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ABSTRACT

We prove asymptotic stability of shear flows close to the planar Couette flow in the 2D inviscid Euler equations
on T × R. That is, given an initial perturbation of the Couette flow small in a suitable regularity class, specifically Gevrey
space of class smaller than 2, the velocity converges strongly in L2 to a shear flow which is also close to the Couette flow.
The vorticity is asymptotically driven to small scales by a linear evolution and weakly converges as t → ±∞. The strong
convergence of the velocity field is sometimes referred to as inviscid damping, due to the relationship with Landau damping
in the Vlasov equations. This convergence was formally derived at the linear level by Kelvin in 1887 and it occurs at an
algebraic rate first computed by Orr in 1907; our work appears to be the first rigorous confirmation of this behavior on
the nonlinear level.
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1. Introduction

We consider the 2D Euler system in the vorticity formulation with a background
shear flow:

(1.1)
{
ωt + y∂xω + U · ∇ω = 0,

U = ∇⊥(�)−1ω, ω(t = 0) = ωin.

Here, (x, y) ∈ T × R, ∇⊥ = (−∂y, ∂x) and (U,ω) are periodic in the x variable with
period normalized to 2π . The physical velocity is (y,0)+ U where U = (Ux,Uy) denotes
the velocity perturbation and the total vorticity is −1 +ω. We denote the streamfunction
by ψ = �−1ω. The velocity itself satisfies the momentum equation

(1.2)
{

Ut + y∂xU + (Uy,0) + U · ∇U = −∇P,

∇ · U = 0,
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where P denotes the pressure. Linearizing the vorticity equation (1.1) yields the linear
evolution

(1.3)
{
ωt + y∂xω = 0,

U = ∇⊥(�)−1ω, ω(t = 0) = ωin.

In this work, we are interested in the long time behavior of (1.1) for small initial pertur-
bations ωin. In particular, we show that all sufficiently small perturbations in a suitable
regularity class undergo ‘inviscid damping’ and satisfy (y,0)+ U(t, x, y) → (y + u∞(y),0)

as t → ∞ for some u∞(y) determined by the evolution.
The field of hydrodynamic stability started in the nineteenth century with

Stokes, Helmholtz, Reynolds, Rayleigh, Kelvin, Orr, Sommerfeld and many others.
Rayleigh [76] studied the linear stability and instability of planar inviscid shear flows
using what is now referred to as the normal mode method. Such a method yields spectral in-

stability or spectral stability depending on whether or not an unstable eigenvalue exists. In
that work, Rayleigh proves the famous inflection point theorem which gives a necessary
condition for spectral instability. At around the same time, Kelvin [47] constructed exact
solutions to the linearized problem around the Couette flow (which are actually solutions
of the nonlinear problem). This was the first attempt to solve the initial value problem of
the linearized problem which was later developed further in [22, 66, 74].

Even to the present day, the methods used and the conclusions of these works are
debated both on physical and mathematical grounds [93]. Experimental realizations of
Couette and similar spectrally stable flows show instability and transition to turbulence
for sufficiently high Reynolds numbers [15, 62, 75, 78, 86]. The paradox that Couette
flow is known to be spectrally stable for all Reynolds numbers in contradiction with insta-
bilities observed in experiments is now often referred to as the ‘Sommerfeld paradox’, or
‘turbulence paradox’. However, experiments are ultimately inconclusive (mathematically)
since many factors are notoriously difficult to control, such as imperfections in the walls
and viscous boundary layers. Moreover, the early mathematical works did not fully treat
3D effects, which are by now known to have a major impact on the behavior [31, 87, 88,
93]. In fact, our work, together with our follow up work with V. Vicol [13], shows that the
‘subcritical transition’ observed in 3D flows does not occur in 2D for sufficiently regular
perturbations.

Of course, from a mathematical point of view, the notion of linear stability was not
completely precise in the early works: was it enough that the linear operator has no grow-
ing mode (spectral stability) or should one consider general initial perturbation and study
the time evolution under the linear equation using, for instance, a Laplace transform in
time (see [18, 22, 66]). These early works also pre-dated the notion of Lyapunov stability
and Sobolev spaces; indeed, the stability of (1.3) depends heavily on the norm chosen.
A more variational approach, which is based on the conserved quantities and uses the
notion of Energy-Casimir, was introduced by Arnold [1], and yields Lyapunov stability
for a class of shear flows (which does not include Couette flow). We also refer to [44, 53]
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for the use of the variational approach in the Vlasov case. Recently there were many
mathematical studies of stability and instability of various flows (see for instance [10, 34,
43, 57]). We also refer to the following textbooks on the topic of hydrodynamic stability
and instability [30, 56, 93].

There were many attempts in the literature to find an explanation to the Som-
merfeld paradox (see [55] and the references therein). The first attempt might be due to
Orr [74] in 1907, whose work plays a central role in ours. We give a more detailed dis-
cussion of the linear behavior in Section 2.1 below, but Orr’s observation can be summa-
rized in modern terminology (and adapted to our infinite-in-y setting) as follows. Given
a disturbance in the vorticity, the linear evolution under (1.3) is simply advected by the
background shear flow: ω(t, x, y) = ωin(x − ty, y). If one changes coordinates to z = x − ty

then the stream-function φ(t, z, y) in these variables solves ∂zzφ + (∂y − t∂z)
2φ = ωin. On

the Fourier side, (z, y) → (k, η) ∈ Z × R,

(1.4) φ̂(t, k, η) = − ω̂in(k, η)

k2 + |η − kt|2 .

From (1.4), Orr made two important observations, together known now as the Orr mecha-

nism. Firstly, if η, k > 0 and η is very large relative to k, then the stream-function amplifies
by a factor η2

k2 at a critical time given by tc = η

k
. These modes correspond to waves tilted

against the shear which are being advected to larger length-scales (lower frequencies).
Orr suggested that this transient growth is a possible explanation for the observed prac-

tical instability or at least as a reason to question the validity of the linear approximation.
Moreover, this shows that the Couette flow is linearly unstable (in the sense of Lyapunov)
in the kinetic energy norm. On the other hand, Orr states in [74, ART. 12] that “the mo-
tion is stable, for the most general disturbance, if sufficiently small”. Orr does not precise
the meaning of sufficiently small but concludes in this case that “the y velocity-component
eventually diminishes indefinitely as t−2, and, the x component of the relative velocity as
t−1”. In fact, on the linear level, it is not about smallness but about regularity. Indeed,
rigorous proof of the stability and decay on the linear level requires the use of a stronger
norm on the initial data than on the evolution, as already noticed in Case [22] and Mar-
cus and Press [66] where this linear stability and decay are proved.

Physically, the decay predicted by the Orr mechanism can be understood as the
transfer of enstrophy to small scales (which yields the decay of the velocity by the
Biot-Savart law) and the transient growth can be understood as the time-reversed phe-
nomenon: the transfer of enstrophy from small scales to large scales and hence the growth
of the velocity (see also [17, 61] for further discussion). The transfer to small scales by mix-
ing is now considered a fundamental mechanism intimately connected with the stability
of coherent structures and the theory of 2D turbulence [38, 48]. However, to our knowl-
edge, our work is the first mathematically rigorous study of this mechanism in the full 2D
Euler equations. We refer to [42, 50, 83, 93] for the most recent developments. Mathe-
matically, one can also explain the transient growth by the non-normality of the linearized
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operator (also an insight first due to Orr). See for example [87], where the implications of
this are studied in terms of the spectra and pseudospectra of the linearized Couette and
Poiseuille flows. Indeed, the fact that for non-normal operators the ε-pseudospectrum can
be very different from the spectrum can be seen as another explanation of the transient
linear growth [77, 88]. See also [81] for further information.

In 1946, Landau [51] predicted rapid decay of the electric field in hot plasmas per-
turbed from homogeneous equilibrium by solving the linearized Vlasov equation with a
Laplace transform. Now referred to as Landau damping, this somewhat controversial pre-
diction of collisionless relaxation in a time-reversible physical model was confirmed by
experiments much later in [64] and is now a well-accepted, ubiquitous phenomenon in
plasma physics [79]. In [90], van Kampen showed that one way to interpret this mecha-
nism was through the transfer of information to small scales in velocity space; a scenario
completely consistent with time-reversibility and conservation of entropy. In this scenario,
the free-streaming of particles creates rapid oscillations of the distribution function which
are averaged away by the non-local Coulomb interactions (see also [21, 28]). The funda-
mental stabilizing mechanism in this picture is the phase-mixing due to particle streaming.
The gap between the linear and nonlinear theory of Landau damping was only bridged
recently by the ground-breaking work of Mouhot and Villani, who showed that the phase-
mixing indeed persists in the nonlinear Vlasov equations for small perturbations [70] (see
also [12, 19, 46]).

The algebraic decay of the velocity field for solutions to (1.3) predicted by Orr
can be most readily understood as a consequence of vorticity mixing driven by the shear
flow, and hence can be considered as a hydrodynamic analogue of Landau damping, a
viewpoint furthered by many authors [5, 16, 18, 80]. Hence the origin of the term inviscid

damping. The first, and most fundamental, difference between (1.3) and the linearized
Vlasov equations is the fact that the velocity field induced by mean-zero solutions to (1.3)
in general does not converge back to the Couette flow, but in fact converges to a different
nearby shear flow, whereas the electric field in the linearized Vlasov equations converges
to zero. This ‘quasi-linearity’ will be a major difficulty in studying inviscid damping on the
nonlinear level. Another key difference is that unlike in the Vlasov equations, the decay
of the velocity field in (1.3) cannot generally be better than the algebraic rate predicted
by Orr, which is not even integrable for the x component of the velocity; to contrast, in
the Vlasov equations the decay is exponential for analytic perturbations.

It is well-known that the nonlinearity can change the picture dramatically. A clear
example of this are the results of Lin and Zeng [58] who prove that there exists non-
trivial periodic solutions to the vorticity equation (1.1) which are arbitrarily close to the
Couette flow in Hs for s < 3/2. They have also proved the corresponding, and related,
result for the Vlasov equations [59]. In our setting, the primary interest is to rule out the
possibility that weakly nonlinear effects create a self-sustaining process and push the solu-
tion out of the linear regime. The idea that the interaction between nonlinear effects and
non-normal transient growth can lead to instabilities is classical in fluid mechanics (see
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e.g. [87]). The basic mechanism suggested in [87] is that nonlinear effects can repeat-
edly excite growing modes and precipitate a sustained cascade or so-called ‘nonlinear
bootstrap’, studied further in the fluid mechanics context in, for example, [2, 91, 92].
Actually, this effect is very similar to what is at work behind plasma echos in the Vlasov
equations, first captured experimentally in [65]. This phenomenon is referred to as an
‘echo’ because the measurable result of nonlinear effects can occur long after the event.
Very similar echos have been studied and observed in 2D Euler, both numerically [91, 92]
and experimentally [94, 95] (interestingly, non-neutral plasmas in certain settings make
excellent realizations of 2D Euler).

The plasma echos play a pivotal role in the work of Mouhot and Villani on Landau
damping [70]. Although our approach to this challenge is quite different, one of the
main difficulties we face is to precisely understand the weakly nonlinear effects at work;
sometimes called nonlinear transient growth [92]. We will need a more precise alternative to
the moment estimates of [70] which is tailored to the specific structure of 2D Euler; what
we call the “toy model” (see Section 9 for a detailed discussion about the relationship of
our work to [70]). The toy model, formally derived in Section 3.1.1, provides mode-by-
mode upper bounds on the ‘worst possible’ growth of high frequencies that the weakly
nonlinear effects can produce. The model is not just a heuristic and in fact plays a key
role in our work: it is used in the construction of a norm specially designed to match
the evolution of (1.1); this norm is the subject of Section 3. We remark that our model
has not appeared in the literature before to our knowledge, however related models have
been studied in [91, 92].

The mixing phenomenon behind the inviscid damping also appears in many other
fluid models, for example, more general shear profiles [6, 16], stratified shear flows [20,
63] and 2D Euler with the β-plane approximation to the Coriolis force [17, 89]. A par-
ticularly fundamental setting is the ‘axisymmetrization’ of vortices in 2D Euler which
has important implications for the meta-stability of coherent vortex structures in atmo-
sphere and ocean dynamics (see e.g. [11, 38, 80, 94, 95] for a small piece of the extensive
literature). Actually, this stability problem was mentioned by Rayleigh [76] and was con-
sidered by Orr as well [74]. Interestingly, it is also relevant to the stability of charged
particle beams in cyclotrons [23].

In general, phase-mixing, or ‘continuum damping’, can be directly associated with
the continuous spectrum of the linearized operator and is a phenomenon shared by a
number of infinite-dimensional Hamiltonian systems, for example the damping of MHD
waves [85], the Caldeira-Legget model from quantum mechanics [45] and synchroniza-
tion models in biology [84]. See the series of works [5, 6, 8, 68, 69] which draws a con-
nection between the van Kampen generalized eigenfunctions and the normal form trans-
form to write the linearized 2D Euler and Vlasov-Poisson equations as a continuum of
decoupled harmonic oscillators. See also [7] and the references therein for a recent sur-
vey which contains other examples and discusses some connections between these various
models.
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Phase mixing also shares certain similarities with scattering in the theory of dis-
persive wave equations (see for instance [36, 52, 60]) as already pointed out in [19, 28].
In both cases the long time behavior is governed by a linear operator, or a modified
version of it due to long range interactions [39, 71] (something like this occurs in our
Theorem 1). Unlike dissipative equations, the final linear evolution is usually chosen by
the entire nonlinear dynamics and cannot be completely characterized by the relevant
conservation laws. Also in both cases, the phenomena can be related to the continuous
spectrum in the linear problem; for example, the RAGE theorem applies equally well to
transport equations as to dispersive equations [27]. However, there are also clear differ-
ences since in dispersive wave equations, the dispersion uses the fact that different wave
packets travel with different group velocities to yield decay of the L∞ norm and hence
nonlinear terms often become weaker. Normally, this decay costs spatial localization rather
than regularity. In the inviscid damping (and Landau damping), the decay is due to the
combination of the mixing which sends the information into high frequencies and the
application of the inverse Laplacian (or any operator of negative order), which averages
out the small scales. That is, dispersion transfers information to infinity in space whereas
mixing transfers information to infinity in frequency.

1.1. Statement and discussion

In this section we state our nonlinear stability result and a few immediate corollar-
ies. The key aspects of the proof are discussed after the statement.

The data will be chosen in a Gevrey space of class 1/s for s > 1/2 [37]; the origin
of this restriction is (mathematically) natural and arises from the weakly nonlinear effects,
discussed further in Section 3. We note that the analogous space for the Vlasov equations
with Coulomb/Newton interaction is Gevrey-3 (e.g. s = 1/3) [12, 70]. It is worth noting
that unlike, for example, [35] where the Gevrey regularity is required due to the linear
growth of high frequencies, here (and [70]) the Gevrey regularity is required because of
a potential nonlinear frequency cascade.

Our main result is

Theorem 1. — For all 1/2 < s ≤ 1, λ0 > λ′ > 0 there exists an ε0 = ε0(λ0, λ
′, s) ≤ 1/2

such that for all ε ≤ ε0 if ωin satisfies
∫

ωindxdy = 0,
∫ |yωin(x, y)|dxdy < ε and

‖ωin‖2
Gλ0 =

∑
k

∫ ∣∣ω̂in(k, η)
∣∣2e2λ0|k,η|s dη ≤ ε2,

then there exists f∞ with
∫

f∞dxdy = 0 and ‖f∞‖Gλ′ � ε such that

(1.5)
∥∥ω(t, x + ty + 
(t, y), y

)− f∞(x, y)
∥∥
Gλ′ � ε2

〈t〉 ,
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where 
(t, y) is given explicitly by

(1.6) 
(t, y) = 1
2π

∫ t

0

∫
T

Ux(τ, x, y)dxdτ = u∞(y)t + O
(
ε2
)
,

with u∞ = ∂y∂
−1
yy

1
2π

∫
T f∞(x, y)dx. Moreover, the velocity field U satisfies∥∥∥∥ 1

2π

∫
Ux(t, x, ·)dx − u∞

∥∥∥∥
Gλ′

� ε2

〈t〉2
,(1.7a)

∥∥∥∥Ux(t) − 1
2π

∫
Ux(t, x, ·)dx

∥∥∥∥
L2

� ε

〈t〉 ,(1.7b)

∥∥Uy(t)
∥∥

L2 � ε

〈t〉2
.(1.7c)

Remark 1. — Of course, by time-reversibility, Theorem 1 is also true t → −∞ for
some f−∞ and u−∞ (which will generally not be equal to their +∞ counterparts). Also,
due to the Hamiltonian structure of (1.1) (see e.g. [1, 68]), one could only hope to prove
asymptotic stability in a norm weaker than the norm in which the initial data is given.
This is an important theme underlying our work, and the works of [19, 46, 70], which is
that decay costs regularity.

Remark 2. — From the proof of Theorem 1, it is clear that ‖ωin − f∞‖Gλ′ � ε2, as
the effect of the nonlinear evolution is one order weaker than that of the linear evolution.

Remark 3. — Notice the surprisingly rapid convergence in (1.7a) (it is of course
matched by a similar rapid convergence of the x-averaged vorticity). This arises from a
subtle cancellation between the oscillations of ω and Uy upon taking x averages; indeed
it was previously believed that the convergence should be O(t−1) and that (1.6) involved
a logarithmic correction. The origin of the rapid convergence rate can be best under-
stood from studying the linearized problem (1.3), a computation that we carry out in
Section A.4.

Remark 4. — The proof of Theorem 1 implies that if ωin is compactly supported
then ω(t) remains supported in a strip (x, y) ∈ T × [−R,R] for some R > 0 for all time.

Remark 5. — The primary difficulty in treating more general shear flows is on the
weakly nonlinear level (in contrast to the Vlasov case), which would most clearly manifest
in Section 4. More information on this difficulty, along with other related open problems,
is discussed in Section 9.

Remark 6. — Both Orr and Kelvin (and many others) expressed doubt that the in-
viscid problem was stable unless the set of permissible data was of a certain type, suggest-
ing that for general data the stability restriction would diminish with the inverse Reynolds
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number. To reconcile this viewpoint with Theorem 1, with V. Vicol, we have recently
proved in [13] that for high (but finite) Reynolds number flows, an analogous result to
Theorem 1 holds with initial data ωR

in + ων
in where ωR

in has Gevrey- 1
s

regularity uniformly
in the Reynolds number and ων

in has L2 regularity with norm small with respect to the in-
verse Reynolds number. In addition to showing that the qualitative behavior predicted in
Theorem 1 can be obtained via an inviscid limit, [13] also shows that the mixing greatly
enhances the effect of the dissipation in modes which depend on x.

Remark 7. — The spatial localization
∫ |yωin(x, y)|dxdy < ε is only used to assert

that the velocity Ux is in L2 and to ensure the coordinate transformations used in the
proof are not too drastic. This assumption can be relaxed to

∫ |y|α|ωin(x, y)|dxdy < ε for
any α > 1/2. It might be possible to treat more general cases with Ux /∈ L2 with some
technical enhancements, as Ux ∈ L2 does not play an important role in the proof.

The proof of Theorem 1 (actually Remark 2) provides the following corollaries.

Corollary 1. — There exists an open set of smooth solutions to (1.1) for which {ω(t)}t∈R is

not pre-compact in L2 as t → ±∞. In particular, ω(t) ⇀ ω∞ = 1
2π

∫
T f∞(x, y)dx and in general

‖ω∞‖2 < ‖ω(t)‖2.

This shows the existence of solutions for which enstrophy is lost to high frequencies
in the limit t → ∞, which to our knowledge was not previously known for 2D Euler in
any setting. See [42, 50, 83] for further discussions on the physical interest of this fact
and the potential relationship with 2D turbulence. A related corollary is the following
which shows the linear growth of Sobolev norms as a direct consequence of the mixing.
Compare with the construction of Denisov [29] which yields super-linear growth of the
gradient.

Corollary 2. — There exists an open set of smooth solutions to (1.1) for which ‖〈∇〉Nω(t)‖2 ≈
〈t〉N for all N ∈ [0,∞).

