there exists a closed subscheme T of P1
U finite over U such that the restriction of E to

P1
U − T is trivial. Then E is trivial.

Proof. — This follows from Proposition 9.6 of [PSV]. �

Remark 5.2. — The same proof goes through for any semi-simple U-group scheme G.

5.1. An outline of a proof of Theorem 3. — A detailed proof will be given in the present
text below. Firstly, we give an outline of the proof.

Denote by Yh the Henselization of the pair (A1
U,Y); it is a scheme over A1

U. We
review some facts about Henselization of pairs in Section 5.3. In particular, there exists a
canonical closed embedding sh : Y → Yh, and we set Ẏh := Yh − sh(Y). We have a natural
Cartesian square (see Section 5.4 for more details)

Ẏh −−−→ Yh

⏐⏐�
⏐⏐�

P1
U − Y −−−→ P1

U.

This square can be used to glue principal bundles. In particular, if G ′ is a G-bundle over
P1

U − Y, then by Gl(G ′, ϕ) we denote the G-bundle over P1
U obtained by gluing G ′ with

the trivial G-bundle G ×U Yh via a G-bundle isomorphism ϕ : G ×U Ẏh → G ′|Ẏh .
Similarly, set Yu := Y ×U u and denote by Yh

u the Henselization of the pair
(A1

u,Yu), let sh
u : Yu → Yh

u be the closed embedding. Set Ẏh
u := Yh

u − su(Yu). Let G ′
u

be a Gu-bundle over P1
u − Yu, where Gu := G ×U u. Denote by Glu(G ′

u, ϕu) the Gu-
bundle over P1

u obtained by gluing G ′
u with the trivial bundle Gu ×u Yh

u via a Gu-bundle
isomorphism ϕu : Gu ×u Ẏh

u → G ′
u|Ẏh

u
.

We will prove in Section 5.5 that the restriction of the G-bundle G to Yh is trivial,
so G can be presented in the form Gl(G ′, ϕ), where G ′ = G|P1

U−Y. The idea is to show
that
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(∗) There is an element α ∈ G(Ẏh) such that the Gu-bundle Gl(G ′, ϕ ◦ α)|P1
u

is
trivial (here α is regarded as an automorphism of the G-bundle G ×U Ẏh given
by right translation action of α).

If we find α satisfying condition (∗), then Proposition 5.1, applied to T = Y ∪ Z,
shows that the G-bundle Gl(G ′, ϕ ◦ α) is trivial over P1

U. On the other hand, its restric-
tion to P1

U − Y coincides with the G-bundle G ′ = G|P1
U−Y. Thus G|P1

U−Y is a trivial G-

bundle.
To prove (∗), one should show that

(i) the bundle G|P1
u−Yu is trivial;

(ii) each element γu ∈ Gu(Ẏh
u) can be written in the form

α|Ẏh
u
· βu|Ẏh

u

for certain elements α ∈ G(Ẏh) and βu ∈ Gu(Yh
u).

If we succeed in showing that (i) and (ii) above hold, then we proceed as follows.
Present the G-bundle G in the form Gl(G ′, ϕ) as above. Observe that

Gl
(
G ′, ϕ

)|P1
u
∼= Glu

(
G ′

u, ϕu

)
,

where G ′
u := G ′|P1

u−Yu , ϕu := ϕ|Gu×uẎh
u
.

Using property (i), find an element γu ∈ Gu(Ẏh
u) such that the Gu-bundle

Glu(G ′
u, ϕu ◦ γu) is trivial. For this γu find elements α and βu as in (ii). Finally take the

G-bundle Gl(G ′, ϕ ◦ α). Then its restriction to P1
u is trivial. Indeed, one has a chain of

Gu-bundle isomorphisms

Gl
(
G ′, ϕ ◦ α

)|P1
u
∼= Glu

(
G ′

u, ϕu ◦ α|Ẏh
u

)

∼= Glu
(
G ′

u, ϕu ◦ α|Ẏh
u
◦ βu|Ẏh

u

) = Glu
(
G ′

u, ϕu ◦ γu

)
,

which is trivial by the very choice of γu. Thus, (∗) will be achieved.
Let us prove (i) and (ii). If u ∈ u′, then there is a k(u)-rational point in Yu := P1

u ∩ Y.
Hence the Gu-bundle Gu := G|P1

u
is trivial over P1

u − Yu (see [Gil1, Corollary 3.10(a)]).
If u ∈ u′′, then Gu is anisotropic and Gu is trivial even over P1

u (again, by [Gil1, Corol-
lary 3.10(a)]). Thus G|P1

u−Yu is trivial. So, (i) is achieved.
To achieve (ii) recall that for a domain A, its fraction field L, and a simple group

scheme H over A, having a parabolic subgroup scheme P, one can form a subgroup
E(L) of “elementary matrices” in H(L). It is known (see [Gil3, Fait 4.3, Lemma 4.5])
that if A is a Henselian discrete valuation ring and H is simply-connected, then every
element γ ∈ H(L) can be written in the form γ = α · β , where α ∈ E(L) and β ∈ H(A).
Applying this observation in our context, we see that γu ∈ Gu(Ẏh

u) can be written in the
form γu = αu · βu|Ẏh

u
, where βu ∈ Gu(Yh

u) and αu ∈ E(Ẏh
u). It remains to observe that the
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natural homomorphism E(Ẏh) → E(Ẏh
u) is surjective, since Ẏh

u is a closed subscheme of
the affine scheme Ẏh, and so (ii) is achieved.