Let us now outline the main new steps in the proof of Theorem 1. First, we provide
a (well chosen) change of variable that adapts to the solution as it evolves and yields a new
‘relative’ velocity which is time-integrable while keeping the Orr critical times as in (1.4).
This change of variables allows us to work on a quantity f (t) which has a strong limit as t

goes to infinity. This is related to the notion of “profile” used in dispersive wave equations
(see [36] for instance) as well as the notion of “gliding regularity” in [70]. However, here
it is important that the coordinate transformation depends on the solution, a source of
large technical difficulty and an expression of the ‘quasi-linearity’ alluded to above.

A second new idea is the use of a special norm that loses regularity in a very
precise way adapted to the Orr critical times and the associated nonlinear effect. The
construction of this norm is based on the so-called “toy model” which mimics the worse
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possible growth of high frequencies (derived in Section 3.1.1). This special norm allows us
to control the nonlinear growth due to the resonances at the critical times. However, this
comes with a big danger: energy estimates and cancellations tend to dislike ‘unbalanced’
norms, namely norms that assign different regularities to different frequencies (see for
instance [67] for a similar problem). In particular, by design, our norm is not an algebra.
This is one of the main technical problems that we have to overcome, and here the decay
of the velocity is crucial.

In the course of the proof, we need to gain regularity from inverting the Laplacian
to get the streamfunction from the vorticity; indeed the ellipticity is the origin of the decay.
However, in the new variables the Laplacian is transformed to a weakly elliptic operator
with coefficients that depend on the solution. This additional nonlinearity presents huge
difficulties due to the limited regularity of the coefficients (relative to what is desired).
This has similarities with elliptic estimates in domains with limited regularity used for
water waves (see for instance [82, Appendix A]). Here, the interplay between regularity
and decay will be crucial to ensure that the final estimate holds. As in (1.4), the loss of
ellipticity is an expression of the Orr critical times. It will be important for our work that
the norm derived from the toy model precisely ‘matches’ the loss of ellipticity.

Related to the issue of inverting the Laplacian in the new variables is the final
technical ingredient in our proof, which is the need to obtain a variety of precise controls
on the evolving coordinate system (see Proposition 2.5 below). This will require us to
quantify the convergence of the background shear flow in several ways. In particular, we
will need to carefully estimate how the modes that depend on x force those that do not
and in fact, this forcing loses a derivative (see the last term in (8.9)). However, the estimates
turn out to be possible precisely under the assumption of Gevrey class with s ≥ 1/2 (see
the discussion after Proposition 2.5). Second to the toy model, here seems to be next most
fundamental use of the regularity s ≥ 1/2.

1.2. Notation and conventions

See Section A.1 for the Fourier analysis conventions we are taking. A convention
we generally use is to denote the discrete x (or z) frequencies as subscripts. By convention
we always use Greek letters such as η and ξ to denote frequencies in the y or v direction
and lowercase Latin characters commonly used as indices such as k and l to denote
frequencies in the x or z direction (which are discrete). Another convention we use is to
denote K,M,N as dyadic integers K,M,N ∈ D where

D =
{

1
2
,1,2, . . . ,2j, . . .

}
.

When a sum is written with indices K,M,M′,N or N′ it will always be over a subset of D.
This will be useful when defining Littlewood-Paley projections and paraproduct decom-
positions, see Section A.1. Given a function m ∈ L∞, we define the Fourier multiplier
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m(∇)f by
(
̂m(∇)f

)
k
(η) = m

(
(ik, iη)

)
f̂k(η).

We use the notation f � g when there exists a constant C > 0 independent of the
parameters of interest such that f ≤ Cg (we analogously f � g define). Similarly, we use
the notation f ≈ g when there exists C > 0 such that C−1g ≤ f ≤ Cg. We sometimes use
the notation f �α g if we want to emphasize that the implicit constant depends on some
parameter α. We will denote the l1 vector norm |k, η| = |k| + |η|, which by convention is
the norm taken in our work. Similarly, given a scalar or vector in Rn we denote

〈v〉 = (1 + |v|2)1/2
.

We use a similar notation to denote the x (or z) average of a function: 〈f 〉 = 1
2π

∫
f (x, y)dx

= f0. We also frequently use the notation P�=0f = f − f0. We denote the standard Lp norms
by ‖f ‖Lp . We make common use of the Gevrey- 1

s
norm with Sobolev correction defined

by

‖f ‖2
Gλ,σ ;s =

∑
k

∫ ∣∣f̂k(η)
∣∣2e2λ|k,η|s〈k, η〉2σ dη.

Since most of the paper we are taking s as a fixed constant, it is normally omitted. We
refer to this norm as the Gλ,σ ;s norm and occasionally refer to the space of functions

Gλ,σ ;s = {f ∈ L2 : ‖f ‖Gλ,σ < ∞}.
See Section A.2 for a discussion of the basic properties of this norm and some related
useful inequalities.

For η ≥ 0, we define E(η) ∈ Z to be the integer part. We define for η ∈ R and
1 ≤ |k| ≤ E(

√|η|) with ηk ≥ 0, tk,η = | η

k
| − |η|

2|k|(|k|+1)
= |η|

|k|+1 + |η|
2|k|(|k|+1)

and t0,η = 2|η| and
the critical intervals

Ik,η =
{[t|k|,η, t|k|−1,η] if ηk ≥ 0 and 1 ≤ |k| ≤ E(

√|η|),
∅ otherwise.

For minor technical reasons, we define a slightly restricted subset as the resonant intervals

Ik,η =
{

Ik,η 2
√|η| ≤ tk,η,

∅ otherwise.

Note this is the same as putting a slightly more stringent requirement on k: k � 1
2

√|η|.

2. Proof of Theorem 1

We next give the proof of Theorem 1, stating the primary steps as propositions
which are proved in subsequent sections.
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2.1. Linearized behavior and main challenges

Before beginning the proof of Theorem 1, we discuss the linearized behavior in
more detail and mention some of the main challenges that must be overcome for a non-
linear result. The linearized problem is stated above in (1.3); here we denote the stream-
function

�ψ = ω,

which satisfies U = ∇⊥ψ . As mentioned in Section 1, the solution to the linear problem
and its Fourier transform are given by

(2.1)
ω(t, x, y) = ωin(x − ty, y)

ω̂(t, k, η) = ω̂in(k, η + kt).

From (2.1) we can see the transfer of enstrophy to high frequencies, which for each k

is linear in time. Since �−1 gains two derivatives, this transfer of information to high
frequencies will cause the t−2 decay of P�=0ψ in L2. Though not necessary to fully under-
stand the linear problem, we begin by making the following change of coordinates (used
also by Lord Kelvin [47] and Orr [74]):

z = x − ty(2.2a)

f (t, z, y) = ω(t, z + ty, y) = ω(t, x, y)(2.2b)

φ(t, z, y) = ψ(t, z + ty, y) = ψ(t, x, y).(2.2c)

From (1.3) we have

∂t f = 0(2.3a)

∂zzφ + (∂y − t∂x)
2φ = f ,(2.3b)

which re-derives (1.4)

φ̂(t, k, η) = − f̂ (t, k, η)

k2 + |η − kt|2 = − ω̂in(k, η)

k2 + |η − kt|2 .(2.4)

From (2.4) we derive the fundamental decay-by-mixing estimate: for any σ ∈ [0,∞) and
β ∈ [0,2],

‖P �=0φ‖Hσ � 1
〈t〉β

‖f ‖Hσ+β = 1
〈t〉β

‖ωin‖Hσ+β ,(2.5)

where we are using Hσ to denote the L2 Sobolev norm of order σ . Due to

Ux(t, x, y) = −∂yψ(t, x, y) = −∂y

(
φ(t, x − ty, y)

)
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= ((∂y − t∂x)φ
)
(t, x − ty, y)

Uy(t, x, y) = ∂xψ(t, x, y) = ∂x

(
φ(t, x − ty, y)

)= (∂xφ)(t, x − ty, y),

we get the inviscid damping predicted by Orr in [74] and observed in Theorem 1 in (1.7)

∥∥P �=0Ux
∥∥

L2 � 〈t〉‖∇φ‖L2 � 〈t〉−1‖ωin‖H3(2.6a) ∥∥Uy
∥∥

L2 � ‖∂xφ‖L2 � 〈t〉−2‖ωin‖H3 .(2.6b)

This shows that on the linear level, we have the convergence (y + Ux,Uy) → (y +
〈Ux

in〉(y),0) in L2 as time goes to infinity. Hence, the velocity field converges strongly
back to a shear flow but not back to the Couette flow. As discussed in the introduction,
Orr had a second observation from (2.4), which is that modes with ηk > 0 undergo first
a transient growth in φ before decaying. Physically, enstrophy in these modes is first un-

mixed to larger scales, prompting growth in φ, before subsequently being mixed to smaller
scales and yielding the eventual decay of φ.

A natural first attempt at proving something like Theorem 1 is to again make the
change of variables (2.2) and derive the analogue of (2.3) from (1.1):

∂t f + ∇⊥
z,yφ · ∇z,yf = 0(2.7a)

∂zzφ + (∂y − t∂x)
2φ = f ,(2.7b)

which again implies

φ̂(t, k, η) = − f̂ (t, k, η)

k2 + |η − kt|2 .(2.8)

From (2.8) we see that (2.6) will follow as soon as we can get uniform control on f , the
solution to (2.7), in H3. However, there are several major reasons why this is extremely
difficult. First, the contribution from – 〈∂yφ〉z will not decay – this is the part of the
shear flow that comes from f . Indeed, the coordinate transformation z = x − ty is made
assuming that ω will be mixed by the Couette flow as t → ∞ but this is incorrect: it will
be mixed by a shear flow which is in general O(ε) away from the Couette flow, where ε

is the size of f . This in turn causes a growth of derivatives like O(εt) (per derivative) on
f and no convergence. This suggests that (2.2) is not the right way to study the nonlinear
problem and in Theorem 1, this manifests in the presence of 
 in (1.5). The second major
issue with (2.7a) is a bit more subtle and is connected to the echo phenomenon. Indeed,
imagine trying to get an estimate on f in Hσ :

1
2

d

dt

∫ ∣∣〈∇〉σ f
∣∣2dzdy = −

∫
〈∇〉σ f 〈∇〉σ

(∇⊥φ · ∇f
)
dzdy.
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Even ignoring the contribution from −〈∂yφ〉z, since f does not decay, in order to integrate
the nonlinearity we will need ‖∇⊥P �=0φ‖Hσ to be integrable in time. From (2.5) we see that
without any detailed analysis, this would already require a uniform bound on ‖f ‖Hσ+β

for some β > 2 (since we already lose a derivative from the ∇⊥). Even with analytic
regularity we could only hope to absorb a loss of one derivative by paying regularity
along time, and hence we are quite far from closing an estimate (see e.g. classical Cauchy-
Kovalevskaya-type arguments like [72, 73] and more recent, relevant variants [49, 54]).
One can directly relate this loss of regularity in the energy estimate with the nonlinear
effect of the Orr mechanism, which gives rise to the echo phenomenon observed in 2D
Euler [68, 91, 95] (and plasmas [12, 65, 70]). In Section 3 below, we analyze the effect
of this mechanism in more detail and in particular, show that this could potentially cause
a frequency cascade and lead to the loss of Gevrey-2 regularity on f as t → ∞, which is
the origin of the regularity requirement in Theorem 1. Although Gevrey-2 is an infinite
regularity class, note that this is far less pessimistic than what a naive argument based only
on (2.6) suggests and, in particular, is weaker than analytic regularity in a qualitatively
meaningful way.

Hence, we have two main challenges to overcome. The first is to choose a coor-
dinate system that is properly adapted to the shear flow which is mixing the solution.
Note that this shear flow is changing in time and cannot be determined directly from the
initial data. We carry this out in Section 2.2 below. The next step is to get global-in-time,
uniform regularity estimates on the resulting f , which is carried out in Section 2.3. To do
this we will design a special norm with which to measure the solution that accounts for
the nonlinear Orr mechanism. This norm is constructed and analyzed in Section 3. The
remainder of the paper is devoted to proving the energy estimates set up in Section 2.3.

2.2. Coordinate transform

The original equations in vorticity form are (1.1), and we are trying essentially to
prove that

ω(t, x, y) → f∞
(
x − ty − u∞(y)t, y

)
,

as t → ∞, where u∞(y) is the correction to the shear flow determined by f∞. From the
initial data alone, there is no simple way to determine u∞; it is chosen by the nonlinear
evolution. In order to deal with this lack of information about how the final state evolves
we choose a coordinate system which adapts to the solution and converges to the expected
form as t → ∞. The change of coordinates used is (t, x, y) → (t, z, v), where

z(t, x, y) = x − tv(2.9a)

v(t, y) = y + 1
t

∫ t

0

〈
Ux
〉
(τ, y)dτ,(2.9b)
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where we recall 〈w〉 denotes the average of w in the x variable (or equivalently in the z

variable), namely 〈w〉 = 1
2π

∫
T wdx. The reason for the change y → v is not immediately

clear, however v is named as such since it is an approximation for the background shear
flow. If the velocity field in the integrand were constant in time, then we are simply trans-
forming the y variables so that the shear appears linear. It will turn out that this choice
of v ensures that the Biot-Savart law is in a form amenable to Fourier analysis in the
variables (z, v); in particular, even when the shear is time-varying we may still study the
Orr critical times as was explained in (1.4). In this light, the motivation for the shift in z is
clear: as suggested by the discussion in Section 2.1, we are eliminating the contribution
of 〈Ux〉 and following the flow in the horizontal variable to guarantee compactness.

Define f (t, z, v) = ω(t, x, y) and φ(t, z, v) = ψ(t, x, y), hence

∂tω = ∂t f + ∂tz∂zf + ∂tv∂vf , ∂xω = ∂zf , ∂yω = ∂yv(∂vf − t∂zf ),

where

∂tz = −y − 〈Ux
〉
(t, y)

∂tv = 1
t

[〈
Ux
〉
(t, y) − 1

t

∫ t

0

〈
Ux
〉
(s, y)ds

]

∂yv = 1 − 1
t

∫ t

0
〈ω〉(s, y)ds

∂yyv = −1
t

∫ t

0
∂y〈ω〉(s, y)ds.

Expressing [∂tv](t, v) = ∂tv(t, y), v′(t, v) = ∂yv(t, y) and v′′(t, v) = ∂yyv(t, y), we get the
following evolution equation for f ,

∂t f + [∂tv]∂vf + ∂tz∂zf = −y∂zf + v′[∂vφ + ∂zφ∂vz − ∂zφ∂vz]∂zf

− v′∂zφ∂vf .

Using the definition of ∂tz and the Biot-Savart law to transform 〈Ux〉 to −v′∂v〈φ〉 in the
new variables, this becomes

∂t f − (v′∂v

(
φ − 〈φ〉))∂zf + ([∂tv] + v′∂zφ

)
∂vf = 0.

The Biot-Savart law also gets transformed into:

f = ∂zzφ + (v′)2(∂v − t∂z)
2φ + v′′(∂v − t∂z)φ = �tφ.(2.10)

The original 2D Euler system (1.1) is expressed as⎧⎨
⎩

∂t f + u · ∇z,vf = 0,

u = (0, [∂tv]) + v′∇⊥
z,vP �=0φ,

φ = �−1
t [f ].

(2.11)
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It what follows we will write ∇z,v = ∇ and specify when other variables are used. Next
we transform the momentum equation to allow us to express [∂tv] in a form amenable to
estimates. Denoting ũ(t, z, v) = Ux(t, x, y) and p(t, z, v) = P(t, x, y) we have by the same
derivation on f ,

∂t ũ + [∂tv]∂v ũ + ∂zP �=0φ + v′∇⊥P �=0φ · ∇ ũ = −∂zp.

Taking averages in z we isolate the zero mode of the velocity field,

∂t ũ0 + [∂tv]∂v ũ0 + v′〈∇⊥P �=0φ · ∇ ũ
〉= 0.(2.12)

Finally, one can express v′ and [∂tv] as solutions to a system of PDE in the (t, v) variables
coupled to (2.11) (see Section 8.1 below for a detailed derivation):

∂t

(
t
(
v′ − 1

))+ [∂tv]t∂vv
′ = −f0(2.13a)

∂t[∂tv] + 2
t
[∂tv] + [∂tv]∂v[∂tv] = −v′

t

〈∇⊥P �=0φ · ∇ ũ
〉

(2.13b)

v′′(t, v) = v′(t, v)∂vv
′(t, v).(2.13c)

Note that to leading order in ε, one can express v′ − 1 as a time average of −f0. Note also
that we have a simple expression for ∂v ũ0 from the Biot-Savart law:

∂v ũ0(t, v) = 1
v′(t, v)

∂yUx
0(t, y) = − 1

v′(t, v)
ω0(t, y) = − 1

v′(t, v)
f0(t, v).(2.14)

Given a priori estimates on the system (2.11), (2.13), we can recover estimates on
the original system (1.1) by the inverse function theorem as long as v′ − 1 remains suffi-
ciently small (see Section 2.4). Compared to the original system (1.1), the system (2.11),
(2.13) appears much more complicated and nonlinear. Indeed, u is not divergence free
and the dependence of φ on f through �t is significantly more subtle than in the orig-
inal variables. The main advantage of (2.11) is that u formally has an integrable decay,
indeed, we will see that if one is willing to pay four derivatives, the decay rate is formally
O(t−2 log t) (the decay we deduce is not quite as sharp).

2.3. Main energy estimate

In light of the previous section, our goal is to control solutions to (2.11) uniformly
in a suitable norm as t → ∞. The key idea we use for this is the carefully designed time-
dependent norm written as

∥∥A(t,∇)f
∥∥2

2
=
∑

k

∫
η

∣∣Ak(t, η)f̂k(t, η)
∣∣2dη.
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The multiplier A has several components,

Ak(t, η) = eλ(t)|k,η|s〈k, η〉σ Jk(t, η).

The index λ(t) is the bulk Gevrey− 1
s

regularity and will be chosen to satisfy

λ(t) = 3
4
λ0 + 1

4
λ′, t ≤ 1(2.15a)

λ̇(t) = − δλ

〈t〉2q̃

(
1 + λ(t)

)
, t > 1(2.15b)

where δλ ≈ λ0 − λ′ is a small parameter that ensures λ(t) > λ0/2 + λ′/2 and 1/2 < q̃ ≤
s/8 + 7/16 is a parameter chosen by the proof. The reason for (2.15a) is to account for
the behavior of the solution on the time-interval [0,1]; see Lemma 2.1 for this relatively
minor detail. The use of a time-varying index of regularity is classical, for example the
Cauchy-Kovalevskaya local existence theorem of Nirenberg [72, 73]. For more directly
relevant works which use norms of this type, see [24, 25, 33, 49, 54, 70]. Let us remark
here that to study analytic data, s = 1, we would need to add an additional Gevrey- 1

β

correction to A with 1/2 < β < 1 as an intermediate regularity so that we may take
advantage of certain beneficial properties of Gevrey spaces; see for example Lemma A.3.
In this case, the analytic regularity would simply be propagated more or less passively
through the proof. Using the same idea, we may assume without loss of generality that s is
close to 1/2 (say s < 2/3), which simplifies some of the technical details but is not essential.
The Sobolev correction with σ > 12 fixed is included mostly for technical convenience
so we may easily quantify loss of derivatives without disturbing the index of regularity.
We will also use the slightly stronger multiplier AR(t, η) that satisfies AR(t, η) ≥ A0(t, η)

to control the coefficients v′ and v′′; see (3.10) below for the definition.
The main multiplier for dealing with the Orr mechanism and the associated non-

linear growth is

Jk(t, η) = eμ|η|1/2

wk(t, η)
+ eμ|k|1/2

,(2.16)

where wk(t, η) is constructed in Section 3 and describes the expected ‘worst-case’ growth
due to nonlinear interactions at the critical times. What will be important is that J imposes
more regularity on modes which satisfy t ∼ η

k
(the ‘resonant modes’) than those that do

not (the ‘non-resonant modes’). The multiplier J replaces growth in time by controlled loss
of regularity and is reminiscent of the notion of losing regularity estimates used in [3, 26].
One of the main differences is that here we have to be more precise in the sense that the
loss of regularity occurs for different frequencies during different time intervals.