A realization of this plan in details is given below in the paper.

5.2. Henselization of commutative rings. — For a commutative ring A we denote by
Rad(A) its Jacobson ideal. One can find the following definition in [Gab, Section 0] (see
also [Ray, Chap. 11]).

Definition 5.3. — If I is an ideal in a commutative ring A, then the pair (A, I) is called

Henselian, if I ⊂ Rad(A) and for every two relatively prime monic polynomials ḡ, h̄ ∈ Ā[t], where

Ā = A/I, and monic lifting f ∈ A[t] of ḡh̄, there exist monic liftings g, h ∈ A[t] such that f = gh.

(Two polynomials are called relatively prime, if they generate the unit ideal.)

Lemma 5.4. — A pair (A, I) is Henselian if and only if for every étale A-algebra A′ and every

σ ∈ HomA-Alg(A′,A/I) there is a unique σ̄ ∈ HomA-Alg(A′,A) that lifts σ .

Proof. — See [Gab, Section 0]. �

Lemma 5.5. — Let (A, I) be a Henselian pair with a semi-local ring A and J ⊂ A be an

ideal. Then the pair (A/J, (I + J)/J) is Henselian.

Proof. — Clearly (I + J)/J ⊂ Rad(A/J). Now let ḡ, h̄ ∈ (A/(I + J))[t] be two rel-
atively prime monic polynomials and let f ∈ (A/J)[t] be a monic polynomial such that
f mod (I + J)/J = ḡh̄ ∈ (A/(I + J))[t].

We claim that there exist relatively prime monic liftings of ḡ and h̄ to (A/I)[t].
Indeed, let m1, . . . , mn be all the maximal ideals of A/I not containing (I+J)/I (recall that
A is semi-local). By the Chinese remainder theorem we can find monic Ḡ, H̄ ∈ (A/I)[t]
such that

Ḡ mod (I + J)/I = ḡ, Ḡ mod mi = tdeg ḡ for i = 1, . . . , n,

H̄ mod (I + J)/I = h̄, H̄ mod mi = tdeg h̄ − 1 for i = 1, . . . , n.

Then Ḡ and H̄ are relatively prime. The ring homomorphism

A → (A/I) ×A/(I+J) (A/J)

is surjective. Thus there exists a monic polynomial F ∈ A[t] such that F mod I = ḠH̄ and
F mod J = f .

The pair (A, I) is Henselian. Thus there exist monic liftings G,H ∈ A[t] of Ḡ, H̄
such that F = GH. Let g = G mod J ∈ (A/J)[t] and h = H mod J ∈ (A/J)[t]. Clearly, g

and h are monic polynomials in (A/J)[t], f = gh ∈ (A/J)[t]. And finally, g mod (I+ J)/J =
ḡ, h mod (I + J)/J = h̄ in (A/(I + J))[t]. Whence the Lemma. �



180 R. FEDOROV, I. PANIN

One can find the following definition in [Gab, Section 0].

Definition 5.6. — The Henselization of a pair (A, I) is the pair (Ah
I, Ih) (over (A, I))

defined as follows

(
Ah

I, Ih
) := the filtered inductive limit over the category N of

(
A′,Ker(σ )

)
,

where N is the filtered category of pairs (A′, σ ) such that A′ is an étale A-algebra and σ ∈
HomA-alg(A′,A/I).

Note that the category N is filtered because finite direct limits preserve étalness.

5.3. Henselization of affine pairs. — Let us translate the previous section in the ge-
ometric language. Let S = Spec A be a scheme and T = Spec(A/I) be a closed sub-
scheme. Then we define a category Ñeib(S,T) whose objects are triples (W,π : W →
S, s : T → W) satisfying the following conditions:

(i) W is affine;
(ii) π is an étale morphism;

(iii) π ◦ s coincides with the inclusion T ↪→ S (thus s is a closed embedding).

A morphism from (W,π, s) to (W′,π ′, s′) in this category is a morphism ρ : W →
W′ such that π ′ ◦ ρ = π and ρ ◦ s = s′. Note that such ρ is automatically étale by [Gro3,
Corollaire 17.3.5].

Consider the functor from Ñeib(S,T) to the category of S-schemes, sending
(W,π, s) to (W,π). This functor has a projective limit (Th,π h). In the notation of the
previous section we have Th = Spec Ah

I and π h : Th → S is induced by the structure of an
A-algebra on Ah

I . We also get a closed S-embedding sh : T → Th, that is, π h ◦ sh coincides
with the inclusion T ↪→ S. We call (Th,π h, sh) the Henselization of the pair (S,T) (cf. Defi-
nition 5.6). Note that the pair (Th, sh(T)) is Henselian, which means that for any affine
étale morphism π : Z → Th, any section σ of π over sh(T) uniquely extends to a section
of π over Th; this follows from Lemma 5.4.