With this special norm, we can define our main energy:

E(t) = 1
2

∥∥A(t)f (t)
∥∥2

2
+ Ev(t),(2.17)
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where, for some constants Kv , KD depending only on s, λ,λ′ fixed by the proof,

Ev(t) = 〈t〉2+2s

∥∥∥∥ A
〈∂v〉s

v′∂v[∂tv](t)
∥∥∥∥

2

2

+ 〈t〉4−KDε
∥∥[∂tv](t)∥∥2

Gλ(t),σ−6(2.18)

+ 1
Kv

∥∥AR
(
v′ − 1

)
(t)
∥∥2

2
.

In a sense, there are two coupled energy estimates: the one on Af and the one on Ev .
The latter quantity is encoding information about the coordinate system, or equivalently,
the evolution of the background shear flow. It turns out v′∂v[∂tv] is a physical quantity
that measures the convergence of the x-averaged vorticity to its time average (see (8.5) in
Section 8.1) and satisfies a useful PDE (see (8.9) in Section 8.2). It will be convenient to
get two separate estimates on [∂tv] as opposed to just one ([∂tv] is essentially measuring
how rapidly the x-averaged velocity is converging to its time average).

By the well-posedness theory for 2D Euler in Gevrey spaces [9, 32, 33, 49, 54] we
may safely ignore the time interval (say) [0,1] by further restricting the size of the initial
data. That is, we have the following lemma; see Section A.3 for a sketch of the proof.

Lemma 2.1. — For all ε > 0, s > 1/2 and λ0 > λ′ > 0, there exists an ε ′ > 0 such

that if ‖ωin‖Gλ0 < ε ′ and
∫ |yωin|dxdy < ε ′, then supt∈[0,1]‖f (t)‖G3λ0/4+λ′/4,σ < ε, E(1) < ε2,

supt∈[0,1]‖1 − v′(t)‖∞ < 6/10.

The goal is next to prove by a continuity argument that this energy E(t) (together
with some related quantities) is uniformly bounded for all time if ε is sufficiently small.
We define the following controls referred to in the sequel as the bootstrap hypotheses for
t ≥ 1,

(B1) E(t) ≤ 4ε2;
(B2) ‖v′ − 1‖∞ ≤ 3

4
(B3) ‘CK’ integral estimates (for ‘Cauchy-Kovalevskaya’):

∫ t

1

[
CKλ(τ ) + CKw(τ) + CKv,2

w (τ) + CKv,2
λ (τ )

+ K−1
v

(
CKv,1

w (τ) + CKv,1
λ (τ )

)

+ K−1
v

2∑
i=1

(
CCKi

w(τ) + CCKi
λ(τ )
)]

dτ ≤ 8ε2.

The CK terms above that appear without the K−1
v prefactor arise from the time deriva-

tives of A(t) and are naturally controlled by the energy estimates we are making. The oth-
ers are related quantities that are controlled separately in Proposition 2.5 below. These
both will be defined below when discussing the energy estimates.



212 JACOB BEDROSSIAN, NADER MASMOUDI

By Lemma 2.1, for the rest of the proof we may focus on times t ≥ 1. Let IE be the
connected set of times t ≥ 1 such that the bootstrap hypotheses (B1–B3) are all satisfied.
We will work on regularized solutions for which we know E(t) takes values continuously
in time, and hence IE is a closed interval [1,T�] with T� > 1. The bootstrap is complete if
we show that IE is also open, which is the purpose of the following proposition, the proof
of which constitutes the majority of this work.

Proposition 2.1 (Bootstrap). — There exists an ε0 ∈ (0,1/2) depending only on λ,λ′, s and

σ such that if ε < ε0, and on [1,T�] the bootstrap hypotheses (B1)–(B3) hold, then for ∀t ∈ [1,T�],
1. E(t) < 2ε2,

2. ‖1 − v′‖∞ < 5
8 ,

3. and the CK controls satisfy:

∫ t

1

[
CKλ(τ ) + CKw(τ) + CKv,2

w (τ) + CKv,2
λ (τ )

+ K−1
v

(
CKv,1

w (τ) + CKv,1
λ (τ )

)

+ K−1
v

2∑
i=1

(
CCKi

w(τ) + CCKi
λ(τ )
)]

dτ ≤ 6ε2,

from which it follows that T� = +∞.

The remainder of the section is devoted to the proof of Proposition 2.1, the primary
step being to show that on [1,T�], we have

E(t) + 1
2

∫ t

1

[
CKλ(τ ) + CKw(τ) + CKv,2

w (τ) + CKv,2
λ (τ )(2.19)

+ K−1
v

(
CKv,1

w (τ) + CKv,1
λ (τ )

)

+ K−1
v

2∑
i=1

(
CCKi

w(τ) + CCKi
λ(τ )
)]

dτ

≤ E(1) + Kε3

for some constant K which is independent of ε and T�. If ε is sufficiently small then (2.19)
implies Proposition 2.1. Indeed, the control ‖1−v′‖ < 5/8 is an immediate consequence
of (B1) by Sobolev embedding for ε sufficiently small.

To prove (2.19), it is natural to compute the time evolution of E(t).

d

dt
E(t) = 1

2
d

dt

∫
|Af |2dx + d

dt
Ev(t).
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The first contribution is of the form

1
2

d

dt

∫
|Af |2dx = −CKλ − CKw −

∫
Af A(u · ∇f )dx,(2.20)

where the CK stands for ‘Cauchy-Kovalevskaya’ since these three terms arise from the
progressive weakening of the norm in time, and are expressed as

CKλ = −λ̇(t)
∥∥|∇|s/2Af

∥∥2

2
(2.21a)

CKw =
∑

k

∫
∂twk(t, η)

wk(t, η)
eλ(t)|k,η|s〈k, η〉σ eμ|η|1/2

wk(t, η)
Ak(t, η)

∣∣f̂k(t, η)
∣∣2dη.(2.21b)

In what follows we define

J̃k(t, η) = eμ|η|1/2

wk(t, η)
,(2.22a)

Ãk(t, η) = eλ(t)|k,η|s〈k, η〉σ J̃k(t, η).(2.22b)

Note that Ã ≤ A and if |k| ≤ |η| then A � Ã.
Strictly speaking, equality (2.20) is not rigorous since it involves a derivative of Af ,

which is not a priori well-defined. To make this calculation rigorous, we have first to
approximate the initial data of (1.1) by (for instance) analytic initial data and use that the
global solutions of (1.1) stay analytic for all time (see [9, 32, 33]). Hence, we can perform
all calculations on these solutions with regularized initial data and then perform a passage
to the limit to infer that (2.19) still holds. Similarly, the bootstrap is performed on these
regularized solutions for which E(t) takes values continuously in time.

To treat the main term in (2.20), begin by integrating by parts, as in the tech-
niques [33, 49, 54]

∫
Af A(u · ∇f )dx = −1

2

∫
∇ · u|Af |2dx +

∫
Af
[
A(u · ∇f ) − u · ∇Af

]
dx.(2.23)

Notice that the relative velocity is not divergence free:

∇ · u = ∂v[∂tv] + ∂vv
′∂zφ.

The first term is controlled by the bootstrap hypothesis (B1). For the second term we use
the ‘lossy’ elliptic estimate, Lemma 4.1, which shows that under the bootstrap hypotheses
we have

∥∥P �=0φ(t)
∥∥
Gλ(t),σ−3 � ε

〈t〉2
.(2.24)
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Therefore, by Sobolev embedding, σ > 5 and the bootstrap hypotheses,∣∣∣∣
∫

∇ · u|Af |2dx

∣∣∣∣≤ ‖∇u‖∞‖Af ‖2
2 � ε

〈t〉2−KDε/2
‖Af ‖2

2 � ε3

〈t〉2−KDε/2
.(2.25)

To handle the commutator,
∫

Af [A(u · ∇f ) − u · ∇Af ]dx, we use a paraproduct
decomposition (see e.g. [4, 14]). Precisely, we define three main contributions: transport,
reaction and remainder:∫

Af
[
A(u · ∇f ) − u · ∇Af

]
dx = 1

2π

∑
N≥8

TN + 1
2π

∑
N≥8

RN + 1
2π

R,(2.26)

where (the factors of 2π are for future notational convenience)

TN = 2π

∫
Af
[
A(u<N/8 · ∇fN) − u<N/8 · ∇AfN

]
dx

RN = 2π

∫
Af
[
A(uN · ∇f<N/8) − uN · ∇Af<N/8

]
dx

R= 2π
∑
N∈D

∑
1
8 N≤N′≤8N

∫
Af
[
A(uN · ∇fN′) − uN · ∇AfN′

]
dx.

Here N ∈ D = { 1
2 ,1,2,4, . . . ,2j, . . .} and gN denotes the N-th Littlewood-Paley projec-

tion and g<N means the Littlewood-Paley projection onto frequencies less than N (see
Section A.1 for the Fourier analysis conventions we are taking). Formally, the paraprod-
uct decomposition (2.26) represents a kind of ‘linearization’ for the evolution of higher
frequencies around the lower frequencies. The terminology ‘reaction’ is borrowed from
Mouhot and Villani [70] (see Section 9 for more information).

Controlling the transport contribution is the subject of Section 5, in which we
prove:

Proposition 2.2 (Transport). — Under the bootstrap hypotheses,

∑
N≥8

|TN| � εCKλ + εCKw + ε3

〈t〉2−KDε/2
.

The proof of Proposition 2.2 uses ideas from the works of [33, 49, 54]. Since the
velocity u is restricted to ‘low frequency’, we will have the available regularity required
to apply (2.24). However, the methods of [33, 49, 54] do not adapt immediately since
Jk(t, η) is imposing slightly different regularities to certain frequencies, which is problem-
atic. Physically speaking, we need to ensure that resonant frequencies do not incur a very
large growth due to nonlinear interactions with non-resonant frequencies (which are per-
mitted to be slightly larger than the resonant frequencies). Controlling this imbalance is
why CKw appears in Proposition 2.2.
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Controlling the reaction contribution in (2.26) is the subject of Section 6. Here we
cannot apply (2.24), as an estimate on this term requires u in the highest norm on which
we have control, and hence we have no regularity to spare. Physically, here in the reaction
term is where the dangerous nonlinear effects are expressed and a great deal of precision
is required to control them. In Section 6 we prove

Proposition 2.3 (Reaction). — Under the bootstrap hypotheses,

∑
N≥8

|RN| � εCKλ + εCKw + ε3

〈t〉2−KDε/2
+ εCKv,1

λ + εCKv,1
w(2.27)

+ ε

∥∥∥∥
〈
∂v

t∂z

〉−1(
∂2

z + (∂v − t∂z)
2
)( |∇|s/2

〈t〉s
A +
√

∂tw

w
Ã
)

P �=0φ

∥∥∥∥
2

2

.

The CKv,1 terms are defined below in (2.31). The first step to controlling the term in
(2.27) involving φ is Proposition 2.4, proved in Section 4.2. This proposition treats �t

as a perturbation of ∂zz + (∂v − t∂z)
2 and passes the multipliers in the last term of (2.27)

onto f and the coefficients of �t . Physically, these latter contributions are indicating the
nonlinear interactions between the higher modes of f and the coefficients v′, v′′ (which
involve time-averages of f0 (2.13)).

Proposition 2.4 (Precision elliptic control). — Under the bootstrap hypotheses,

∥∥∥∥
〈
∂v

t∂z

〉−1(
∂2

z + (∂v − t∂z)
2
)( |∇|s/2

〈t〉s
A +
√

∂tw

w
Ã
)

P �=0φ

∥∥∥∥
2

2

(2.28)

� CKλ + CKw + ε2
2∑

i=1

CCKi
λ + CCKi

w,

where the ‘coefficient Cauchy-Kovalevskaya’ terms are given by

CCK1
λ = −λ̇(t)

∥∥|∂v|s/2AR
(
1 − (v′)2)∥∥2

2
,(2.29a)

CCK1
w =
∥∥∥∥
√

∂tw

w
AR
(
1 − (v′)2)∥∥∥∥

2

2

,(2.29b)

CCK2
λ = −λ̇(t)

∥∥∥∥|∂v|s/2 AR

〈∂v〉v
′′
∥∥∥∥

2

2

,(2.29c)

CCK2
w =
∥∥∥∥
√

∂tw

w

AR

〈∂v〉v
′′
∥∥∥∥

2

2

.(2.29d)



216 JACOB BEDROSSIAN, NADER MASMOUDI

The next step in the bootstrap is to provide good estimates on the coordinate sys-
tem and the associated CK and CCK terms, a procedure that is detailed in Section 8.
The following proposition provides controls on v′ − 1, the CCK terms arising in (2.29),
the pair [∂tv], v′∂v[∂tv] and finally all of the CKv,i terms. The norm defined by AR(t)

is stronger than that defined by A(t), which we use to measure f . It turns out that we
will be able to propagate this stronger regularity on v′ − 1 due to a time-averaging effect,
derived via energy estimates on (2.13). By contrast, [∂tv] is expected basically to have
the regularity of ũ0 and hence even (2.30b) has s fewer derivatives than expected. On the
other hand, it has a significant amount of time decay, which near critical times can be
converted into regularity.

Proposition 2.5 (Coordinate system controls). — Under the bootstrap hypotheses, for ε sufficiently

small and Kv sufficiently large there is a K > 0 such that

∥∥AR
(
v′ − 1

)
(t)
∥∥2

2
+ 1

2

∫ t

1

2∑
i=1

CCKi
w(τ)dτ + 1

2

∫ t

1

2∑
i=1

CCKi
λ(τ )dτ(2.30a)

≤ 1
2

Kvε
2

〈t〉2+2s

∥∥∥∥ A
〈∂v〉s

v′∂v[∂tv]
∥∥∥∥

2

2

+ 1
2

∫ t

1
CKv,2

λ (τ ) + CKv,2
w (τ)dτ(2.30b)

≤ ε2 + Kε3

〈t〉4−KDε
∥∥[∂tv]∥∥2

Gλ(t),σ−6 ≤ ε2 + Kε3(2.30c) ∫ t

1
CKv,1

λ (τ ) + CKv,1
w (τ)dτ ≤ 1

2
Kvε

2,(2.30d)

where the CKv,i terms are given by

CKv,2
w (τ) = 〈τ 〉2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

v′∂v[∂tv](τ )

∥∥∥∥
2

2

(2.31a)

CKv,2
λ (τ ) = 〈τ 〉2+2s

(−λ̇(τ )
)∥∥∥∥|∂v|s/2 A

〈∂v〉s
v′∂v[∂tv](τ )

∥∥∥∥
2

2

(2.31b)

CKv,1
w (τ) = 〈τ 〉2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

[∂tv](τ )

∥∥∥∥
2

2

(2.31c)

CKv,1
λ (τ ) = 〈τ 〉2+2s

(−λ̇(τ )
)∥∥∥∥|∂v|s/2 A

〈∂v〉s
[∂tv](τ )

∥∥∥∥
2

2

.(2.31d)
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Note that neither (2.30b) nor (2.30c) controls the other: at higher frequencies the
former is stronger than the latter and at lower frequencies the opposite is true. One
of the advantages of this scheme is that v′∂v[∂tv] satisfies an equation that is simpler
than [∂tv] and so is easier to get good estimates on. Both (2.30b) and (2.30c) are linked
to the convergence of the background shear flow; in particular, they rule out that the
background flow oscillates or wanders due to nonlinear effects.

Finally we need to control the remainder term in (2.26). This is straightforward
and is detailed in Section 7. There we prove

Proposition 2.6 (Remainders). — Under the bootstrap hypotheses,

R� ε3

〈t〉2−KDε/2 .

Collecting Propositions 2.2, 2.3, 2.4, 2.5, 2.6 with (2.26) and (2.25), we have finally
(2.19) for ε sufficiently small with constants independent of both ε and T�; hence for ε

sufficiently small we may propagate the bootstrap control and prove Proposition 2.1.

2.4. Conclusion of proof

By Proposition 2.1 we have a global uniform bound on E(t), and therefore the
uniform bounds∥∥f (t)

∥∥2

Gλ(t),σ + 〈t〉4‖P �=0φ‖2
Gλ(t),σ−3 + 〈t〉4−KDε

∥∥[∂tv]∥∥2

Gλ(t),σ−6(2.32)

+ K−1
v

∥∥v′ − 1
∥∥2

Gλ(t),σ � ε2.

Define λ∞ = limt→∞ λ(t). By the method of characteristics and Sobolev embedding,
Lemma 4.1 and (2.32) also imply the spatial localization

∫ |vf (t, z, v)|dzdv � ε. Together
with (2.32) it follows that∫ ∣∣∣∣ v

v′(t, v)
f (t, z, v)

∣∣∣∣dzdv � ε,

which implies ̂(v′)−1f is Lipschitz continuous. Since
∫

ωdvdz = ∫ (v′)−1fdvdz = 0, it fol-
lows that (using also the algebra property Lemma A.3),∫

e2λ∞|∇|s〈∇〉2σ
∣∣ũ0(t, v)

∣∣2dv(2.33)

≈
∫

e2λ∞|ξ |s〈ξ〉2σ

|ξ |2
∣∣(̂v′)−1

f (t, ξ)
∣∣2dξ

� sup
|ξ |≤1

∣∣∇ξ

(̂
v′)−1

f (t, ξ)
∣∣2 +
∫

|ξ |≥1
e2λ∞|ξ |s〈ξ〉2σ−2

∣∣(̂v′)−1
f (t, ξ)

∣∣2dξ
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� ε2 + ‖f ‖Gλ∞,σ−1

(
1 + ∥∥v′ − 1

∥∥
Gλ∞,σ−1

)
� ε2.

Hence,

‖ũ0‖Gλ(t),σ � ε.(2.34)

In order to deduce the convergence expressed in (1.5) and (1.7) we now undo the change
of coordinates in v, switching to the more physically natural coordinates (z, y). Writing
h(t, z, y) = f (t, z, v) = ω(t, x, y) and ψ̃(t, z, y) = φ(t, z, v) one derives from (1.1) as in
Section 2.2,

∂th + ∇⊥
z,yP �=0ψ̃ · ∇z,yh = 0.(2.35)

We remark that these coordinates are not the same as (2.2): indeed, ψ̃ and h do not sat-
isfy (2.7b). In order to quantify the Gevrey regularity of h(t, z, y) = f (t, z, v(t, y)) we apply
the composition inequality Lemma A.4 (with (A.15)) and hence we must show v(t, y) − y

is small in a suitable Gevrey class. Actually what we have a priori control on from (2.32)
is v′(t, v(t, y)) = ∂yv(t, y). From the C∞ inverse function theorem we may solve for
y = y(t, v), which implies the spatial control

∫ |yh(t, z, y)|dzdy � ε (and Remark 4). From
(2.34) and (2.9), we also get at least the L2 estimates ‖v(t, y) − y‖2 + ‖y(t, v) − v‖2 � ε.
To get control on the Gevrey regularity, we apply

∂vy(t, v) = 1
v′(t, v)

=
∞∑

n=0

(
1 − v′(t, v)

)n
,

which implies together with Lemma A.3 and ε sufficiently small, for any λ′
∞ ∈ (λ′, λ∞):∥∥y(t, v) − v

∥∥
Gλ′∞ � ε.

Therefore, by a Gevrey inverse function theorem (Lemma A.5 with α(v) = v − y(t, v)

and β(y) = v(t, y) − y, which solves β(y) = α(y + β(y))) followed by (A.15), for any λ′′
∞ ∈

(λ′, λ′
∞), we may choose ε sufficiently small such that ‖v(t, y)− y‖Gλ′′∞ � ε. Together with

Lemma A.4, (A.15) and (2.32) this implies for any λ′′′
∞ ∈ (λ′, λ′′

∞) (adjusting ε if necessary),∥∥h(t)∥∥Gλ′′′∞ + 〈t〉2
∥∥P �=0ψ̃(t)

∥∥
Gλ′′′∞ � ε.(2.36)

Therefore by integrating (2.35), we define f∞ by the absolutely convergent integral

f∞ = h(1) −
∫ ∞

1
∇⊥

z,yP �=0ψ̃(s) · ∇z,yh(s)ds.(2.37)

More precisely, since λ′ < λ′′′
∞, Minkowski, (A.10) and (A.12) imply

∥∥h(t) − f∞
∥∥
Gλ′ =

∥∥∥∥
∫ ∞

t

∇⊥
z,yP �=0ψ̃(τ ) · ∇z,yh(τ )dτ

∥∥∥∥
Gλ′

� ε2

〈t〉 .(2.38)
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By the definition of z and the phase 
 (1.6), this is equivalent to (1.5). Shifting in z, (1.7b)
and (1.7c) follow from the decay estimates on ψ .

Finally, an argument similar to that used to derive (2.38) can be applied to
Ux

0(t, y) = ũ0(t, v), which satisfies the following from (1.2) denoting Ũ(t, z, y) = ũ(t, z, v)

= Ux(t, x, y):

∂tUx
0 + 〈∇⊥

z,yP �=0ψ̃ · ∇z,yŨ
〉= 0.(2.39)

By (8.39) below, it follows that ‖P �=0∇z,yŨ(t)‖Gλ′′′∞ � ε〈t〉−1 by the argument used to de-
duce (2.36). This, together with (2.36), implies (1.7a) by integrating (2.39) as in (2.38) (see
Section A.4 for more discussion).

3. Growth mechanism and construction of A

3.1. Construction of w

3.1.1. Formal derivation of toy model

From Section 2, we see that the basic challenge to the proof of Theorem 1 is con-
trolling the regularity of solutions to (2.11). Since we must pay regularity to deduce decay
on the velocity u, it is natural to consider the frequency interactions in the product u · ∇f

with the frequencies of u much larger than f , which corresponds to the “reaction” term
in (2.26) above. This leads us to study a simpler model

∂t f = −u · ∇flo,(3.1)

where flo is a given function that we think of as much smoother than f . As we see from
(2.11), u consists of several terms, however let us focus on the term we think should be the
worst and also ignore the v′, further reducing to the linear problem:

∂t f = ∂vP �=0φ∂zflo.

This contribution was chosen as �t loses ellipticity in v, not z. Suppose that instead of
f = �tφ, we had f = ∂zzφ + (∂y − t∂z)

2φ as in (1.4), then on the Fourier side:

∂t f̂ (t, k, η) = 1
2π

∑
l �=0

∫
ξ

ξ(k − l)

l2 + |ξ − lt|2 f̂ (l, ξ)f̂lo(t, k − l, η − ξ)dξ.

Since flo weakens interactions between well-separated frequencies, let us consider a dis-
crete model with η as a fixed parameter:

∂t f̂ (t, k, η) = 1
2π

∑
l �=0

η(k − l)

l2 + |η − lt|2 f̂ (l, η)flo(t, k − l,0).(3.2)
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As time advances this system of ODEs will go through resonances or “critical times”
given by t = η

k
, at which time the k mode strongly forces the others. If |η|k−2 � 1 then

the critical time does not have a serious detriment and so focus on the case |η|k−2 > 1.
The scenario we are most concerned with is a high-to-low cascade in which the k mode
has a strong effect at time η/k that excites the k −1 mode which has a strong effect at time
η/(k − 1) that excites the k − 2 mode and so on. The echoes observed experimentally
in [94, 95] arise from an effect similar to this [91, 92]. Now focus near one critical time
η/k on a time interval of length roughly η/k2 and consider the interaction between the
mode k and a nearby mode l with l �= k. If one takes absolute values and retains only the
leading order terms, then this reduces to the much simpler system of two ODEs (thinking
of flo = O(κ)) which we refer to as the toy model:

∂t fR = κ
k2

|η| fNR,(3.3a)

∂t fNR = κ
|η|

k2 + |η − kt|2 fR,(3.3b)

where we think of fR as being the evolution of the k mode and fNR being the evolution

of a nearby mode l with l �= k. The factor k2/|η| in the ODE for fR is an upper bound
on the strongest interaction a non-resonant mode, for example the k − 1 mode, can have
with the resonant mode. Obviously (3.3) represents a major simplification compared to
(3.1), however it will be sufficient to prove Theorem 1. See Section 9 for a discussion
and speculation on whether it is possible to improve Theorem 1 by using a model closer
to (3.1).

Remark 1. — The toy model dropped several terms, one of which being a weak
self-interaction. For example, one could replace the second equation in (3.3) by

∂τ fNR = κ
|η|

k2 + |η − kt|2 fR + κ
k2

|η| fNR.

However, this does not significantly change the worse possible growth predicted by the
model and is not necessary for the proof of Theorem 1. Actually, the proof of Theorem 1
strongly suggests that the most substantial simplifications in the derivation of (3.3) was the
replacement of �t by ∂2

z + (∂v − t∂z)
2.

3.1.2. Construction of w

For simplicity of notation in this section we usually take η, k > 0 but the work
applies equally well to η, k < 0 (w(t, η) will depend only on |η|). Note that modes where
ηk < 0 do not have resonances for positive times. Keeping with the intuition from the
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derivation of (3.3), in this section we will think of η as a fixed parameter and time varying.
Here we will be concerned with critical times for which we have η/k2 ≥ 1. Accordingly, in
this section we will use Ik,η (see Section 1.2) to denote any resonant interval with η/k2 ≥ 1,
in contrast to subsequent sections where this notation is restricted further.

A key feature of our methods is how the toy model is used to construct a norm
which precisely matches the estimated worst-case behavior that the reaction terms cre-
ate, done by choosing wk(t, η) to be an approximate solution to (3.3). First we have the
following (easy to check) Proposition.

Proposition 3.1. — Let τ = t − η

k
and consider the solution (fR(τ ), fNR(τ )) to (3.3) with

fR(− η

k2 ) = fNR(− η

k2 ) = 1. There exists a constant C such that for all κ < 1/2 and η

k2 ≥ 1,

fR(τ ) ≤ C
(

k2

η

(
1 + |τ |)

)−Cκ

, − η

k2
≤ τ ≤ 0,

fNR(τ ) ≤ C
(

k2

η

(
1 + |τ |)

)−Cκ−1

, − η

k2
≤ τ ≤ 0,

fR(τ ) ≤ C
(

η

k2

)Cκ(
1 + |τ |)1+Cκ

, 0 ≤ τ ≤ η

k2
,

fNR(τ ) ≤ C
(

η

k2

)Cκ+1(
1 + |τ |)Cκ

, 0 ≤ τ ≤ η

k2
.

For the remainder of the paper we fix κ such that 3/2 < (1 + 2Cκ) < 10.

Remark 2. — It is important to notice that over the whole interval [− η

k2 ,
η

k2 ], both
fR and fNR are at most amplified by roughly the same factor C( η

k2 )
1+2Cκ . Over the interval

[− η

k2 ,0], fNR is amplified at most by C( η

k2 )
1+Cκ and fR is amplified at most by C( η

k2 )
Cκ .

Whereas, over the interval [0, η

k2 ], fNR is amplified at most by C( η

k2 )
Cκ and fR is amplified

at most by C( η

k2 )
1+Cκ . Near the critical time, the imbalance between fNR and fR is the

largest—in particular, the resonant mode fR is a factor of η

k2 less than fNR at this time.
However by the end of the interval, the total growth of the resonant and non-resonant
modes are comparable. The fact that fR and fNR are amplified the same over that interval
will simplify the construction of w; specifically, we will be able to assign wR and wNR

below to agree at the end points of the critical interval.

On each interval Ik,η, growth of the resonant mode (k, η) will be modeled by wR

and the rest of the modes (which are non-resonant) will be modeled by wNR. By Propo-
sition 3.1, we will be able to choose w such that the total growth of wR and wNR exactly
agree.
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The construction is done backward in time, starting with k = 1. For t ∈ Ik,η and
τ = t − η

k
, we will choose (wNR,wR) such that over the interval Ik,η they approximately

satisfy (3.3):

(3.4)
∂τwR ≈ κ

k2

η
wNR,

∂τwNR ≈ κ
η

k2(1 + τ 2)
wR.

We first construct the non-resonant component wNR and then explain how we should
modify it over each interval Ik,η to construct wR.

Let wNR be a non-decreasing function of time with wNR(t, η) = 1 for t ≥ 2η. For
definiteness, we remark here that for |η| < 1, wNR(t, η) = 1, which will be a consequence
of the ensuing the definition. Hence we may safely assume |η| > 1 for the duration of the
section. For k ≥ 1, we assume that wNR(tk−1,η, η) was computed. To compute wNR on the
interval Ik,η, we use the growth predicted by Proposition 3.1: for k = 1,2,3, . . . ,E(

√
η),

we define

wNR(t, η) =
(

k2

η

[
1 + bk,η

∣∣∣∣t − η

k

∣∣∣∣
])Cκ

wNR(tk−1,η, η),(3.5a)

∀t ∈ IR
k,η =
[
η

k
, tk−1,η

]
,

wNR(t, η) =
(

1 + ak,η

∣∣∣∣t − η

k

∣∣∣∣
)−1−Cκ

wNR

(
η

k
, η

)
,(3.5b)

∀t ∈ IL
k,η =
[

tk,η,
η

k

]
.

The constant bk,η is chosen to ensure that k2

η
[1 + bk,η|tk−1,η − η

k
|] = 1, hence for k ≥ 2, we

have

bk,η = 2(k − 1)

k

(
1 − k2

η

)
(3.6)

and b1,η = 1 − 1/η. Similarly, ak,η is chosen to ensure k2

η
[1 + ak,η|tk,η − η

k
|] = 1, which

implies

ak,η = 2(k + 1)

k

(
1 − k2

η

)
.(3.7)

Hence, wNR(η

k
, η) = wNR(tk−1,η, η)( k2

η
)Cκ and wNR(tk,η, η) = wNR(tk−1,η, η)( k2

η
)1+2Cκ . The

choice of ak,η and bk,η was made to ensure that the ratio between wNR(tk,η, η) and
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wNR(tk−1,η, η) is exactly ( k2

η
)1+2Cκ . Finally, we take wNR to be constant on the interval

[0, tE(
√

η),η], namely wNR(t, η) = w(tE(
√

η),η, η) for t ∈ [0, tE(
√

η),η]. Note that we always
have 0 ≤ bk,η < 1 and 0 ≤ ak,η < 4, but that ak,η and bk,η approach 0 when k approaches
E(

√
η). This will present minor technical difficulties in the sequel since this implies that

∂tw vanishes near this time and hence a loss of the lower bounds in (3.4).
On each interval Ik,η, we define wR(t, η) by

wR(t, η) = k2

η

(
1 + bk,η

∣∣∣∣t − η

k

∣∣∣∣
)

wNR(t, η), ∀t ∈ IR
k,η =
[
η

k
, tk−1,η

]
,(3.8a)

wR(t, η) = k2

η

(
1 + ak,η

∣∣∣∣t − η

k

∣∣∣∣
)

wNR(t, η), ∀t ∈ IL
k,η =
[

tk,η,
η

k

]
.(3.8b)

Due to the choice of bk,η and ak,η, we get that wR(tk,η, η) = wNR(tk,η, η) and wR(η

k
, η) =

k2

η
wNR(η

k
, η).

To define the full wk(t, η), we then have

wk(t, η) =

⎧⎪⎪⎨
⎪⎪⎩

wk(tE(
√

η),η, η) t < tE(
√

η),η

wNR(t, η) t ∈ [tE(
√

η),η,2η] \ Ik,η

wR(t, η) t ∈ Ik,η

1 t ≥ 2η.

(3.9)

Since wR and wNR agree at the end-points of Ik,η, wk(t, η) is Lipschitz continuous in time.
This completes the construction of w which appears in the J defined above (2.16).

We also define JR(t, η) and AR(t, η) to assign resonant regularity at every critical
time:

JR(t, η) =
⎧⎨
⎩

eμ|η|1/2
w−1

R (tE(
√

η),η, η) t < tE(
√

η),η

eμ|η|1/2
w−1

R (t, η) t ∈ [tE(
√

η),η,2η]
eμ|η|1/2

t ≥ 2η,

AR(t, k, η) = eλ(t)|η|s〈η〉σ JR(t, η).

(3.10)

We can easily see from (3.8) that AR(t, η) ≥ A0(t, η) and since the zero frequency is always
non-resonant from (3.9), we see that near the critical times, AR can be as much as a factor
of |η| larger.

3.1.3. Total growth of wk(t, η)

The following lemma shows that the toy model predicts a growth of high frequen-
cies which amounts to a loss of Gevrey-2 regularity, which is the primary origin of the
restriction s > 1/2 in Theorem 1. C. Mouhot and C. Villani have informed the authors
that a heuristic similar to that used in Section 7 of [70] can also be used to predict the
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same Gevrey-2 regularity requirement, though note that the primary purpose of the toy
model (3.3) is to provide precise mode-by-mode information about how this loss can oc-
cur.

Lemma 3.1 (Growth of w). — For η > 1, we have for μ = 4(1 + 2Cκ),

1
wk(0, η)

= 1
wk(tE(

√
η),η, η)

∼ 1
ημ/8

e
μ
2
√

η.(3.11)

Here ∼ is in the sense of asymptotic expansion.

Proof. — Counting the growth over each interval implied by (3.9) gives the exact
formula:

1
wk(0, η)

=
(

η

N2

)c(
η

(N − 1)2

)c

. . .

(
η

12

)c

=
[

ηN

(N!)2

]c

,

where c = 1 + 2Cκ . Recall Stirling’s formula N! ∼ √
2πN(N/e)N, which implies

(
wk(0, η)

)−1/c ∼ ηN

(2πN)(N/e)2N
∼ 1

2π
√

η
e2

√
η

[√
η

N
e2N−2

√
η

(
η

N2

)N]

and the result follows since the term between [..] is ≈ 1 by |N − √
η| ≤ 1. �

3.2. Properties of w and J

In this section we prove some of the important and useful properties of J and w.
This section is fundamental to our work but at times the proofs are tediously combinato-
rial.

The following trichotomy expresses the well-separation of critical times and is used
several times in the sequel.

Lemma 3.2. — Let ξ, η be such that there exists some α ≥ 1 with 1
α
|ξ | ≤ |η| ≤ α|ξ | and let

k, n be such that t ∈ Ik,η and t ∈ In,ξ (note that k ≈ n). Then at least one of following holds:

(a) k = n (almost same interval);

(b) |t − η

k
| ≥ 1

10α

|η|
k2 and |t − ξ

n
| ≥ 1

10α

|ξ |
n2 (far from resonance);

(c) |η − ξ | �α
|η|
|n| (well-separated).

Proof. — To see that k ≈ n note

|k|
|n| = |tk|

|tn| = |η|
|ξ |

|tk|
|η|

|ξ |
|tn| ≈α 1.(3.12)

If k = n then there is nothing to prove. Suppose now both (a) and (b) are false, which
means one of the two inequalities in (b) fails. Without loss of generality suppose |t − ξ

n
| <

1
10α

|ξ |
n2 . Then,
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n

∣∣∣∣≥
∣∣∣∣t − η

n

∣∣∣∣−
∣∣∣∣t − ξ

n

∣∣∣∣≥ |η|
2n(n + 1)

− 1
10α

|ξ |
n2

� |η|
n2

,

where we also used k �= n. This proves (c). �

From the definition of w, for t ∈ Ik,η and t > 2
√|η|, we have for τ = t − η

k
:

(3.13)
∂τwR ≈ κ

k2

|η|wNR,

∂τwNR ≈ κ
|η|

k2(1 + τ 2)
wR.

Moreover, we also have the following:

Lemma 3.3. — For t ∈ Ik,η and t > 2
√|η|, we have the following with τ = t − η

k
:

∂twNR(t, η)

wNR(t, η)
≈ 1

1 + |τ | ≈ ∂twR(t, η)

wR(t, η)
.(3.14)

The following two lemmas are more substantial and show that although the toy
model neglected interactions in η and ξ , w(t, η) with w(t, ξ) can still be compared effec-
tively.

Lemma 3.4.

(i) For t ≥ 1, and k, l, η, ξ such that max(2
√|ξ |,√|η|) < t < 2 min(|ξ |, |η|),

∂twk(t, η)

wk(t, η)

wl(t, ξ)

∂twl(t, ξ)
� 〈η − ξ〉.(3.15)

(ii) For all t ≥ 1, and k, l, η, ξ , such that for some α ≥ 1, 1
α
|ξ | ≤ |η| ≤ α|ξ |,

√
∂twl(t, ξ)

wl(t, ξ)
�α

[√
∂twk(t, η)

wk(t, η)
+ |η|s/2

〈t〉s

]
〈η − ξ〉.(3.16)

Remark 8. — Notice the requirement that t > 2
√|ξ | in (3.15) and t > 2

√|η| in
(3.14). This is due to the fact that ∂tw(t, ξ) → 0 as t ↘ E(

√|ξ |), and hence we do not
have the lower bounds. The upper bounds still hold. The convenience of (3.16) is that it
accounts for this detail and is useful in allowing us to seamlessly treat the endpoint case
t ≈ √

η.

Proof of Lemma 3.4. — We first prove (3.15). By (3.14), k and l do not play a role and
are omitted for the duration of the proof. Without loss of generality, we may restrict to
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ηξ ≥ 0 and η/2 < ξ < 2η as otherwise by (3.14)∣∣∣∣∂tw(t, η)

w(t, η)

w(t, ξ)

∂tw(t, ξ)

∣∣∣∣� 〈ξ〉 � 〈η − ξ〉.

Let j and n be such that t ∈ Ij,ξ and t ∈ In,η. Notice that like in (3.12) above, j ≈ n.
From (3.14),

∣∣∣∣∂tw(t, η)

w(t, η)

w(t, ξ)

∂tw(t, ξ)

∣∣∣∣�
1 + |t − ξ

j
|

1 + |t − η

n
| .

In the case n = j, (3.15) follows from the inequality: for a, b ≥ 0,

1 + a

1 + b
≤ 1 + |a − b|.(3.17)

In the case n �= j, (3.15) follows from Lemma 3.2. Indeed, if (b) holds then since n ≈ j and
η ≈ ξ :

∣∣∣∣∂tw(t, η)

w(t, η)

w(t, ξ)

∂tw(t, ξ)

∣∣∣∣�
1 + | ξ

j2
|

1 + | η

n2 | � 1.

If (c) holds then it follows that∣∣∣∣∂tw(t, η)

w(t, η)

w(t, ξ)

∂tw(t, ξ)

∣∣∣∣� 1 +
∣∣∣∣ ξj2
∣∣∣∣� 〈η − ξ〉,

which finishes the proof of (3.15).
Next we prove (3.16). First, there is nothing to prove unless E(

√|ξ |) ≤ t ≤ 2|ξ |,
so assume this is the case. If 2

√|η| < t < 2|η| then (3.16) is a consequence of (3.15). If
t ≤ 2

√|η| then (3.16) follows from
√

∂twl(ξ)

wl(ξ)
� 1 � |η|s/2

〈t〉s
.

Lastly, consider t ≥ 2|η|. If |t − |ξ || < 1
2α

|ξ | then we have

|η − ξ | ≥ t − |η| + |ξ | − t > |η| − 1
2α

|ξ | ≥ 1
2α

|ξ |.

If instead |t − |ξ || ≥ 1
2α

|ξ | then by (3.14),
√

∂twl(ξ)

wl(ξ)
� α1/2

√|ξ | .
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Hence, in both cases it follows that√
∂twl(ξ)

wl(ξ)
�α

〈η − ξ〉1/2

〈ξ〉1/2
.

Since 2|η| ≤ t ≤ 2|ξ | ≤ 2α|η|, t ≥ 1 and s − 1/2 ≤ s/2,

1
〈ξ〉1/2

�α

|η|s/2

〈t〉s
,

which completes the proof of (3.16). �

Lemma 3.5. — For all t, η, ξ , we have

wNR(t, ξ)

wNR(t, η)
� eμ|η−ξ |1/2

.(3.18)

Proof of Lemma 3.5. — For the proof of Lemma 3.5, we use w(t, η) = wNR(t, η) and
w(t, ξ) = wNR(t, ξ) as there is no possible ambiguity. Switching the roles of ξ and η, we
may assume without loss of generality that |ξ | ≤ |η| and prove instead of (3.18) that

e−μ|η−ξ |1/2 � wNR(t, ξ)

wNR(t, η)
� eμ|η−ξ |1/2

.(3.19)

If |ξ | < |η|/2, then (3.19) is clear since by Lemma 3.1,

e−
μ
2
√

ξ ≤ w(t, ξ) ≤ 1,

|ξ | ≤ |η − ξ | and |η| ≤ 2|η − ξ |. Hence, in the sequel we may assume that η, ξ ≥ 0 and
η/2 ≤ ξ ≤ η.