Denote by Neib(S,T) the full subcategory of Ñeib(S,T) consisting of triples
(W,π, s) such that

(iv) the schemes (π)−1(T) and s(T) coincide.

Remark. — Let (W,π, s) and (W′,π ′, s′) be objects of Neib(S,T). Let ρ : W → W′ be

a morphism such that π ′ ◦ ρ = π . Then it is easy to see that ρ ◦ s = s′ so that ρ is a morphism in

Neib(S,T). (Again, ρ is automatically étale.)

Lemma 5.7. — Neib(S,T) is co-final in Ñeib(S,T).
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Proof. — We need to check that for an object (W,π, s) of Ñeib(S,T) there
is an object (W′,π ′, s′) of Neib(S,T) and a morphism (W′,π ′, s′) → (W,π, s). Let
πT : (π)−1(T) → T be the base-changed morphism, which is étale. It follows from (iii)
that s is a section of πT. As was already mentioned above, a section of an étale morphism
is étale by [Gro3, Corollaire 17.3.5]. Thus s is both an open and a closed embedding,
and we have a disjoint union decomposition (π)−1(T) = s(T)

∐
T0 for a scheme T0. All

our schemes are affine, so there is a regular function f on W such that f = 0 on T0 and
f = 1 on s(T).

Set W′ = W − {f = 0}, π ′ = π |W′ , s′ = s. Then W′ is affine; thus (W′,π ′, s′) ∈
Neib(S,T), and we have an obvious morphism (W′,π ′, s′) → (W,π, s). �

The lemma implies that the category Neib(S,T) is co-filtered, and that the Henselization
can be computed by taking the limit over Neib(S,T), instead of Ñeib(S,T). It is now easy
to check that if (Th,π h, sh) is the Henselization of (S,T), then (π h)−1(T) = sh(T).

Note the two following properties of Henselization of affine pairs.

Lemma 5.8. — Let T be a semi-local scheme. Then the Henselization commutes with restriction

to closed subschemes. In more detail, if S′ ⊂ S is a closed subscheme, then we get a base change functor

Ñeib(S,T) → Ñeib(S′,T ×S S′). This functor yields a morphism (T ×S S′)h → Th ×S S′. This

morphism is an isomorphism and the canonical section s′ : T ×S S′ → (T ×S S′)h coincides under this

identification with

s ×S IdS′ : T ×S S′ → Th ×S S′.

Sketch of a proof. — Let us construct a morphism in the opposite direction. Since T
is semi-local, Th is also semi-local (the proof is straightforward). Therefore by Lemma 5.5
the pair (Th ×S S′, s(T) ×S S′) is Henselian.

Let (W,π, s) ∈ Ñeib(S′,T ×S S′). From π by a base change we get an étale mor-
phism π̃ : (Th ×S S′) ×S′ W → Th ×S S′. This morphism has an obvious section over
s(T)×S S′. Since the pair (Th ×S S′, s(T)×S S′) is Henselian, this section extends uniquely
to a section of π̃ over Th ×S S′, which, in turn, gives a morphism Th ×S S′ → W. These
morphisms give the desired morphism Th ×S S′ → (T ×S S′)h. �

Lemma 5.9. — If T = ∐
i Ti is a disjoint union, then Th = ∐

i Th
i .

Sketch of a proof. — Note that the functor from
∏

i Ñeib(S,Ti) to Ñeib(S,T), send-
ing a collection of schemes to their disjoint union, is co-final. �

5.4. Gluing principal G-bundles. — Recall that U = Spec R, where R is the semi-
local ring of finitely many closed points on an irreducible smooth affine variety over
an infinite field k. Also, G is a simple simply-connected group scheme over U, and Y
is a closed subscheme of P1

U étale over U. We may assume that Y ⊂ A1
U (otherwise,
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just change the coordinate on P1
U). We will apply the Henselization discussed above to

S = A1
U, T = Y. Thus we have an affine scheme Yh with a projection π h : Yh → Y and a

section sh : Y → Yh. Set Ẏh = Yh − s(Y).

Lemma 5.10. — If (W,π, s) ∈ Neib(A1
U,Y), then s(Y) is a principal divisor in W and

therefore W − s(Y) is affine.

Proof. — Since U is a regular semi-local ring, Y is a principal divisor in A1
U. Thus

s(Y) = (π)−1(Y) is also a principal divisor in the affine scheme W. �

Let us make a general remark. Let F be a G-bundle over a U-scheme T. By defi-
nition, a trivialization of F is a G-equivariant isomorphism G ×U T →F . Equivalently,
it is a section of the projection F → T. If ϕ is such a trivialization and f : T′ → T is a
U-morphism, we get a trivialization f ∗ϕ of f ∗F . Sometimes we denote this trivialization
by ϕ|T′ . We also sometimes call a trivialization of f ∗F a trivialization of F on T′.

We will recall some consequences of Nisnevich descent. Let in : A1
U ↪→ P1

U be the
standard inclusion. For each object (W,π, s) in Neib(A1

U,Y) there is an elementary dis-
tinguished square (see [Voe, Definition 2.1])

(1)

W − s(Y) −−−→ W
⏐⏐�

⏐⏐�in◦π

P1
U − Y −−−→ P1

U.

It is used here that Y is closed in P1
U.

The elementary distinguished square (1) can be used to construct principal G-
bundles over P1

U via Nisnevich descent. In particular, one can glue a principal bundle
over P1

U − Y with a trivial principal bundle over W via an isomorphism on W − s(Y).
More precisely, let A(W,π, s) be the category of pairs (E, ϕ), where E is a G-bundle over
P1

U, ϕ is a trivialization of E |W := (in ◦ π)∗E . A morphism between (E, ϕ) and (E ′, ϕ′) is
an isomorphism E → E ′ compatible with trivializations.

Similarly, let B(W,π, s) be the category of pairs (E, ϕ), where E is a G-bundle
over P1

U − Y, ϕ is a trivialization of E |W−s(Y).

Lemma 5.11. — The categories A(W,π, s) and B(W,π, s) are groupoids whose objects

have no non-trivial automorphisms.

Proof. — It is obvious that the categories are groupoids. Consider an object
(E, ϕ) ∈ A(W,π, s). Let α be an automorphism of E such that α|W = IdE |W . We need
to show that α = IdE . This follows immediately from the fact that the Aut(E) is repre-
sented by a scheme affine over P1

U (see the proof of Corollary 1), while P1
U is irreducible.

The statement for B(W,π, s) is proved similarly. �
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Consider the restriction functor � : A(W,π, s) → B(W,π, s). The following
proposition is a version of Nisnevich descent.

Proposition 5.12. — The functor � is an equivalence of categories.

Proof. — Let us prove that � is essentially surjective. Let (E, ϕ) be an object of
B(W,π, s), set E ′ = E |A1

U−Y. By Lemma 5.10 and [CTO, Prop. 2.6(iv)] there is a G-
bundle E ′′ over A1

U, a trivialization ϕ′′ of E ′′ on W, and an isomorphism

E ′′|A1
U−Y → E ′ = E |A1

U−Y

compatible with the trivializations on W − s(Y). We can use this isomorphism to glue E
with E ′′ to make a G-bundle Ẽ over P1

U (gluing in the Zariski topology). The trivialization
ϕ′′ gives rise to a trivialization ϕ̃ of Ẽ on W. Clearly, �(Ẽ, ϕ̃) ∼= (E, ϕ).

It follows immediately from Lemma 5.11 that � is faithful. It remains to show that
� is full. Let (E, ϕ) and (E ′, ϕ′) be objects of A(W,π, s). Let α be a morphism from
�(E, ϕ) to �(E ′, ϕ′). We need to show that α is of the form �(β).

Recall that the presheaf Iso(E,E ′) is represented by a P1
U-scheme (see the proof of

Corollary 1), so, in particular, it is a sheaf in the Nisnevich topology. Thus, since (1) is an
elementary distinguished square, to give a section of Iso(E,E ′) over P1

U is the same as to
give sections over P1

U − Y and over W that coincide over W − s(Y) (see [MV, Section 3,
Prop. 1.3]).

Note that α gives a section of Iso(E,E ′) over P1
U − Y, while ϕ′ ◦ ϕ−1 is a section

over W. By definition of B(W,π, s) these sections coincide on W − s(Y), so we obtain
a section β of Iso(E,E ′) over P1

U. By construction β is a morphism in A(W,π, s) and
�(β) = α. �

The main Cartesian square we will work with is

(2)

Ẏh −−−→ Yh

⏐⏐�
⏐⏐�in◦π h

P1
U − Y −−−→ P1

U.

Proposition 5.13. — (a) Ẏh is the projective limit of W − s(Y) over Neib(A1
U,Y).

(b) Ẏh is an affine scheme.

Proof. — Part (a) follows from the definition of projective limit and the equality
sh(Y) = (π h)−1(Y). Part (b) follows from Lemma 5.10, part (a), and [Gro2, Prop. 8.2.3]. �

Let A be the category of pairs (E,ψ), where E is a G-bundle over P1
U, ψ is a

trivialization of E |Yh := (in ◦ π h)∗E . A morphism between (E,ψ) and (E ′,ψ ′) is an iso-
morphism E → E ′ compatible with trivializations.
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Similarly, let B be the category of pairs (E,ψ), where E is a G-bundle over P1
U −Y,

ψ is a trivialization of E |Ẏh .

Lemma 5.14. — The categories A and B are groupoids whose objects have no non-trivial

automorphisms.

Proof. — It is obvious that the categories are groupoids. Note that for a G-bundle
E we have

(
Aut(E)

)(
Yh

) = lim
(W,π,s)∈Neib(A1

U,Y)

(
Aut(E)

)
(W).