First, if t ≥ 2η, then w(t, ξ) = w(t, η) = 1 so there is nothing to prove.
If t ≤ min(tE(

√
ξ),ξ , tE(

√
η),η), then by Lemma 3.1, (3.19) follows by:

w(t, ξ)

w(t, η)
= w(0, ξ)

w(0, η)
≈
(

ξ

η

)μ/8

e
μ
2 (

√
η−√

ξ).

If 2ξ ≤ t ≤ 2η, then, since w(t, η) is non-decreasing in time and w(t, ξ) is constant
for t ≥ 2ξ ,

1 ≤ w(t, ξ)

w(t, η)
≤ w(2ξ, ξ)

w(2ξ, η)
.

If tE(
√

ξ),ξ ≤ t ≤ tE(
√

η),η then by similar logic,

w(0, ξ)

w(0, η)
≤ w(t, ξ)

w(t, η)
≤ w(tE(

√
η),η, ξ)

w(tE(
√

η),η, η)
,
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and if tE(
√

η),η ≤ t ≤ tE(
√

ξ),ξ (note that this can occur even if η ≥ ξ ), then

w(tE(
√

ξ),ξ , ξ)

w(tE(
√

ξ),ξ , η)
≤ w(t, ξ)

w(t, η)
≤ w(0, ξ)

w(0, η)
.

Hence, (3.19) is reduced to the case where max(tE(
√

ξ),ξ , tE(
√

η),η) ≤ t ≤ 2ξ . Let j and n be
such that t ∈ In,η and t ∈ Ij,ξ . Arguing as in (3.12), we see that n ≈ j ≤ n. We consider three
cases.

Case j = n: Assume first that t ∈ IR
n,η ∩ IR

n,ξ , hence denoting c = 1 + 2Cκ by the
definition (3.5),

w(t, η) =
(

12

η

)c(22

η

)c

. . .

(
(n − 1)2

η

)c(
n2

η

[
1 + bn,η

∣∣∣∣t − η

n

∣∣∣∣
])Cκ

,(3.20)

w(t, ξ) =
(

12

ξ

)c(22

ξ

)c

. . .

(
(n − 1)2

ξ

)c(
n2

ξ

[
1 + bn,ξ

∣∣∣∣t − ξ

n

∣∣∣∣
])Cκ

, and(3.21)

w(t, ξ)

w(t, η)
=
(

η

ξ

)c(n−1)+Cκ(1 + bn,ξ |t − ξ

n
|

1 + bn,η|t − η

n
|
)Cκ

= F1(F2)
Cκ .(3.22)

The first factor on the right-hand side of (3.22) satisfies:

1 ≤ F1 =
(

η

ξ

)c(n−1)+Cκ

�
(

1 + η − ξ

ξ

)c
√

ξ

� e
c
η−ξ√

ξ ≤ ec
√

η−ξ .(3.23)

For the second factor in (3.22), from (3.17),

max
(

F2,
1
F2

)
≤ 1 +

∣∣∣∣bn,ξ

∣∣∣∣t − ξ

n

∣∣∣∣− bn,η

∣∣∣∣t − η

n

∣∣∣∣
∣∣∣∣

� 1 + bn,ξ

∣∣∣∣η − ξ

n

∣∣∣∣+ |bn,η − bn,ξ | η

n2

� 1 + |η − ξ | +
∣∣∣∣1ξ − 1

η

∣∣∣∣η � 〈η − ξ〉.

The case where t ∈ IL
n,η ∩ IL

n,ξ can be treated in the same way.
Assume now that t ∈ IL

n,η ∩ IR
n,ξ , hence w(t, ξ) is given by (3.21) and w(t, η) by

(from (3.5)),

w(t, η) =
(

12

η

)c(22

η

)c

. . .

(
(n − 1)2

η

)c(
n2

η

)Cκ

(3.24)

×
([

1 + an,η

∣∣∣∣t − η

n

∣∣∣∣
])−1−Cκ

and
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w(t, ξ)

w(t, η)
=
(

η

ξ

)c(n−1)+Cκ(
1 + bn,ξ

∣∣∣∣t − ξ

n

∣∣∣∣
)Cκ([

1 + an,η

∣∣∣∣t − η

n

∣∣∣∣
])1+Cκ

.

Using that ξ

n
≤ t ≤ η

n
and that bn,ξ , an,η < 4, we get from (3.23) and (A.12),

1 ≤ w(t, ξ)

w(t, η)
� ec

√
η−ξ
(
1 + 4|η − ξ |)1+2Cκ � e2c

√
η−ξ .

Case j = n − 1: If t ∈ IL
n,η then tn−1,ξ ≤ η

n
. If t ∈ IR

n−1,ξ , then ξ

n−1 < tn−1,η. In either one
of these cases, we deduce that ξ

n2 � η−ξ

n
and we conclude in a similar way to (3.29) below.

Next assume that t ∈ IR
n,η ∩ IL

n−1,ξ , which implies

w(t, η) =
(

12

η

)c(22

η

)c

. . .

(
(n − 1)2

η

)c(
n2

η

[
1 + bn,η

∣∣∣∣t − η

n

∣∣∣∣
])Cκ

,(3.25)

w(t, ξ) =
(

12

ξ

)c(22

ξ

)c

. . .

(
(n − 1)2

ξ

)Cκ

(3.26)

×
(

1 + an−1,ξ

∣∣∣∣t − ξ

n − 1

∣∣∣∣
)−1−Cκ

, and

w(t, ξ)

w(t, η)
=
(

η

ξ

)c(n−2)+Cκ(
(n − 1)2

η

[
1 + an−1,ξ

∣∣∣∣t − ξ

n − 1

∣∣∣∣
])−1−Cκ

(3.27)

×
(

n2

η

[
1 + bn,η

∣∣∣∣t − η

n

∣∣∣∣
])−Cκ

.

The result now follows from Lemma 3.2: if (b) holds then (3.27) and η ≈ ξ imply

w(t, ξ)

w(t, η)
≈
(

η

ξ

)c(n−2)+Cκ

(3.28)

and we conclude as (3.23). If Lemma 3.2 (c) holds then
(

η

ξ

)c(n−2)+Cκ

� w(t, ξ)

w(t, η)
�
(

η

ξ

)c(n−2)+Cκ

〈η − ξ〉1+2Cκ,(3.29)

and we again apply (3.23) and (A.12) to deduce (3.19).
Case j < n − 1: In this case, it is easy to see that ξ

n2 � η−ξ

n
and we may conclude in

a similar way to (3.29). �

A consequence of Lemma 3.5 is the following, which allows to easily exchange
Jk(η) for Jl(ξ).
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Lemma 3.6. — In general we have

Jk(η)

Jl(ξ)
� |η|

k2(1 + |t − η

k
|) e9μ|k−l,η−ξ |1/2

.(3.30)

If any one of the following holds: (t /∈ Ik,η) or (k = l) or (t ∈ Ik,η, t /∈ Ik,ξ and 1
α
|ξ | ≤ |η| ≤ α|ξ | for

some α ≥ 1) then we have the improved estimate

Jk(η)

Jl(ξ)
� e10μ|k−l,η−ξ |1/2

.(3.31)

Finally if t ∈ Il,ξ , t /∈ Ik,η and 1
α
|ξ | ≤ |η| ≤ α|ξ | for some α > 0 then

Jk(η)

Jl(ξ)
�

l2(1 + |t − ξ

l
|)

|ξ | e11μ|k−l,η−ξ |1/2
.(3.32)

Remark 9. — The leading factors in (3.30) and (3.32) both are due to ratios of wR

and wNR. Moreover, in the case t ∈ Ik,η ∩ Ik,ξ , k �= l, the only case where (3.30) is needed,
we also have |η| ≈ |ξ | and hence from (3.30), the definition (3.8), and the proof of (3.14)
it follows that

Jk(η)

Jl(ξ)
� |η|

k2(1 + |t − η

k
|) e9μ|η−ξ |1/2

(3.33)

� |ξ |
k2(1 + |t − ξ

k
|) e10μ|η−ξ |1/2

� wNR(t, ξ)

wR(t, ξ)
e20μ|η−ξ |1/2

.

A version often used is if t ∈ Ik,η ∩ Ik,ξ , k �= l, then by (3.30), (3.14), Lemma 3.4 and (A.12),

Jk(η)

Jl(ξ)
� |η|

k2

√
∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)
e20μ|k−l,η−ξ |1/2

.(3.34)

Remark 10. — Note the appearance of Ik,η as opposed to Ik,η. Each are defined
in Section 1.2. The use of I is to rule out the end case t ≈ √|η|, for example, we see
that (3.31) holds if t ≈ √|η| even if t ∈ Ik,η and hence inequalities like (3.34) will not be
necessary.

Proof. — For a, b, c, d > 0, note the basic inequality:

a + b

c + d
≤ a

c
+ b

d
,(3.35)
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which implies

Jk(η)

Jl(ξ)
≤ wl(t, ξ)

wk(t, η)
eμ|η−ξ |1/2 + eμ|k−l|1/2

.

Hence, if t ∈ Ik,η then (3.30) follows from (3.18), the definition of wR, (3.8) and the def-
inition of wk(t, η), (3.9). If t ∈ Ik,η and t ≈ √|η| then since k2 ≈ |η|, then (3.31) holds as
well from the definition of wR. If t /∈ Ik,η then (3.31) follows from (3.18). Now consider the
remaining cases.

Proof of (3.31) when t ∈ Ik,η, t /∈ Ik,ξ and 1
α
|ξ | ≤ |η| ≤ α|ξ | for some α ≥ 1: In this case,

(3.31) follows from (3.30) together with Lemma 3.2 (b) or (c) and (A.12). Indeed, (a) is
ruled out by t ∈ Ik,η, t /∈ Ik,ξ ; if (b) holds then there is no loss and if (c) holds then (A.12)
can be used to absorb the loss.

Proof of (3.31) when t ∈ Ik,η, t ∈ Ik,ξ and k = l: Inequality (3.31) follows from (3.18)
and the definition of wk(t, η), (3.9).

Proof of (3.32): First consider the case that t ∈ Il,η, which also implies k �= l and
η ≈ ξ . By (3.8), (3.9) and (3.18),

Jk(η)

Jl(ξ)
≤ wl(t, ξ)

wk(t, η)
eμ|η−ξ |1/2 + wl(t, ξ)eμ|k|1/2−μ|ξ |1/2

� wNR(t, ξ)

wR(t, ξ)
e10μ|η−ξ |1/2 + eμ|k|1/2−μ|ξ |1/2

.

Since |k|2 ≤ 1
4 |η| then (A.11) and (A.12) deals with the second term and (3.32) follows.

In the case t /∈ Il,η, (3.32) follows from Lemma 3.2. Indeed, if (b) holds then

1 �δ

wR(t, ξ)

wNR(t, ξ)
,

and (3.32) follows from (3.31) whereas if (c) holds then (3.32) follows from (3.31)
and (A.12). �

The following variant of the previous lemmas is used in Section 5 to recover 1/2
derivatives.

Lemma 3.7. — Let t ≤ 1
2 min(

√|η|,√|ξ |). Then,

∣∣∣∣Jk(η)

Jl(ξ)
− 1

∣∣∣∣� 〈η − ξ, k − l〉√|ξ | + |η| + |k| + |l| e
11μ|k−l,η−ξ |1/2

.(3.36)

Proof. — Due to the assumption on t, we have that Jk(t, η) = Jk(0, η) and Jl(t, ξ) =
Jl(0, ξ). If |ξ |1/2 + |η|1/2 + |k|1/2 + |l|1/2 � |ξ − η| + |k − l|, then (3.36) follows from
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(3.31). Similarly, we may restrict to |ξ |1/2 + |η|1/2 + |k|1/2 + |l|1/2 � 1, as otherwise (3.36)
is weaker than (3.31).

From now on, we assume that

|ξ − η| + |k − l| ≤ 1
100

(|ξ |1/2 + |η|1/2 + |k|1/2 + |l|1/2
)
.(3.37)

Case 1: 1
10(|k| + |l|) ≤ |ξ | + |η| ≤ 10(|k| + |l|): In this case, recalling the definition

(2.22a)

∣∣∣∣Jk(η)

Jl(ξ)
− 1

∣∣∣∣≤ |J̃k(η) − J̃l(ξ)|
J̃l(ξ) + eμ|l|1/2

+ |eμ|k|1/2 − eμ|l|1/2|
eμ|l|1/2 + J̃l(ξ)

.(3.38)

The first term on the right-hand side of (3.38) is controlled by

|J̃k(η) − J̃l(ξ)|
J̃l(ξ)

≤ w(0, ξ)

w(0, η)

∣∣eμ(|η|1/2−|ξ |1/2) − 1
∣∣+
∣∣∣∣w(0, ξ)

w(0, η)
− 1

∣∣∣∣.
To control the first term, we use |ex − 1| ≤ xex, and our assumption that |k, l| ≈ |η, ξ | to
deduce

∣∣eμ(|η|1/2−|ξ |1/2) − 1
∣∣≤ μ

∣∣|η|1/2 − |ξ |1/2
∣∣eμ(|η|1/2−|ξ |1/2)

� |η − ξ |
|ξ |1/2 + |η|1/2

eμ(|η|1/2−|ξ |1/2)

� |η − ξ |
|ξ |1/2 + |η|1/2

eμ|η−ξ |1/2

� 〈η − ξ, k − l〉√|ξ | + |η| + |k| + |l| e
μ|η−ξ |1/2

,

which suffices together with (3.18).
To control the second term, we notice that the condition (3.37) (together with our

assumption |k| + |l| ≈ |η| + |ξ |) implies that |E(
√|η|) − E(

√|ξ |)| ≤ 1. We first look at
the case E(

√|η|) = E(
√|ξ |). Using the inequality: for all a, b, |a| < 1 and b > 1,

(
1 + a

b2

)b

− 1 ≤ e
|a|
b

,

we have (denoting c = 1 + 2Cκ ),

∣∣∣∣w(0, ξ)

w(0, η)
− 1

∣∣∣∣=
∣∣∣∣
( |η|

|ξ |
)cE(

√|η|)
− 1

∣∣∣∣� |η − ξ |√|ξ | .
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If E(
√|η|) = E(

√|ξ |) + 1, then
√|ξ | < E(

√|η|) ≤ √|η| and
∣∣∣∣w(0, ξ)

w(0, η)
− 1

∣∣∣∣=
∣∣∣∣
( |η|

|ξ |
)cE(

√|ξ |)( |η|
E(

√|η|)2

)c

− 1

∣∣∣∣
� |η − ξ |√|ξ | +

∣∣∣∣
( |η|

E(
√|η|)2

)c

− 1

∣∣∣∣
and we conclude since∣∣∣∣

( |η|
E(

√|η|)2

)c

− 1

∣∣∣∣� 〈η − ξ〉
|ξ | .

The case E(
√|η|) = E(

√|ξ |) − 1 is treated in the same way.
The second term on the right-hand side of (3.38) is controlled by (A.6) and |ex − 1|

≤ xex,

∣∣eμ(|k|1/2−|l|1/2) − 1
∣∣� μ

|k − l|
|k|1/2 + |l|1/2

eμ|k−l|1/2

� 〈η − ξ, k − l〉√|ξ | + |η| + |k| + |l| e
μ|k−l|1/2

.

Case 2: |ξ | + |η| ≥ 10(|k| + |l|): Here we can treat the first term on the right-hand
side of (3.38) as above and use |ξ | ≥ 4(|k| + |l|) together with (A.12) to treat the second
term.

Case 3: |k| + |l| ≥ 10(|ξ | + |η|): Here we can treat the second term on the right-
hand side of (3.38) as above and use |l| ≥ 4(|ξ | + |η|) together with (A.12) to treat the
first term. �

3.3. Product lemma and other basic properties of A

Unlike the Gλ,σ norm (see Section A.2), the norm defined by A is not an algebra
due to the discrepancy between resonant and non-resonant modes which is as large as
an entire derivative near the critical times. However, A does define an algebra when
restricted to the zero mode, as the zero mode is never resonant. Although A defines an
algebra on the zero modes, the multipliers that appear in the CK terms do not, hence
more generally, we have the following product lemma.

Lemma 3.8 (Product lemma). — For some c ∈ (0,1), all σ > 1, all β > −σ + 1 and

α ≥ 0, the following inequalities hold for all f , g which depend only on v,∥∥|∂v|α〈∂v〉βA(fg)
∥∥

2
� ‖f ‖Gcλ,σ

∥∥|∂v|α〈∂v〉βAg
∥∥

2
(3.39a)

+ ‖g‖Gcλ,σ

∥∥|∂v|α〈∂v〉βAf
∥∥

2
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∥∥∥∥
√

∂tw

w
〈∂v〉βA(fg)

∥∥∥∥
2

� ‖g‖Gcλ,σ

∥∥∥∥
(√

∂tw

w
+ |∂v|s/2

〈t〉s

)
〈∂v〉βAf

∥∥∥∥
2

(3.39b)

+ ‖f ‖Gcλ,σ

∥∥∥∥
(√

∂tw

w
+ |∂v|s/2

〈t〉s

)
〈∂v〉βAg

∥∥∥∥
2

.

We also have for β > −σ + 1 the algebra property,∥∥〈∂v〉βA(fg)
∥∥

2
�
∥∥〈∂v〉βAf

∥∥
2

∥∥〈∂v〉βAg
∥∥

2
.(3.40)

Moreover, (3.39) and (3.40) both hold for A replaced by AR.

Remark 11. — Writing (v′)2 −1 = (v′ −1)2 +2(v′ −1) and v′′ = ∂v(v
′ −1)+ (v′ −

1)∂v(v
′ − 1) (recall (2.13c)), by the bootstrap hypotheses on v′ − 1 combined with (3.40)

we have, ∥∥AR
(
1 − (v′)2)∥∥

2
�
∥∥AR
(
1 − v′)∥∥

2
+ ∥∥AR

(
1 − v′)∥∥2

2
� ε(3.41a) ∥∥∥∥ AR

〈∂v〉v
′′
∥∥∥∥

2

=
∥∥∥∥ AR

〈∂v〉
(
v′∂vv

′)∥∥∥∥
2

�
∥∥AR
(
1 − v′)∥∥

2
+ ∥∥AR

(
1 − v′)∥∥2

2
� ε.(3.41b)

Proof of Lemma 3.8. — The proof of (3.39a) follows from Lemmas 3.5 and 3.4 com-
bined with a paraproduct decomposition; the argument is similar to many used in the
sequel so is omitted.

Let us now focus on (3.39b) which is more intricate. Let us also just treat the case
β = 0; actually any β > 1 −σ can be treated by adjusting c accordingly and using (A.12).
Moreover, we focus on t ≥ 1; the case t ∈ (0,1) is easier and is not actually necessary for
the proof of Theorem 1. Write

M(t, ξ) =
√

∂tw(t, ξ)

w(t, ξ)
A0(t, ξ),

and decompose fg with a paraproduct (see Section A.1):

fg = Tf g + Tg f +R(f , g).

Consider the first term on the Fourier side:

̂MTf g(ξ) = 1
2π

∑
M≥8

M(t, ξ)

∫
ξ ′

ĝ(ξ ′)M f̂
(
ξ − ξ ′)

<M/8
dξ ′.

The goal is to use (3.16) to pass M onto g. On the support of the integrand (see Sec-
tion A.1),

∣∣|ξ | − ∣∣ξ ′∣∣∣∣≤ ∣∣ξ − ξ ′∣∣≤ 3/2
(

M
16

)
≤ 6
∣∣ξ ′∣∣/32,(3.42)
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and hence 26|ξ ′|/32 ≤ |ξ | ≤ 38|ξ ′|/32. Therefore (A.7) implies for some c′ ∈ (0,1) that
|ξ |s ≤ |ξ ′|s + c′|ξ − ξ ′|s, and hence by (3.42),

∣∣̂MTf g(ξ)
∣∣�∑

M≥8

∫
ξ ′

√
∂tw(t, ξ)

w(t, ξ)

〈
ξ ′〉σ eλ|ξ ′|s J0(ξ)

∣∣ĝ(ξ ′)
M

∣∣ec′λ|ξ−ξ ′|s

× ∣∣f̂ (ξ − ξ ′)
<M/8

∣∣dξ ′.