Thus an automorphism of E that is equal to the identity on Yh is equal to the identity on
some W with (W,π, s) ∈ Neib(A1

U,Y). Now Lemma 5.11 shows that such an automor-
phism is equal to the identity. The statement for objects of B is proved similarly in view
of Proposition 5.13(a). �

Consider the restriction functor 
 :A→ B.

Proposition 5.15. — The functor 
 is an equivalence of categories.

Proof. — Let us prove that 
 is essentially surjective; let (E,ψ) ∈ B. Then us-
ing Lemma 5.10 and Proposition 5.13(a), we can find (W,π, s) ∈ Neib(A1

U,Y) and a
trivialization ϕ of E on W − s(Y) such that ϕ|Ẏh = ψ . By proposition 5.12 there is
(Ẽ, ϕ̃) ∈A(W,π, s) such that �(Ẽ, ϕ̃) ∼= (E, ϕ). Then


(Ẽ, ϕ̃|Yh) = (Ẽ |P1
U−Y, ϕ̃|Ẏh) ∼= (E, ϕ|Ẏh) = (E,ψ).

It follows immediately from Lemma 5.14 that 
 is faithful. It remains to show that

 is full. Let (E,ψ) and (E ′,ψ ′) be objects of A. Let α be a morphism from 
(E,ψ) to

(E ′,ψ ′). We need to show that α is of the form 
(β).

We can find (W,π, s) ∈ Neib(A1
U,Y) and trivializations ϕ and ϕ′ of E and E ′ re-

spectively on W such that ϕ|Yh = ψ , ϕ′|Yh = ψ ′. Using Proposition 5.13(a) it is easy to
check that the restriction morphism Iso(E,E ′)(W − s(Y)) → Iso(E,E ′)(Ẏh) is injective.
Thus α is a morphism in B(W,π, s) from �(E, ϕ) to �(E ′, ϕ′). By Proposition 5.12 there
is a morphism β from (E, ϕ) to (E ′, ϕ′) such that �(β) = α. Then β is also a morphism
in A from (E,ψ) to (E ′,ψ ′) and 
(β) = α. �

Construction 5.16. — By Proposition 5.15 we can choose a functor quasi-inverse to 
 . Fix

such a functor �. Let � be the forgetful functor from A to the category of G-bundles over P1
U. For

(E,ψ) ∈ B set
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Gl(E,ψ) = �
(
�(E,ψ)

)
.

By construction Gl(E,ψ) comes with a prescribed trivialization over Yh.

Conversely, if E is a principal G-bundle over P1
U such that its restriction to Yh is trivial, then E

can be represented as Gl(E ′,ψ), where E ′ = E |P1
U−Y, ψ is a trivialization of E ′ on Ẏh.

Let u be as in Section 4, Yu := Y ×U u. Let (Yh
u,π

h
u, sh

u) be the Henselization
of (A1

u,Yu). Using Lemma 5.8, we get an identification Yh
u = Yh ×U u. Thus we have a

closed embedding Yh
u → Yh. Set Ẏh

u = Yh
u − su(Yu). We get a closed embedding Ẏh

u → Ẏh.
Thus the pull-back of the Cartesian square (2) by means of the closed embedding u ↪→ U
has the form

Ẏh
u −−−→ Yh

u⏐⏐�
⏐⏐�inu◦π h

u

P1
u − Yu −−−→ P1

u,

where inu : A1
u → P1

u is the standard embedding. Similarly to the above, let Au be the
category of pairs (Eu,ψu), where Eu is a Gu-bundle over P1

u, ψu is a trivialization of E |Yh
u
.

A morphism between (Eu,ψu) and (E ′
u,ψ

′
u) is an isomorphism Eu → E ′

u compatible
with trivializations. Let Bu be the category of pairs (Eu,ψu), where Eu is a Gu-bundle
over P1

u − Yu, ψu is a trivialization of Eu|Ẏh
u
. We have an obvious restriction functor


u : Au → Bu and, similarly to Proposition 5.15, we show that 
u is an equivalence of
categories.

Next, we have obvious restriction functors RA : A → Au and RB : B → Bu and
the diagram

(3)

A RA−−−→ Au




⏐⏐�
⏐⏐�
u

B RB−−−→ Bu

commutes in the sense that the functors 
u ◦ RA and RB ◦ 
 are isomorphic.
Let �u be a functor quasi-inverse to 
u and �u be the forgetful functor from Au

to the category of Gu-bundles over P1
u. Let Eu be a principal Gu-bundle over P1

u − Yu

and ψu be a trivialization of Gu on Ẏh
u. Set Glu(Eu,ψu) = �u(�u(Eu,ψu)).

Lemma 5.17. — Let (E,ψ) ∈ B, and let Gl(E,ψ) be the G-bundle obtained by Construc-

tion 5.16. Then

Glu(E |P1
u−Yu,ψ |Ẏh

u
) and Gl(E,ψ)|P1

u

are isomorphic as Gu-bundles over P1
u.
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Proof. — By definition of Gl we have

�(E,ψ) = (
Gl(E,ψ), σ

)
,

where σ is the canonical trivialization of Gl(E,ψ) on Yh. Similarly,

�u(E |P1
u−Yu,ψ |Ẏh

u
) = (

Glu(E |P1
u−Yu,ψ |Ẏh

u
), σu

)
,

where σu is the canonical trivialization of Glu(E |P1
u−Yu,ψ |Ẏh

u
) on Yh

u. Thus (since 
u is an
equivalence of categories) it suffices to check that


u

(
RA

(
�(E,ψ)

)) ∼= 
u

(
�u(E |P1

u−Yu,ψ |Ẏh
u
)
)
.