By (3.31) it follows

∣∣̂MTf g(ξ)
∣∣�∑

M≥8

∫
ξ ′

√
∂tw(t, ξ)

w(t, ξ)
A0

(
ξ ′)∣∣ĝ(ξ ′)

M

∣∣e10μ|η−ξ |1/2+c′λ|ξ−ξ ′|s

× ∣∣f̂ (ξ − ξ ′)
<M/8

∣∣dξ ′.

Then by (3.16), (A.11) and (A.12), for any c ∈ (c′,1),

∣∣̂MTf g(ξ)
∣∣�∑

M≥8

∫
ξ ′

[√
∂tw(t, ξ ′)
w(t, ξ ′)

+ |ξ ′|s/2

〈t〉s

]
A0

(
ξ ′)∣∣ĝ(ξ ′)

M

∣∣ecλ|ξ−ξ ′|s

× ∣∣f̂ (ξ − ξ ′)
<M/8

∣∣dξ ′.

Since |ξ | ≈ M by (3.42), (A.2) and (A.3) imply

‖MTf g‖2
2 �
∑
M≥8

∥∥∥∥
(√

∂tw

w
+ |∂v|s/2

〈t〉s

)
AgM

∥∥∥∥
2

2

‖f<M/8‖2
Gcλ,σ

�
∥∥∥∥
(√

∂tw

w
+ |∂v|s/2

〈t〉s

)
Ag

∥∥∥∥
2

2

‖f ‖2
Gcλ,σ .

The contribution from MTg f is analogous and yields the other term in (3.39b). Let us
now turn to the remainder,

̂MR(f , g)(ξ) = 1
2π

∑
M∈D

∑
M/8≤M′≤8M

∫
ξ ′
M(t, ξ)g

(
ξ ′)

M
f
(
ξ − ξ ′)

M′dξ ′.

On the support of the integrand (see Section A.1) 1
24 |ξ − ξ ′| ≤ |ξ ′| ≤ 24|ξ − ξ ′|,

hence (A.8) implies for some c′, |ξ |s ≤ c′|ξ ′|s + c′|ξ − ξ ′|s, which gives

∣∣MR(f , g)(ξ)
∣∣�∑

M∈D

∑
M/8≤M′≤8M

∫
ξ ′

√
∂tw(t, ξ)

w(t, ξ)
〈ξ〉σ ec′λ|ξ ′|s J0(ξ)

× ∣∣g(ξ ′)
M

∣∣ec′λ|ξ−ξ ′|s∣∣f (ξ − ξ ′)
M′
∣∣dξ ′.
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Since 1 ≤ t ≤ 2|ξ | on the support of the integrand, by Lemma 3.1, (A.11) and (A.12),

∣∣MR(f , g)(ξ)
∣∣�∑

M∈D

∑
M/8≤M′≤8M

∫
ξ ′

|ξ |s/2

〈t〉s
〈ξ〉σ+s/2ec′λ|ξ ′|s J0(ξ)

× ∣∣g(ξ ′)
M

∣∣ec′λ|ξ−ξ ′|s∣∣f (ξ − ξ ′)
M′
∣∣dξ ′

�
∑
M∈D

∑
M/8≤M′≤8M

∫
ξ ′

( |ξ ′|s/2

〈t〉s
+ |ξ − ξ ′|s/2

〈t〉s

)
ecλ|ξ ′|s 1

〈ξ ′〉
× ∣∣g(ξ ′)

M

∣∣ecλ|ξ−ξ ′|s∣∣f (ξ − ξ ′)
M′
∣∣dξ ′,

for any c ∈ (c′,1). Therefore (A.3) and implies

∥∥MR(f , g)(ξ)
∥∥

2
�
∑
M∈D

∑
M/8≤M′≤8M

∥∥∥∥ |∂v|s/2

〈t〉s
gM

∥∥∥∥
Gcλ,σ−1

‖fM′‖Gcλ

+ ‖gM‖Gcλ,σ−1

∥∥∥∥ |∂v|s/2

〈t〉s
fM′

∥∥∥∥
Gcλ

�
(∑

M∈D

∥∥∥∥ |∂v|s/2

〈t〉s
gM

∥∥∥∥
2

Gcλ,σ

)1/2

‖f ‖Gcλ

+
(∑

M∈D

‖gM‖2
Gcλ,σ

)1/2∥∥∥∥ |∂v|s/2

〈t〉s
f

∥∥∥∥
Gcλ

,

which by (A.2), proves (3.39b).
The proof in the case with A replaced by AR proceeds the same. Indeed, from

Lemma 3.6 we see that it is not a matter of wNR vs wR, it is only a matter of having either
one or other, but not both. �

4. Elliptic estimates

The purpose of this section is to provide a thorough analysis of �t . In particular,
in this section we prove Proposition 2.4.

4.1. Lossy estimate

The following is the fundamental estimate on φ which allows to trade the regularity
of f in a high norm for decay of the streamfunction in a slightly lower norm; the analogue
of (2.5). This estimate is clear for the elliptic operator that arises from the linearized
problem, which we denote by

�L = ∂2
z + (∂v − t∂z)

2.(4.1)



INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS 237

As can be easily seen from examining �−1
L (e.g. (1.4)), we cannot expect to gain O(t−2)

decay without paying two derivatives. Notice that since the coefficient v′′ effectively con-
tains a derivative on f (see (2.13)), the estimate below loses three derivatives. This loss can
be treated with more precision, which is necessary in Section 4.2.

Due to the ‘lossy’ nature of the lemma, this can only be used when φ is being mea-
sured in a low norm, however, this occurs in many places in the proof, most notably the
treatment of transport in Section 5, the treatment of [∂tv] and v′∂v[∂tv] in Proposition 2.5
and even the proof of the more precise elliptic estimate in Section 4.2.

Lemma 4.1 (Lossy elliptic estimate). — Under the bootstrap hypotheses, for ε sufficiently small,

∥∥P �=0φ(t)
∥∥
Gλ(t),σ−3 � ‖f (t)‖Gλ(t),σ−1

1 + t2
.(4.2)

Proof. — Omitting the time-dependence in λ, φ and f , first note

‖P �=0φ‖2
Gλ,σ−3 =

∑
k �=0

∫
η

e2λ|k,η|s〈k, η〉2σ−6
∣∣φ̂(k, η)

∣∣2dη(4.3)

=
∑
k �=0

∫
η

e2λ|(k,η)|s 〈k, η〉2σ−2

〈k, η〉4(k2 + |η − kt|2)2

× (k2 + |η − kt|2)2∣∣φ̂(k, η)
∣∣2dη

� 1
〈t〉4

‖�LP �=0φ‖2
Gλ,σ−1 .

We write �t as a perturbation of �L via (recall the definitions (2.10), (4.1)),

�LP �=0φ = P �=0f + (1 − (v′)2)(∂v − t∂z)
2P �=0φ − v′′(∂v − t∂z)P �=0φ.

By the algebra inequality (A.10),

‖�LP �=0φ‖Gλ,σ−1 � ‖f ‖Gλ,σ−1 + ∥∥1 − (v′)2∥∥
Gλ,σ−1‖�LP �=0φ‖Gλ,σ−1

+ ∥∥v′′∥∥
Gλ,σ−1

∥∥(∂y − t∂z)P �=0φ
∥∥
Gλ,σ−1 .

Therefore, (3.41) implies,

‖�LP �=0φ‖Gλ,σ−1 � ‖f ‖Gλ,σ−1 + ε‖�LP �=0φ‖Gλ,σ−1 .

Together with (4.3), this implies the a priori estimate (4.2) provided that ε is sufficiently
small. �
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4.2. Precision elliptic control

Now we turn to the proof of Proposition 2.4, announced in Section 2.3. This is the
main elliptic estimate which underlies the treatment of reaction in Section 6 and the key
estimates of Section 8. If �t were simply �L then the estimate would be trivial. However,
the coefficients depend on the vorticity, which both couples all of the frequencies in the v

direction together and introduces the potential for losing regularity (it is key that the co-
efficients only depend on v). The simplest effect one can see is the appearance of the CK
multipliers on the coefficients collected in (2.29), which occur when ‘derivatives’ taken on
the LHS of (2.28) land on the coefficients of �t . Notice that these ‘CCK’ terms contain
the more dangerous resonant regularity (see (3.10)). This effect is controlled in Proposi-
tion 2.5. The other effect one sees is the 〈∂v(∂zt)

−1〉−1 on the LHS, which is a precise way
of treating the loss due to the fact that v′′ effectively contains a derivative on f .

Proof of Proposition 2.4. — Since the coefficients only depend on v, �tφ = f decou-
ples mode-by-mode in the z frequencies. Hence, we essentially prove a mode-by-mode
analogue of (2.28) and then sum.

As in Lemma 4.1 write (recall (2.10), (4.1)),

�Lφ = f + (1 − (v′)2)(∂v − t∂z)
2φ − v′′(∂v − t∂z)φ.

Define the multipliers

M1(t, l, ξ) =
〈
ξ

lt

〉−1 |l, ξ |s/2

〈t〉s
AP �=0

M2(t, l, ξ) =
〈
ξ

lt

〉−1
√

∂tw

w
ÃP �=0.

Clearly,

∑
i=1,2

‖Mi f ‖2
2 � 1

〈t〉2s

∥∥|∇|s/2P �=0Af
∥∥2

2
+
∥∥∥∥
√

∂tw

w
P �=0Ãf

∥∥∥∥
2

2

,

and hence the proposition would be trivial if �Lφ = f . Define,

T1 = (1 − (v′)2)(∂v − t∂z)
2φ

T2 = −v′′(∂v − t∂z)φ

and divide each via a paraproduct decomposition in the v variable only
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T1 =
∑
M≥8

(
1 − (v′)2)

M
(∂v − t∂z)

2φ<M/8

+
∑
M≥8

(
1 − (v′)2)

<M/8
(∂v − t∂z)

2φM

+
∑
M∈D

∑
1
8 M≤M′≤8M

(
1 − (v′)2)

M′(∂v − t∂z)
2φM

= T1
HL + T1

LH + T1
R

T2 = −
∑
M≥8

(
v′′)

M
(∂v − t∂z)φ<M/8 −

∑
M≥8

(
v′′)

<M/8
(∂v − t∂z)φM

−
∑
M∈D

∑
1
8 M≤M′≤8M

(
v′′)

M′(∂v − t∂z)φM

= T2
HL + T2

LH + T2
R.

The basic idea is to treat the HL terms by passing Mi onto the coefficients and to treat
the LH terms by passing the Mi onto φ and using ε sufficiently small to absorb these
terms on the left-hand side of (2.28). Each step has several complications, dealt with and
discussed below.

4.2.1. Low-high interactions

Since T1
LH contains more derivatives on φ than T2

LH, the former is strictly harder
so we treat only T1

LH. In what follows we use the shorthand

G(ξ) = ̂
(
1 − (v′)2)(ξ).

Writing T1
LH on the frequency side with this convention gives

̂M1T1
LH(l, ξ) = − 1

2π

∑
M≥8

∫
ξ ′
M1(t, l, ξ)G

(
ξ − ξ ′)

<M/8

× (ξ ′ − lt
)2

φ̂l

(
ξ ′)

M
dξ ′.

On the support of the integrand (see Section A.1),

∣∣|l, ξ | − ∣∣l, ξ ′∣∣∣∣≤ ∣∣ξ − ξ ′∣∣≤ 3/2
(

M
16

)
≤ 6
∣∣ξ ′∣∣/32 ≤ 6

∣∣l, ξ ′∣∣/32,(4.4)

and hence 26|l, ξ ′|/32 ≤ |l, ξ | ≤ 38|l, ξ ′|/32 and 26|ξ ′|/32 ≤ |ξ | ≤ 38|ξ ′|/32. There-
fore, (A.7) implies that there exists a c ∈ (0,1) such that

eλ|l,ξ |s ≤ eλ|l,ξ ′|s+cλ|ξ−ξ ′|s .
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Therefore (also using |ξ | ≈ |ξ ′|):
∣∣ ̂M1T1

LH(l, ξ)
∣∣�∑

M≥8

∫
ξ ′

〈
ξ ′

lt

〉−1 |l, ξ ′|s/2

〈t〉s

〈
l, ξ ′〉σ Jl(ξ)

× ecλ|ξ−ξ ′|s∣∣G(ξ − ξ ′)
<M/8

∣∣∣∣ξ ′ − lt
∣∣2∣∣φ̂l

(
ξ ′)

M

∣∣eλ|l,ξ ′|s dξ ′.

The goal is now to pass the multiplier M1 onto φ. It is important here that we are not
comparing different modes in z, and hence (3.31) applies. Hence by (A.11) (since c < 1),

∣∣ ̂M1T1
LH(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

〈
ξ ′

lt

〉−1 |l, ξ ′|s/2

〈t〉s
eλ|ξ−ξ ′|s∣∣G(ξ − ξ ′)

<M/8

∣∣∣∣ξ ′ − lt
∣∣2

× Al

(
ξ ′)∣∣φ̂l

(
ξ ′)

M

∣∣dξ ′.

Then (A.3), (A.2) and (3.41a) imply
∥∥M1T1

LH

∥∥2

2
=
∑
l �=0

∥∥M1T1
LH(l)
∥∥2

2

�
∑
l �=0

∑
M≥8

∥∥(1 − (v′)2)
<M/8

∥∥2

Gλ,2

∥∥M1�LP �=0(φl)M

∥∥2

2

� ε2‖M1�LP �=0φ‖2
2,

completing the treatment of M1T1
LH, as this can be absorbed by the LHS of (2.28).

Now turn to M2T1
LH, which by the frequency localization on the support of the

integrand (4.4) together with (A.7), is bounded by

∣∣ ̂M2T1
LH(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

〈
ξ ′

lt

〉−1
√

∂twl(ξ)

wl(ξ)

〈
l, ξ ′〉σ J̃l(ξ)

× ecλ|ξ−ξ ′|s G
(
ξ − ξ ′)

<M/8

∣∣ξ ′ − lt
∣∣2∣∣φ̂l

(
ξ ′)

M

∣∣eλ|l,ξ ′|s dξ ′.

Now, by (3.16). it follows that a proof similar to that used to treat M1T1
LH implies

∥∥M2T1
LH

∥∥2

2
� ε2‖M1�Lφ‖2

2 + ε2‖M2�Lφ‖2
2,

which completes the treatment of ‖M2T1
LH‖2

2.

4.2.2. High-low interactions

Consider first M1T2
HL. The notation is deceptive: the frequency in z could be very

large and hence more ‘derivatives’ are appearing on φ and we will be in a situation like
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the LH terms. Hence we break into two cases:

̂M1T2
HL(l, ξ) = − 1

2π

∑
M≥8

∫
ξ ′
[1|l|≥ 1

16 |ξ | + 1|l|< 1
16 |ξ |]M1(t, l, ξ)v̂′′(ξ − ξ ′)

M

× i
(
ξ ′ − lt

)
φ̂l

(
ξ ′)

<M/8
dξ ′

= ̂M1T2,z
HL(l, ξ) + ̂M1T2,v

HL(l, ξ).

First consider M1T2,z
HL, which we treat as a Low-High term. On the support of the inte-

grand, we claim that there is some c ∈ (0,1) such that,

|l, ξ |s ≤ ∣∣l, ξ ′∣∣s + c
∣∣ξ − ξ ′∣∣s.(4.5)

To see this, one can consider separately the cases 1
16 |ξ | ≤ |l| ≤ 16|ξ | and |l| > 16|ξ |,

applying (A.8) and (A.7) respectively. It follows that

∣∣ ̂M1T2,z
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

1|l|> 1
16 |ξ |

|l|s/2

〈t〉s
〈l〉σ Jl(ξ)ecλ|ξ−ξ ′|s∣∣v̂′′(ξ − ξ ′)

M

∣∣

× ∣∣ξ ′ − lt
∣∣∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|l,ξ ′|s dξ ′,

where we also used |ξ | � |lt| to remove the leading factor 〈ξ/lt〉−1. As in the treatment
of M1T1

LH, we apply (3.31) (as we are not comparing different z modes) and (A.11) to
deduce

∣∣ ̂M1T2,z
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

1|l|> 1
16 |ξ |

|l|s/2

〈t〉s
eλ|ξ−ξ ′|s∣∣v̂′′(ξ − ξ ′)

M

∣∣∣∣ξ ′ − lt
∣∣Al

(
ξ ′)

× ∣∣φ̂l

(
ξ ′)

<M/8

∣∣dξ ′.

Since |ξ ′ − lt| ≤ |l|2 + |ξ ′ − lt|2, applying (A.3), (A.2) and (3.41),
∥∥M1T2,z

HL

∥∥2

2
=
∑
l �=0

∥∥M1T2,z
HL(l)
∥∥2

2
�
∑
M≥8

∥∥v′′
M

∥∥2

Gλ,3‖M1�LP �=0φ‖2
2(4.6)

� ε2‖M1�LP �=0φ‖2
2.

Next consider M1T2,v
HL. On the support of the integrand, the ‘derivatives’ are all

landing on v′′ and since this function essentially contains a derivative of f it is here where
we need the 〈ξ/lt〉−1 (see (2.13)). In this case, using |ξ ′| ≤ 3

16 |ξ − ξ ′| analogous to (4.4),
∣∣∣∣ξ − ξ ′∣∣− |l, ξ |∣∣≤ ∣∣l, ξ ′∣∣≤ |ξ |/16 + ∣∣ξ ′∣∣≤ ∣∣ξ − ξ ′∣∣/16 + 17

∣∣ξ ′∣∣/16(4.7)

≤ 67
256

∣∣ξ − ξ ′∣∣.
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Therefore by (A.7), there exists some c ∈ (0,1) such that

∣∣ ̂M1T2,v
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

1|l|< 1
16 |ξ |

〈
ξ

lt

〉−1 |l, ξ |s/2

〈t〉s
〈l, ξ〉σ Jl(ξ)eλ|ξ−ξ ′|s

× ∣∣v̂′′(ξ − ξ ′)
M

∣∣∣∣ξ ′ − lt
∣∣∣∣φ̂l

(
ξ ′)

<M/8

∣∣ecλ|l,ξ ′|s dξ ′.

Since we will pass M1 onto v′′, Lemma 3.6 could imply a loss. However, from Lemma
3.6 and the definitions (3.10), (3.8), we see that on the support of the integrand we have
(using that |ξ | � |l|):

Jl(ξ) � JR
(
ξ − ξ ′)e20μ|ξ ′|1/2

.(4.8)

Since c < 1 and s > 1/2, then (4.8) and (A.11) (also |l| � |ξ | ≈ |ξ − ξ ′|) imply

∣∣ ̂M1T2,v
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

〈
ξ − ξ ′

lt

〉−1 |ξ − ξ ′|s/2

〈t〉s
AR
(
ξ − ξ ′)∣∣v̂′′(ξ − ξ ′)

M

∣∣

× ∣∣ξ ′ − lt
∣∣∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|l,ξ ′|s dξ ′.

Therefore,

∣∣ ̂M1T2,v
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

1

〈 ξ−ξ ′
lt

〉〈lt〉
|ξ − ξ ′|s/2

〈t〉s
AR
(
ξ − ξ ′)∣∣v̂′′(ξ − ξ ′)

M

∣∣〈lt〉
× ∣∣ξ ′ − lt

∣∣∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|l,ξ ′|s dξ ′

�
∑
M≥8

∫
ξ ′

|ξ − ξ ′|s/2

〈t〉s

AR(ξ − ξ ′)
〈ξ − ξ ′〉

∣∣v̂′′(ξ − ξ ′)
M

∣∣〈lt〉∣∣ξ ′ − lt
∣∣

× ∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|l,ξ ′|s dξ ′.

Finally, by (A.3) (σ > 6), (A.2) Lemma 4.1 and the bootstrap hypotheses we have

∥∥M1T2,v
HL

∥∥2

2
�
∑
M≥8

1
〈t〉2s

∥∥∥∥|∂v|s/2 AR

〈∂v〉v
′′
M

∥∥∥∥
2

2

∥∥t2φ<M/8

∥∥2

Gλ,σ−3(4.9)

� ε2

〈t〉2s

∥∥∥∥|∂v|s/2 AR

〈∂v〉v
′′
∥∥∥∥

2

2

� ε2CCK2
λ.

This is sufficient to treat M1T2
HL.

The corresponding argument to show
∥∥M1T1

HL

∥∥2

2
� ε2‖M1�Lφ‖2

2 + ε2CCK1
λ
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is similar and hence omitted. Note that in the case of T1
HL no derivative needs to be

recovered on the coefficients (and would be impossible due to lack of time-decay). This
completes the treatment of the High-Low terms involving M1.

The argument for M2 is only slightly different. We treat M2T2
HL; the case M2T1

HL

is analogous. As in M1T2
HL, we divide into separate cases:

̂M2T2
HL(l, ξ) = − 1

2π

∑
M≥8

∫
ξ ′
[1|l|≥ 1

16 |ξ | + 1|l|< 1
16 |ξ |]M2(t, l, ξ)v̂′′(ξ − ξ ′)

M

× i
(
ξ ′ − lt

)
φ̂l

(
ξ ′)

<M/8
dξ ′

= ̂M2T2,z
HL(l, ξ) + ̂M2T2,v

HL(l, ξ).

First consider M2T2,z
HL, which like M1T2,z

HL, we treat as a Low-High term. As there, (4.5)
applies on the support of the integrand and hence by (3.31) (since we are not comparing
different z frequencies) and (A.11):

∣∣ ̂M2T2,z
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

1|l|≥ 1
16 |ξ |

√
∂twl(ξ)

wl(ξ)
eλ|ξ−ξ ′|s∣∣v̂′′(ξ − ξ ′)

M

∣∣

× ∣∣ξ ′ − lt
∣∣Ãl

(
ξ ′)∣∣φ̂l

(
ξ ′)

<M/8

∣∣dξ ′.

As in the treatment of M2T1
LH above in Section 4.2.1, we apply (3.16), and then a proof

similar to that used to treat M1T2,z
HL in (4.6) implies

∥∥M2T2,z
HL

∥∥2

2
� ε2‖M2�Lφ‖2

2 + ε2‖M1�Lφ‖2
2,(4.10)

which completes the treatment of M2T2,z
HL.

Now turn to M2T2,v
HL. As in the treatment of M1T2,v

HL, (4.7) holds on the support
of the integrand, and hence so does (4.8) with Jl(ξ) replaced by J̃l(ξ) (recall (2.22a)).
Therefore, by (A.7) for some c ∈ (0,1) followed by (4.8) and (A.11) implies

∣∣ ̂M2T2,v
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

1|l|< 1
16 |ξ |

〈
ξ

lt

〉−1
√

∂twl(ξ)

wl(ξ)

〈
ξ − ξ ′〉σ J̃l(ξ)eλ|ξ−ξ ′|s

× ∣∣v̂′′(ξ − ξ ′)
M

∣∣∣∣ξ ′ − lt
∣∣∣∣φ̂l

(
ξ ′)

<M/8

∣∣ecλ|l,ξ ′|s dξ ′

�
∑
M≥8

∫
ξ ′

1|l|< 1
16 |ξ |

〈 ξ

lt
〉|lt|

√
∂twl(ξ)

wl(ξ)
AR
(
ξ − ξ ′)∣∣v̂′′(ξ − ξ ′)

M

∣∣

× |lt|∣∣ξ ′ − lt
∣∣∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|l,ξ ′|s dξ ′.
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Then by |l| � |ξ | ≈ |ξ − ξ ′| and (3.16) we have

∣∣ ̂M2T2,v
HL(l, ξ)

∣∣�∑
M≥8

∫
ξ ′

(√
∂tw0(ξ − ξ ′)
w0(ξ − ξ ′)

+ |ξ − ξ ′|s/2

〈t〉s

)
AR(ξ − ξ ′)
〈ξ − ξ ′〉

× ∣∣v̂′′(ξ − ξ ′)
M

∣∣|lt|∣∣ξ ′ − lt
∣∣〈ξ ′〉∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|l,ξ ′|s dξ ′.

Hence, by (A.3) (σ > 7), (A.2), Lemma 4.1 and the bootstrap hypotheses we have

∥∥M2T2,v
HL

∥∥2

2
�
∑
M≥8

(
1

〈t〉2s

∥∥∥∥|∂v|s/2 AR

〈∂v〉v
′′
M

∥∥∥∥
2

2

+
∥∥∥∥
√

∂tw

w

AR

〈∂v〉v
′′
M

∥∥∥∥
2

2

)

× ∥∥t2φ<M/8

∥∥2

Gλ,σ−3

� ε2CCK2
λ + ε2CCK2

w.

Together with (4.10), this completes the treatment of M2T2
HL. The treatment of M2T1

HL

is analogous and omitted.

4.2.3. Remainders

The last terms to consider are T1
R and T2

R. In these terms powers of ∂v can be
split evenly between the two factors. However, the same is not true of l. For this reason,
we treat both remainders as Low-High terms. The difference between T1 and T2 here is
insignificant since it is straightforward to gain a power of 〈∂v〉−1 for v′′. Hence we focus
only on T1

R.
Begin with M1T1

R and divide into two cases based on the relative size of ξ ′ and l,

∣∣̂M1T1
R(l, ξ)

∣∣�∑
M∈D

∑
M/8≤M′≤8M

∫
[1|l|>100|ξ ′| + 1|l|≤100|ξ ′|]M1(t, l, ξ)

× ∣∣G(ξ − ξ ′)
M′
∣∣∣∣ξ ′ − lt

∣∣2∣∣φ̂l

(
ξ ′)

M

∣∣dξ ′

= ∣∣ ̂M1T1,z

R (l, ξ)
∣∣+ ∣∣ ̂M1T1,v

R (l, ξ)
∣∣.

Consider first M1T1,z

R . Since on the support of the integrand,

∣∣|l, ξ | − ∣∣l, ξ ′∣∣∣∣≤ ∣∣ξ − ξ ′∣∣≤ 3M′

2
≤ 12M ≤ 24

∣∣ξ ′∣∣≤ 24
100

∣∣l, ξ ′∣∣,(4.11)

inequality (A.7) implies,
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∣∣ ̂M1T1,z

R (l, ξ)
∣∣�∑

M∈D

∑
M/8≤M′≤8M

∫
1|l|>100|ξ ′|

〈
ξ

lt

〉−1 |l, ξ ′|s/2

〈t〉s

〈
l, ξ ′〉σ Jl(ξ)

× ecλ|ξ−ξ ′|s∣∣G(ξ − ξ ′)
M′
∣∣∣∣ξ ′ − lt

∣∣2∣∣φ̂l

(
ξ ′)

M

∣∣eλ|l,ξ ′|s dξ ′.

By 1
24 |ξ ′| ≤ |ξ − ξ ′| ≤ 24|ξ ′| we have the rough bound from (3.11),

Jl(ξ)

Jl(ξ ′)
� e

3μ
2 |ξ |1/2 � e50μ|ξ−ξ ′|1/2

.(4.12)

Therefore, (A.11) implies

∣∣ ̂M1T1,z

R (l, ξ)
∣∣�∑

M∈D

∑
M/8≤M′≤8M

∫
1|l|>100|ξ ′|

〈
ξ

lt

〉−1 |l, ξ |s/2

〈t〉s

× eλ|ξ−ξ ′|s∣∣G(ξ − ξ ′)
M′
∣∣∣∣ξ ′ − lt

∣∣2Al

(
ξ ′)∣∣φ̂l

(
ξ ′)

M

∣∣dξ ′.

Since t ≥ 1, and 〈ξ ′/lt〉 ≈ 1 on the support of the integrand, by (4.11),

∣∣ ̂M1T1,z

R (l, ξ)
∣∣�∑

M∈D

∑
M/8≤M′≤8M

∫
1|l|>100|ξ ′|M1

(
t, l, ξ ′)eλ|ξ−ξ ′|s

× ∣∣G(ξ − ξ ′)
M′
∣∣∣∣ξ ′ − lt

∣∣2∣∣φ̂l

(
ξ ′)

M

∣∣dξ ′.

Taking the L2 norm in ξ , applying (A.3) and (A.2) (note the M′ sum only contains 7
terms),

∥∥M1T1,z

R (l)
∥∥

2
�
∑
M′∈D

∥∥(1 − (v′)2)
M′
∥∥
Gλ,2

∑
M′/8≤M≤8M′

∥∥M1�L(φl)M

∥∥
2

�
∑
M′∈D

∥∥(1 − (v′)2)
M′
∥∥
Gλ,2

∥∥M1�L(φl)∼M′
∥∥

2

�
(∑

M′∈D

∥∥(1 − (v′)2)
M′
∥∥2

Gλ,2

)1/2

×
(∑

M′∈D

∥∥M1�L(φl)∼M′
∥∥2

2

)1/2

� ε‖M1�Lφl‖2,

where the last line followed from (3.41a). Taking squares and summing over l �= 0 implies
∥∥M1T1,z

R
∥∥

2
� ε2‖M1�LP �=0φ‖2

2.(4.13)
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Turn now to M1T1,v

R . On the support of the integrand in this case,

∣∣ξ − ξ ′∣∣≤ 24
∣∣ξ ′∣∣≤ 24

∣∣l, ξ ′∣∣
∣∣l, ξ ′∣∣≤ 101

∣∣ξ ′∣∣≤ 2424
∣∣ξ − ξ ′∣∣.

Therefore by (A.8) there exists a c ∈ (0,1) such that

|l, ξ |s ≤ ∣∣∣∣l, ξ ′∣∣+ ∣∣ξ − ξ ′∣∣∣∣s ≤ c
∣∣l, ξ ′∣∣s + c

∣∣ξ − ξ ′∣∣s.
Hence,

∣∣ ̂M1T1,v

R (l, ξ)
∣∣�∑

M∈D

∑
M/8≤M′≤8M

∫
1|l|≤100|ξ ′|

〈
ξ

lt

〉−1 |l, ξ |s/2

〈t〉s

〈
l, ξ ′〉σ/2

× 〈ξ − ξ ′〉σ/2
Jl(ξ)ecλ|ξ−ξ ′|s∣∣G(ξ − ξ ′)

M′
∣∣∣∣ξ ′ − lt

∣∣2
× ∣∣φ̂l

(
ξ ′)

M

∣∣ecλ|l,ξ ′|s dξ ′.

Using again (4.12) and (A.11) with |l, ξ ′| ≈ |ξ − ξ ′|, and 〈 ξ ′
lt
〉〈 ξ

lt
〉−1 � 〈ξ ′〉 implies

∣∣ ̂M1T1,v

R (l, ξ)
∣∣�∑

M∈D

∑
M/8≤M′≤8M

∫
1|l|≤100|ξ ′|

〈
ξ ′

lt

〉−1 |l, ξ ′|s/2

〈t〉s
eλ|ξ−ξ ′|s

× 〈ξ − ξ ′〉σ/2+1∣∣G(ξ − ξ ′)
M′
∣∣∣∣ξ ′ − lt

∣∣2Al

(
ξ ′)

× ∣∣φ̂l

(
ξ ′)

M

∣∣dξ ′.

An argument similar to that used to complete the proof of ‖M1T1,z

R ‖2 in (4.13) implies

∥∥M1T1,v

R
∥∥2

2
� ε2 ‖M1�Lφ‖2

2 .

This completes the treatment of M1T1
R; as discussed above, M1T2

R is treated in a similar
manner and is hence omitted. Combining this argument with those used to treat M2T1

LH

we may also easily treat M2T1
R and M2T2

R. The proof is omitted and the result is

∥∥M2T1
R
∥∥2

2
+ ∥∥M2T2

R
∥∥2

2
� ε2 ‖M1�Lφ‖2

2 + ε2 ‖M2�Lφ‖2
2 .

This completes the treatment of the remainder terms and hence the proof of Proposi-
tion 2.4. �
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5. Transport

In this section we prove Proposition 2.2. As discussed above, we adapt methods
similar to [33, 49, 54] for this purpose. This adaptation is not completely straightforward
since Jk(η) assigns slightly different regularities to modes which are near the critical time.
Dealing with this will require special attention and all of the available time decay from
the velocity field.

In the methods of [33, 49, 54] the goal is to gain 1 − s derivatives from the differ-
ence Ak(η) − Al(ξ), and hence be able to absorb the leading contributions of TN with
CKλ. Decompose this difference:

Ak(η) − Al(ξ) = Al(ξ)
[
eλ|k,η|s−λ|l,ξ |s − 1

]

+ Al(ξ)eλ|k,η|s−λ|l,ξ |s
[

Jk(η)

Jl(ξ)
− 1
]〈k, η〉σ

〈l, ξ〉σ

+ Al(ξ)eλ|k,η|s−λ|l,ξ |s
[〈k, η〉σ

〈l, ξ〉σ
− 1
]
.

In what follows we write

TN = i
∑

k,l

∫
η,ξ

Ak(η)
¯̂
fk(η)ûk−l(η − ξ)<N/8 · (l, ξ)Al(ξ)f̂l(ξ)N

× [eλ|k,η|s−λ|l,ξ |s − 1
]
dηdξ

+ i
∑

k,l

∫
η,ξ

Ak(η)
¯̂
fk(η)ûk−l(η − ξ)<N/8 · (l, ξ)Al(ξ)f̂l(ξ)Neλ|k,η|s−λ|l,ξ |s

×
[

Jk(η)

Jl(ξ)
− 1
]〈k, η〉σ

〈l, ξ〉σ
dηdξ

+ i
∑

k,l

∫
η,ξ

Ak(η)
¯̂
fk(η)ûk−l(η − ξ)<N/8 · (l, ξ)Al(ξ)f̂l(ξ)Neλ|k,η|s−λ|l,ξ |s

×
[〈k, η〉σ

〈l, ξ〉σ
− 1
]

dηdξ

= TN;1 + TN;2 + TN;3.

5.1. Term TN;1: exponential regularity

First we treat TN;1 for which the methods of [33, 49, 54] easily adapt. By |ex − 1| ≤
xex and (A.6),
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|TN;1| ≤
∑

k,l

∫
η,ξ

∣∣Af̂k(η)
∣∣∣∣ûk−l(η − ξ)<N/8

∣∣|l, ξ |Al(ξ)
∣∣f̂l(ξ)N

∣∣

× λ
∣∣|k, η|s − |l, ξ |s∣∣eλ||k,η|s−|l,ξ |s|dηdξ

� λ
∑

k,l

∫
η,ξ

∣∣Af̂k(η)
∣∣∣∣ûk−l(η − ξ)<N/8

∣∣|l, ξ |Al(ξ)
∣∣f̂l(ξ)N

∣∣

× ||k, η| − |l, ξ ||
|k, η|1−s + |l, ξ |1−s

eλ||k,η|s−|l,ξ |s|dηdξ.

Since on the support of the integrand (see Section A.1),

∣∣|k, η| − |l, ξ |∣∣≤ |k − l, η − ξ | ≤ 6
32

|l, ξ |,(5.1a)

(26/32)|l, ξ | ≤ |k, η| ≤ (38/32)|l, ξ |,(5.1b)

inequalities (A.7) and (A.12) imply, for some c ∈ (0,1),

|TN;1| � λ
∑

k,l

∫
η,ξ

∣∣Af̂k(η)
∣∣∣∣ûk−l(η − ξ)<N/8

∣∣|l, ξ |s/2|k, η|s/2Al(ξ)

× ∣∣f̂l(ξ)N

∣∣ecλ|k−l,η−ξ |s dηdξ.

Hence (A.4) implies (since σ > 6),

|TN;1| � λ
∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|s/2AfN
∥∥

2
‖u<N/8‖Gλ;σ−4 .

Therefore by Lemma 4.1 and the bootstrap hypotheses,

|TN;1| � ε
λ

〈t〉2−KDε/2

∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|s/2AfN
∥∥

2
.(5.2)

5.2. Term TN;2: effect of J

The most difficult of the three terms in TN is TN;2 since J is sensitive to where it is
being evaluated in (t, k, η). We divide the integral as follows

TN;2 = i
∑

k,l

∫
η,ξ

[
χS + χL

]
A ¯̂

fk(η)ûk−l(η − ξ)<N/8 · (l, ξ)Al(ξ)f̂l(ξ)N

× eλ|k,η|s−λ|l,ξ |s
[

Jk(η)

Jl(ξ)
− 1
]〈k, η〉σ

〈l, ξ〉σ
dηdξ

= TS
N;2 + TL

N;2,

where χS = 1t≤ 1
2 min(

√|ξ |,√|η|) and χL = 1 − χS.
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Focus first on TS
N;2. In this term we apply Lemma 3.7 to gain 1/2 derivatives.

Indeed, on the support of the integrand, (5.1) holds and hence by (A.7) and Lemma 3.7
we deduce

∣∣TS
N;2
∣∣�∑

k,l

∫
η,ξ

χS
∣∣Af̂k(η)

∣∣|l, ξ |1/2
∣∣ûk−l(η − ξ)<N/8

∣∣Al(ξ)
∣∣f̂l(ξ)N

∣∣

× 〈k − l, η − ξ〉ecλ|k−l,η−ξ |s dξdη.

Since c < 1 it follows by (5.1), (A.11) and (A.12) that

∣∣TS
N;2
∣∣�∑

k,l

∫
η,ξ

χS
∣∣Af̂k(η)

∣∣|l, ξ |1/2
∣∣ûk−l(η − ξ)<N/8

∣∣Al(ξ)
∣∣f̂l(ξ)N

∣∣

× eλ|k−l,η−ξ |s dξdη

�
∑

k,l

∫
η,ξ

χS
∣∣Af̂k(η)

∣∣(1 + |l, ξ |s/2|k, η|s/2
)∣∣ûk−l(η − ξ)<N/8

∣∣

× Al(ξ)
∣∣f̂l(ξ)N

∣∣eλ|k−l,η−ξ |s dξdη.

Hence by (A.4) followed by the bootstrap hypotheses and Lemma 4.1,
∣∣TS

N;2
∣∣� ‖u<N/8‖Gλ,σ−4

∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|s/2AfN
∥∥

2
(5.3)

+ ‖u<N/8‖Gλ,σ−4‖Af∼N‖2‖AfN‖2

� ε

〈t〉2−KDε/2

∥∥|∇|s/2Af∼N

∥∥2

2
+ ε

〈t〉2−KDε/2
‖Af∼N‖2

2.

Now focus on the more difficult TL
N;2, where the resonant and non-resonant

modes are being assigned slightly different regularities. There is a potential problem if
Lemma 3.6 incurs a loss. Hence we divide into the two natural cases:

TL
N;2 = i

∑
k,l

∫
η,ξ

χLAk(η)
¯̂
fk(η)ûk−l(η − ξ)<N/8 · (l, ξ)

[
χD + χ∗]Al(ξ)

× f̂l(ξ)Neλ|k,η|s−λ|l,ξ |s
[

Jk(η)

Jl(ξ)
− 1
]

dηdξ

= TD
N;2 + T∗

N;2,

where χD = 1t∈Ik,η
1t∈Ik,ξ

1k �=l and χ∗ = 1 − χD (‘D’ for ‘difficult’).
First focus on TD

N;2 which is expected to be challenging. We will throw away any
possible gain from the −1 and apply (3.34); the time decay will make this unimportant.
By (5.1) and (A.7) (note also that on the support of the integrand, |η| � 1),
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∣∣TD
N;2
∣∣�∑

k,l �=0

∫
η,ξ

∣∣Af̂k(η)
∣∣∣∣ûk−l(η − ξ)<N/8

∣∣|l, ξ |χDAl(ξ)
∣∣f̂l(ξ)N

∣∣

× ecλ|k−l,η−ξ |s |η|
k2

√
∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)
e20μ|k−l,η−ξ |1/2

dηdξ.