In fact, both sides are isomorphic to (E |P1
u−Yu,ψ |Ẏh

u
) because diagram (3) is commuta-

tive. �

Lemma 5.18. — For any (Eu,ψu) ∈ Bu and any βu ∈ Gu(Yh
u) the Gu-bundles

Glu(Eu,ψu) and Glu(Eu,ψu ◦ βu|Ẏh
u
)

are isomorphic (here βu|Ẏh
u

is regarded as an automorphism of the Gu-bundle Gu ×u Ẏh
u given by the

right translation action).

Proof. — Denote by σu and τu the canonical trivializations on Yh
u of Glu(Eu,ψu)

and Glu(Eu,ψu ◦ βu|Ẏh
u
) respectively. It is straightforward to check that (Eu,ψu) is iso-

morphic in Bu to both 
u(Glu(Eu,ψu), σu) and 
u(Glu(Eu,ψu ◦ βu|Ẏh
u
), τu ◦ β−1

u ).
Since 
u is an equivalence of categories, we conclude that (Glu(Eu,ψu), σu) and

(Glu(Eu,ψu ◦ βu|Ẏh
u
), τu ◦ β−1

u ) are isomorphic in Au. Applying the functor �u, we see
that the Gu-bundles Glu(Eu,ψu) and Glu(Eu,ψu ◦ βu|Ẏh

u
) are isomorphic. �

5.5. Proof of Theorem 3: presentation of G in the form Gl(G ′, ϕ). — Let U, G, Z, and G
be as in Theorem 3. We may assume that Z ⊂ A1

U.

Proposition 5.19. — The G-bundle G over P1
U is of the form Gl(G ′, ϕ) for the G-bundle

G ′ := G|P1
U−Y and a trivialization ϕ of G ′ over Ẏh.

Proof. — In view of Construction 5.16, it is enough to prove that the restriction
of the principal G-bundle G to Yh is trivial. Let us choose a closed subscheme Z′ ⊂ A1

U
such that Z′ contains Z, Z′ ∩ Y = ∅, and A1

U − Z′ is affine. Then A1
U − Z′ is an affine

neighborhood of Y. Thus, the Henselization of the pair (A1
U − Z′,Y) coincides with the

Henselization of the pair (A1
U,Y). Since G is trivial over A1

U − Z′, its pull-back to Yh is
trivial too. The proposition is proved. �

Our aim is to modify the trivialization ϕ via an element

α ∈ G
(
Ẏh

)

so that the G-bundle Gl(G ′, ϕ ◦ α) becomes trivial over P1
U.
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5.6. Principal bundles over open subsets of projective lines. — We will recall some results
from [Gil1]. In this section k denotes any field, V denotes an open subscheme of P1

k , G is
a connected reductive group over k.

Lemma 5.20. — (a) A G-bundle over V is locally trivial in the Zariski topology on V if it is

trivial at the generic point of V;

(b) Let T be a maximal split torus of G, let T̂ be its lattice of co-characters, and let Pic(V)

denotes the group of isomorphism classes of line bundles over V. Then there is a natural surjection

T̂ ⊗Z Pic(V) → H1
Zar(V,G).

(Here H1
Zar stands for the set of isomorphism classes of Zariski locally trivial G-bundles.)

Proof. — It is a reformulation of [Gil1, Corollary 3.10(a)], see also [Gil2]. �

Note that part (a) of the lemma is a particular case of the Grothendieck–Serre conjecture.
Note also, that the map in part (b) is given as follows: given a co-character of T, we get
a homomorphism Gm,k → G. Then every line bundle over V yields a principal G-bundle
via pushforward.

5.7. Proof of Theorem 3: proof of property (i) from the outline. — Now we are able to
prove property (i) from the outline of the proof. In fact, we will prove the following

Lemma 5.21. — Let Gl(G ′, ϕ) be the presentation of the G-bundle G over P1
U given

in Proposition 5.19. Set ϕu := ϕ|Ẏh
u
. Then there is γu ∈ Gu(Ẏh

u) such that the Gu-bundle

Glu(G ′|P1
u−Yu, ϕu ◦ γu) is trivial.

Proof. — We show first that G|P1
u−Yu is trivial. Recall that u′ ⊂ u is the subscheme

of all closed points ui such that the group Gui
is isotropic, and u′′ = u − u′. We can write

P1
u =

(∐

u∈u′
P1

u

)∐(∐

u∈u′′
P1

u

)
.

For u ∈ u set Yu := Y ×U u, Gu := G ×U u, and Gu := G ×U u.
For u ∈ u′′ the algebraic k(u)-group Gu is anisotropic. Since Gu is trivial over an

open subset of P1
u , Lemma 5.20(a) shows that Gu is locally trivial in the Zariski topology.

Now Lemma 5.20(b) shows that Gu is trivial. Thus G|P1
u−Yu

is trivial.
Take u ∈ u′. By our assumption on Y, there is a k(u)-rational point pu ∈ Yu. Set

A1
u = P1

u − pu. Then we can write Yu = pu

∐
Tu and P1

u − Yu
∼= A1

u − Tu. The Gu-bundle
Gu is trivial over A1

u − Z. Thus, again by Lemma 5.20, it is trivial over A1
u . Whence it is

trivial over P1
u − Yu.

We see that G ′|P1
u−Yu = G|P1

u−Yu is trivial. Choosing a trivialization, we may identify
ϕu with an element of Gu(Ẏh

u). Set γu = ϕ−1
u . By the very choice of γu the Gu-bundle

Glu(G ′|P1
u−Yu, ϕu ◦ γu) is trivial. �
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5.8. Proof of Theorem 3: reduction to property (ii) from the outline. — The aim of this
section is to deduce Theorem 3 from the following

Proposition 5.22. — Each element γu ∈ Gu(Ẏh
u) can be written in the form

α|Ẏh
u
· βu|Ẏh

u

for certain elements α ∈ G(Ẏh) and βu ∈ Gu(Yh
u).

Deduction of Theorem 3 from Proposition 5.22. — Let Gl(G ′, ϕ) be the presenta-
tion of the G-bundle G from Proposition 5.19. Let γu ∈ Gu(Ẏh

u) be the element from
Lemma 5.21. Let α ∈ G(Ẏh) and βu ∈ Gu(Yh

u) be the elements from Proposition 5.22.
Set

Gnew = Gl
(
G ′, ϕ ◦ α

)
.

Claim. The G-bundle Gnew is trivial over P1
U.

Indeed, by Lemmas 5.17 and 5.18 one has a chain of isomorphisms of Gu-bundles

Gnew|P1
u
∼= Glu

(
G ′|P1

u−Yu, ϕu ◦ α|Ẏh
u

)

∼= Glu
(
G ′|P1

u−Yu, ϕu ◦ α|Ẏh
u
◦ βu|Ẏh

u

) = Glu
(
G ′|P1

u−Yu, ϕu ◦ γu

);
the bundle Glu(G ′|P1

u−Yu, ϕu ◦ γu) is trivial by the choice of γu. The G-bundles G|P1
U−Y

and Gnew|P1
U−Y coincide by the very construction of Gnew. By Proposition 5.1 applied to

T = Z ∪ Y the G-bundle Gnew is trivial. Whence the claim.
The claim above implies that the G-bundle G|P1

U−Y is trivial. Theorem 3 is
proved. �

5.9. End of proof of Theorem 3: proof of property (ii) from the outline. — In the remaining part

of Section 5 we will prove Proposition 5.22. This will complete the proof of Theorem 3.
By assumption, the group scheme GY = G ×U Y is isotropic. Thus we may choose

a parabolic subgroup scheme P+ in GY such that the restriction of P+ to each connected
component of Y is a proper subgroup scheme in the restriction of GY to this component
of Y.

Since Y is an affine scheme, by [DG, Exp. XXVI, Cor. 2.3, Thm. 4.3.2(a)] there is
an opposite to P+ parabolic subgroup scheme P− in GY. Let U+ be the unipotent radical
of P+, and let U− be the unipotent radical of P−.

Definition 5.23. — If T is a Y-scheme, we write E(T) for the subgroup of GY(T) = G(T)

generated by the unipotent subgroups U+(T) and U−(T). Thus E is a functor from the category of

Y-schemes to the category of groups.
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Lemma 5.24. — The functor E has the property that for every closed subscheme S in an affine

Y-scheme T the induced map E(T) → E(S) is surjective.

Proof. — The restriction maps U±(T) → U±(S) are surjective, since U± are iso-
morphic to vector bundles as Y-schemes (see [DG, Exp. XXVI, Cor. 2.5]). �

Recall that (Yh,π h, sh) is the Henselization of the pair (A1
U,Y). Recall that in :

A1
U → P1

U is the standard embedding. Denote the projection A1
U → U by pr and the

projection A1
Y → Y by prY.

Lemma 5.25. — There is a morphism r : Yh → Y making the following diagram commutative

(4)

Yh r−−−→ Y

in◦π h

⏐⏐�
⏐⏐�pr|Y

P1
U

pr−−−→ U

and such that r ◦ sh = IdY.

Proof. — As before, we may assume that Y ⊂ A1
U. Note that the morphism

π := Id×(pr|Y) : A1
Y → A1

U

is étale. Let s : Y → A1
U ×U Y = A1

Y be the morphism induced by the embedding Y → A1
U

and IdY. Then (A1
Y,π, s) ∈ Ñeib(A1

U,Y). Thus there is a canonical morphism can : Yh →
A1

Y such that (Id×(pr|Y)) ◦ can = π h. Set

r := prY ◦ can : Yh → Y.

With this r diagram (4) commutes, and r ◦ sh = IdY. �

We view Yh as a Y-scheme via r. Thus various subschemes of Yh also become
Y-schemes. In particular, Ẏh and Ẏh

u are Y-schemes, and we can consider

E
(
Ẏh

) ⊂ G
(
Ẏh

)
and E

(
Ẏh

u

) ⊂ G
(
Ẏh

u

) = Gu

(
Ẏh

u

)
.

Lemma 5.26.

Gu

(
Ẏh

u

) = E
(
Ẏh

u

)
Gu

(
Yh

u

)
.

Proof. — Firstly, one has Yu = ∐
u∈u

∐
y∈Yu

y. (Note that Yu is a finite scheme.) Thus
by Lemma 5.9, we have

Yh
u =

∐

u∈u

∐

y∈Yu

yh, Ẏh
u =

∐

u∈u

∐

y∈Yu

ẏh,
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where (yh,π h
y , sh

y) is the Henselization of the pair (A1
u, y), ẏh := yh − sh

y(y). We see that yh

and ẏh are subschemes of Yh, so we can view them as Y-schemes, and Gyh := GY ×Y yh is
isotropic. Also, E(ẏh) makes sense as a subgroup of G(ẏh) = Gu(ẏ

h) = Gyh(ẏh).
There are equalities of the form

Gu

(
Ẏh

u

) =
∏

u∈u

∏

y∈Yu

Gu

(
ẏh

) =
∏

u∈u

∏

y∈Yu

Gyh

(
ẏh

)
,

E
(
Ẏh

u

) =
∏

u∈u

∏

y∈Yu

E
(
ẏh

)
,

Gu

(
Yh

u

) =
∏

u∈u

∏

y∈Yu

Gu

(
yh

) =
∏

u∈u

∏

y∈Yu

Gyh

(
yh

)
.

Thus, to prove the lemma it suffices for each u ∈ u and each y ∈ Yu to check the equality

Gyh

(
ẏh

) = E
(
ẏh

)
Gyh

(
yh

)
.

Note that yh = SpecO, where O = k(u)[t]h
my

is a Henselian discrete valuation ring, and
my ⊂ k(u)[t] is the maximal ideal defining the point y ∈ A1

u . (Without loss of generality we
can assume that y is not the infinite point of P1

u .) Further, ẏh = Spec L, where L is the frac-
tion field of O. Also, Gyh is isotropic. Thus, the equality follows from [Gil3, Lemma 4.5(1)]
in view of our definition of E and [Gil3, Fait 4.3(2)]. �

By Lemma 5.24 and Proposition 5.13(b) the restriction map E(Ẏh) → E(Ẏh
u) is

surjective. Since E(Ẏh) ⊂ G(Ẏh), the proposition follows. This completes the proof of Theo-

rem 3.

6. An application

The following result is a straightforward consequence of Theorem 1 and an exact
sequence for étale cohomology. Recall that by our definition a reductive group scheme
has geometrically connected fibres.

Theorem 4. — Let R be a regular local ring containing an infinite field and G be a reductive

R-group scheme. Let μ : G → T be a group scheme morphism to an R-torus T such that μ is locally

in the étale topology on Spec R surjective. Assume further that the R-group scheme H := Ker(μ) is

reductive. Let K be the fraction field of R. Then the group homomorphism

T(R)/μ
(
G(R)

) → T(K)/μ
(
G(K)

)

is injective.
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Proof. — We have a commutative diagram whose rows are exact in the sense that
in each row the image of μ coincides with the kernel of ν.

G(R)
μ−−−→ T(R)

ν−−−→ H1
ét(R,H)

⏐⏐�
⏐⏐�

⏐⏐�

G(K)
μ−−−→ T(K)

ν−−−→ H1
ét(K,H).

By Theorem 1 the right vertical arrow has trivial kernel. Now a simple diagram chase
completes the proof. �

This theorem extends all the known results of this form proved in [CTO, PS1, Zai,
OPZ]. Theorem 4 has the following corollary.

Corollary. — Under the hypothesis of Theorem 4 let additionally the K-algebraic group GK be

K-rational as a K-variety and let the ring R be of characteristic 0. Then the norm principle holds for all

finite flat R-domains S ⊃ R. That is, if S ⊃ R is such a domain, and a ∈ T(S) belongs to μ(G(S)),

then the element NS/R(a) ∈ T(R) belongs to μ(G(R)).

Proof. — Let L be the fraction field of S. Let α ∈ G(S) be such that μ(α) = a ∈
T(S). Then μ(αL) = aL ∈ T(L), where αL is the image of α in G(L), aL is the image
of a in T(L). The hypothesis on the algebraic K-group GK implies that there exists an
element β ∈ G(K) such that μ(β) = NL/K(aL) ∈ T(K) (see [Mer]). Note that NL/K(aL) =
(NS/R(a))K ∈ T(K). By Theorem 4 there exists an element γ ∈ G(R) such that μ(γ ) =
NS/R(a) ∈ T(R). Whence the corollary. �
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