Applying (A.11) implies

∣∣TD
N;2
∣∣�∑

k,l �=0

∫
η,ξ

∣∣Af̂k(η)
∣∣∣∣ûk−l(η − ξ)<N/8

∣∣χDAl(ξ)
∣∣f̂l(ξ)N

∣∣|l, ξ |

× eλ|k−l,η−ξ |s |η|
k2

√
∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)
dηdξ.

On the support of the integrand Al(ξ) � Ãl(ξ) and Ak(η) � Ãk(η) and since 1 ≤ t ≈ η

k
,

∣∣TD
N;2
∣∣�∑

k,l �=0

∫
η,ξ

∣∣Ãf̂k(η)
∣∣t2
∣∣ûk−l(η − ξ)<N/8

∣∣χDÃl(ξ)
∣∣f̂l(ξ)N

∣∣

× |l, ξ |
|η| eλ|k−l,η−ξ |s

√
∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)
dηdξ.

By the definition of χD and (5.1), we have |l, ξ | � |η|, hence (A.4) implies:

∣∣TD
N;2
∣∣� t2‖P �=0u<N/8‖Gλ,σ−4

∥∥∥∥
√

∂tw

w
Ãf∼N

∥∥∥∥
2

∥∥∥∥
√

∂tw

w
ÃfN

∥∥∥∥
2

,

where note that since k �= l by the definition of χD, we may restrict to non-zero modes
in u, crucial to get the full O(t−2) decay. Therefore by Lemma 4.1 and the bootstrap
hypotheses,

∣∣TD
N;2
∣∣� ε

∥∥∥∥
√

∂tw

w
Ãf∼N

∥∥∥∥
2

∥∥∥∥
√

∂tw

w
ÃfN

∥∥∥∥
2

.(5.4)

This completes the treatment of TD
N;2.

It remains to treat T∗
N;2. We divide into two cases based on the relative size of |l|

and |ξ |:

T∗
N;2 = i

∑
k,l

∫
η,ξ

χLAk(η)
¯̂
fk(η)ûk−l(η − ξ)<N/8 · (l, ξ)χ∗

× [1|l|>100|ξ | + 1|l|≤100|ξ |]Al(ξ)f̂l(ξ)N
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× eλ|k,η|s−λ|l,ξ |s
[

Jk(η)

Jl(ξ)
− 1
]

dηdξ

= T∗,z
N;2 + T∗,v

N;2.

First consider T∗,z
N;2. On the support of the integrand, note |η| < 313

1000 |l| and hence by
(A.6), (3.11) and (A.12),

∣∣∣∣Jk(η)

Jl(ξ)
− 1

∣∣∣∣ =
∣∣∣∣wk(t, η)−1eμ|η|1/2 + eμ|k|1/2

wl(t, ξ)−1eμ|ξ |1/2 + eμ|l|1/2 − 1

∣∣∣∣
� e

3
2 μ|η|1/2−μ|l|1/2 + ∣∣eμ|k|1/2−μ|l|1/2 − 1

∣∣
�μ

1
|l|1/2

+ |k − l|
|k|1/2 + |l|1/2

eμ|k−l|1/2
.

Therefore by (A.11), (A.12) and |l, ξ | � |l|,
∣∣T∗,z

N;2
∣∣�∑

k,l

∫
η,ξ

χLχ∗∣∣Af̂k(η)
∣∣1|l|>100|ξ ||l|1/2

∣∣ûk−l(η − ξ)<N/8

∣∣

× Al(ξ)
∣∣f̂l(ξ)N

∣∣eλ|k−l,η−ξ |s dηdξ

�
∑

k,l

∫
η,ξ

χLχ∗∣∣Af̂k(η)
∣∣1|l|>100|ξ ||l|s

∣∣ûk−l(η − ξ)<N/8

∣∣

× Al(ξ)
∣∣f̂l(ξ)N

∣∣eλ|k−l,η−ξ |s dηdξ.

Applying (A.4), the bootstrap hypotheses and Lemma 4.1 as in the treatment of TS
N;2,

∣∣T∗,z
N;2
∣∣� ε

〈t〉2−KDε/2

∥∥|∇|s/2Af∼N

∥∥2

2
.(5.5)

Turn now to T∗,v

N;2. Note that on the support of the integral, |η| ≈ |ξ |. By definition of χ∗,
we may apply (3.31), which together with (A.7) and (A.11) implies

∣∣T∗,v

N;2
∣∣�∑

k,l

∫
η,ξ

χLχ∗1|l|≤100|ξ |
∣∣Af̂k(η)

∣∣∣∣ûk−l(η − ξ)<N/8

∣∣|l, ξ |

× Al(ξ)
∣∣f̂l(ξ)N

∣∣eλ|k−l,η−ξ |s dηdξ.

Since |l, ξ | � |ξ | � t2, we have |l, ξ | � |k, η|s/2|l, ξ |s/2t2−2s and therefore,

∣∣T∗,v

N;2
∣∣�∑

k,l

∫
η,ξ

χ∗χL|k, η|s/2
∣∣Af̂k(η)

∣∣t2−2s
∣∣ûk−l(η − ξ)<N/8

∣∣|l, ξ |s/2

× Al(ξ)
∣∣f̂l(ξ)N

∣∣eλ|k−l,η−ξ |s dηdξ.
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By (A.4), Lemma 4.1 and the bootstrap hypotheses,

∣∣T∗,v

N;2
∣∣� ε

〈t〉2s−KDε/2

∥∥|∇|s/2Af∼N

∥∥2

2
,(5.6)

where note 2s − KDε/2 ≥ s + 1/2 for ε sufficiently small.
Combining (5.3), (5.4), (5.5) and (5.6) we have for ε sufficiently small,

|TN;2| � ε

〈t〉s+1/2

∥∥|∇|s/2Af∼N

∥∥2

2
+ ε

∥∥∥∥
√

∂tw

w
Ãf∼N

∥∥∥∥
2

2

+ ε

〈t〉2−KDε/2
‖Af∼N‖2

2,(5.7)

which completes the treatment of TN;2.

5.3. Term TN;3: Sobolev correction

Next, turn to TN;3 which is the easiest to treat. By the mean value theorem
and (5.1),

∣∣∣∣〈k, η〉σ

〈l, ξ〉σ
− 1

∣∣∣∣� |k − l, η − ξ |
〈l, ξ〉 ,

which implies arguments similar to those applied above can deduce

|TN;3| � ε

〈t〉2−KDε/2
‖Af∼N‖2‖AfN‖2.(5.8)

Indeed, putting (5.2), (5.7) and (5.8) together with (A.2) proves Proposition 2.2.

6. Reaction

Focus first on an individual frequency shell and divide each one into several natural
pieces

RN = R1
N + Rε,1

N + R2
N + R3

N

where

R1
N =
∑
k,l �=0

∫
η,ξ

A ¯̂
fk(η)Ak(η)(ηl − ξk)φ̂l(ξ)N f̂k−l(η − ξ)<N/8dηdξ

Rε,1
N = −

∑
k,l �=0

∫
η,ξ

A ¯̂
fk(η)Ak(η)

[
̂

(
1 − v′)∇⊥φ

l

]
(ξ)N

· ∇̂f k−l(η − ξ)<N/8dηdξ
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R2
N =
∑

k

∫
η,ξ

A ¯̂
fk(η)Ak(η)[̂∂tv](ξ)N∂̂vf k(η − ξ)<N/8dηdξ

R3
N = −

∑
k,l

∫
η,ξ

A ¯̂
fk(η)Ak−l(η − ξ)ûl(ξ)N∇̂f k−l(η − ξ)<N/8dηdξ.

6.1. Main contribution

The main contribution comes from R1
N. We subdivide this integral depending on

whether or not (l, ξ) and/or (k, η) are resonant as each combination requires a slightly
different treatment. Define the partition:

1 = 1t /∈Ik,η,t /∈Il,ξ
+ 1t /∈Ik,η,t∈Il,ξ

+ 1t∈Ik,η,t /∈Il,ξ
+ 1t∈Ik,η,t∈Il,ξ

= χNR,NR + χNR,R + χR,NR + χR,R,

where the NR and R denotes ‘non-resonant’ and ‘resonant’ respectively referring to (k, η)

and (l, ξ). Correspondingly, denote

R1
N =
∑
k,l �=0

∫
η,ξ

[
χNR,NR + χNR,R + χR,NR + χR,R

]

× A ¯̂
fk(η)Ak(η)(ηl − ξk)φ̂l(ξ)N f̂k−l(η − ξ)<N/8dηdξ

= RNR,NR
N + RNR,R

N + RR,NR
N + RR,R

N .

6.1.1. Treatment of RNR,NR
N

Since on the support of the integrand of R1
N,

∣∣|l, ξ | − |k, η|∣∣≤ |k − l, η − ξ | ≤ 6
32

|l, ξ |,(6.1)

it follows from (A.7) that for some c ∈ (0,1),

∣∣RNR,NR
N

∣∣≤∑
k,l �=0

∫
η,ξ

∣∣χNR,NRA ¯̂
fk(η)Jk(η)eλ|l,ξ |s ecλ|k−l,η−ξ |s∣∣

× 〈k, η〉σ |ηl − ξk|∣∣φ̂l(ξ)N f̂k−l(η − ξ)<N/8

∣∣dηdξ.

Moreover, by (3.31), (6.1) (which implies |k, η| ≈ |l, ξ |) and (A.11),

∣∣RNR,NR
N

∣∣�∑
k,l �=0

∫
η,ξ

χNR,NR
∣∣Af̂k(η)

∣∣eλ|k−l,η−ξ |s |ηl − ξk|

× Al(ξ)
∣∣φ̂l(ξ)N f̂k−l(η − ξ)<N/8

∣∣dηdξ.
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Again by (6.1), |ηl − ξk| � |l, ξ |1−s/2|k, η|s/2|k − l, η − ξ | which implies by (A.4),

∣∣RNR,NR
N

∣∣�∑
k,l �=0

∫
η,ξ

|k, η|s/2χNR,NR
∣∣Af̂k(η)

∣∣|l, ξ |1−s/2Al(ξ)
∣∣φ̂l(ξ)N

∣∣(6.2)

× |k − l, η − ξ |∣∣f̂k−l(η − ξ)<N/8

∣∣eλ|k−l,η−ξ |s dηdξ

�
∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2AP �=0χ
NRφN

∥∥
2
‖f ‖Gλ,σ

� ε
∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2AP �=0χ
NRφN

∥∥
2
,(6.3)

where the last line followed from the bootstrap hypotheses. Here we are denoting χNRf

the multiplier ̂χNRf (t, l, ξ) = 1t /∈Il,ξ
f̂l(t, ξ).

6.1.2. Treatment of RR,NR
N

Next we turn to RR,NR
N which is one of the terms w was designed to treat. Physi-

cally, it describes the action of the non-resonant modes on the resonant modes. By (6.1)
and (A.7), for some c ∈ (0,1),

∣∣RR,NR
N

∣∣�∑
k,l �=0

∫
η,ξ

χR,NR
∣∣Af̂k(η)

∣∣Jk(η)eλ|l,ξ |s ecλ|k−l,η−ξ |s〈l, ξ〉σ |l, ξ |

× ∣∣φ̂l(ξ)N∇̂f k−l(η − ξ)<N/8

∣∣dηdξ.

Consider separately the following cases:

∣∣RR,NR
N

∣∣�∑
k,l �=0

∫
η,ξ

χR,NR[1t∈Ik,ξ
+ 1t /∈Ik,ξ

]∣∣Af̂k(η)
∣∣Jk(η)

× eλ|l,ξ |s ecλ|k−l,η−ξ |s〈l, ξ〉σ |l, ξ |∣∣φ̂l(ξ)N∇̂f k−l(η − ξ)<N/8

∣∣dηdξ

= RR,NR;D
N + RR,NR;∗

N .

The toy model is adapted to treat RR,NR;D
N , so consider this first. Note that on the support

of the integrand in this case, we have |η| ≈ |ξ |. Therefore, applying (3.34) and (A.11),

RR,NR;D
N �

∑
k,l �=0

∫
η,ξ

χR,NR1t∈Ik,ξ

∣∣Af̂k(η)
∣∣Jl(ξ)

|η|
k2

√
∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)

× eλ|l,ξ |s eλ|k−l,η−ξ |s〈l, ξ〉σ |l, ξ |∣∣φ̂l(ξ)N∇̂f k−l(η − ξ)<N/8

∣∣dηdξ.

Since l2k−2 ≤ 〈l − k〉2, |η| ≈ |ξ | and |l| < 1
4 |ξ | (hence Jl(ξ) � J̃l(ξ)),
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RR,NR;D
N �

∑
k,l �=0

∫
η,ξ

χR,NR1t∈Ik,ξ

∣∣Ãf̂k(η)
∣∣J̃l(ξ)

|ξ |2
l2〈k − l〉2

×
√

∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)
eλ|l,ξ |s eλ|k−l,η−ξ |s〈l, ξ〉σ

× ∣∣φ̂l(ξ)N〈k − l〉4∇̂f k−l(η − ξ)<N/8

∣∣dηdξ.

Applying |k − t−1η| ≤ 1, (A.4) and the bootstrap hypotheses (denoting χ r(t, η) =
12

√|η|≤t≤2|η|):

RR,NR;D
N � ε

∥∥∥∥
√

∂tw

w
Af∼N

∥∥∥∥
2

∥∥∥∥
√

∂tw

w

|∂v|2
∂2

z 〈t−1∂v − ∂z〉2
χ rχNRÃP �=0φN

∥∥∥∥
2

.(6.4)

Turn now to RR,NR;∗
N . In this case we may apply (3.31) (as opposed to (3.30)) and

hence we can exchange Jk(η) for Jl(ξ) without incurring a major cost. Therefore, by
applying the same argument used to treat RNR,NR

N we deduce:

RR,NR;∗
N � ε

∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2χNRAP �=0φN

∥∥
2
.(6.5)

6.1.3. Treatment of RNR,R
N

The next term we treat is RNR,R
N , in which case (k, η) is non-resonant and (l, ξ) is

resonant. It follows that 4|l|2 ≤ |ξ | and since N ≥ 8, (6.1) implies N/4 ≤ |ξ | ≤ 3N/2 and
|η| ≈ |ξ |. By (3.16),

1 �
√

wl(t, ξ)

∂twl(t, ξ)

[√
∂twk(t, η)

wk(t, η)
+ |k, η|s/2

〈t〉s

]
〈η − ξ〉.(6.6)

Applying (6.6), (3.32), (A.7) (using (6.1)) (A.12) and (A.11) (s > 1/2),

∣∣RNR,R
N

∣∣�∑
k,l �=0

∫
η,ξ

χNR,R

[√
∂twk(η)

wk(η)
+ |k, η|s/2

〈t〉s

]

× ∣∣Af̂k(η)
∣∣Jl(ξ)

wR(ξ)

wNR(ξ)

√
wl(t, ξ)

∂twl(t, ξ)

× eλ|l,ξ |s eλ|k−l,η−ξ |s〈l, ξ〉σ |l, ξ |∣∣φ̂l(ξ)N∇̂f k−l(η − ξ)<N/8

∣∣dηdξ.

On the support of the integrand, it follows from (6.1) that |k| < |η| and hence Ak(η) �
Ãk(η). Similarly, Al(ξ) � Ãl(ξ). Therefore (A.4) and the bootstrap hypotheses imply
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∣∣RNR,R
N

∣∣� ε

(∥∥∥∥
√

∂tw

w
Ãf∼N

∥∥∥∥
2

+ 1
〈t〉s

∥∥|∇|s/2Af∼N

∥∥
2

)
(6.7)

×
∥∥∥∥
√

w

∂tw
|∇| wR

wNR
χRÃφN

∥∥∥∥
2

.

6.1.4. Treatment of RR,R
N

In this case both (k, η) and (l, ξ) are resonant, an interaction that was neglected in
the derivation of the toy model. We claim that on the support of the integrand of RR,R

N :

|ηl − ξk|Jk(η)

Jl(ξ)
�
√

∂twk(t, η)

wk(t, η)

[
|l, ξ | wR(t, ξ)

wNR(t, ξ)
+ |l|
]

(6.8)

×
√

wl(t, ξ)

∂twl(t, ξ)
e12μ|k−l,η−ξ |1/2

.

Indeed, if k = l then (3.31) and Lemma 3.4 imply,

|l||η − ξ |Jl(η)

Jl(ξ)
� |l|〈η − ξ〉2

√
∂twk(t, η)

wk(t, η)

√
wl(t, ξ)

∂twl(t, ξ)
e10μ|k−l,η−ξ |1/2

,

from which (6.8) follows by (A.12). If k �= l then as in the proof of (3.32) we apply
Lemma 3.2. If Lemma 3.2 (b) holds then by Lemma 3.4, (3.31) (note that on the support
of the integrand |η| ≈ |ξ | by (6.1) with k2 < 1

4 |η|, l2 < 1
4 |ξ |) and the definitions (3.5), (3.8):

|ηl − ξk|Jk(η)

Jl(ξ)
� |l, ξ |〈k − l, η − ξ〉2

√
∂twk(t, η)

wk(t, η)

√
wl(t, ξ)

∂twl(t, ξ)

× wR(t, ξ)

wNR(t, ξ)
e10μ|k−l,η−ξ |1/2

,

which again implies (6.8) by (A.12). Finally, if Lemma 3.2 (c) holds then by Lemma 3.4,
(3.31) and (A.12),

|ηl − ξk|Jk(η)

Jl(ξ)
� |l, ξ ||k − l, η − ξ |e9μ|k−l,η−ξ |1/2

� |l|
√

∂twk(t, η)

wk(t, η)

√
wl(t, ξ)

∂twl(t, ξ)
e10μ|k−l,η−ξ |1/2

,
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which proves (6.8) in the remaining case. Applying (6.8), (A.7) (using (6.1)) and (A.11)
implies

∣∣RR,R
N

∣∣�∑
k,l �=0

∫
η,ξ

χR,R

√
∂twk(t, η)

wk(t, η)

∣∣Af̂k(η)
∣∣

×
[
|l, ξ | wR(t, ξ)

wNR(t, ξ)
+ |l|
]√

wl(t, ξ)

∂twl(t, ξ)
Al(ξ)

∣∣φ̂l(ξ)N

∣∣eλ|k−l,η−ξ |s

× ∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξ.

Since (k, η) and (l, ξ) are both resonant, Ak(η) � Ãk(η) and Al(ξ) � Ãl(ξ). Then by
(A.4) and the bootstrap hypotheses,

∣∣RR,R
N

∣∣� ε

∥∥∥∥
√

∂tw

w
Ãf∼N

∥∥∥∥
2

(∥∥∥∥
√

w

∂tw
|∇| wR

wNR
χRÃφN

∥∥∥∥
2

(6.9)

+
∥∥∥∥
√

w

∂tw
|∂z|χRÃφN

∥∥∥∥
2

)
,

which completes the treatment of RR,R
N .

6.1.5. Contribution to (2.27)

Combining (6.3), (6.4), (6.5), (6.7), (6.9) and Cauchy-Schwarz we deduce,

∣∣R1
N

∣∣� ε

〈t〉2s

∥∥|∇|s/2Af∼N

∥∥2

2
+ ε

∥∥∥∥
√

∂tw

w
Af∼N

∥∥∥∥
2

2

(6.10)

+ ε〈t〉2s
∥∥|∇|1−s/2χNRAP �=0φN

∥∥2

2

+ ε

∥∥∥∥
√

∂tw

w

|∂v|2
∂2

z 〈t−1∂v − ∂z〉2
χ rχNRÃφN

∥∥∥∥
2

2

+ ε

∥∥∥∥
√

w

∂tw
|∇| wR

wNR
χRÃφN

∥∥∥∥
2

2

+ ε

∥∥∥∥
√

w

∂tw
|∂z|χRÃφN

∥∥∥∥
2

2

,

where χ r(t, η) = 12
√|η|≤t≤2|η|. The treatment of R1

N will then be complete once we have
the following lemma to relate the latter four terms to those in (2.27), on which Proposi-
tion 2.4 can be applied. The primary complication in (6.11) below is the leading factor
〈∂v(t∂z)

−1〉−1 which will require some additional care to include. Recall the presence of
this multiplier arises from the ∂v in the expression of v′′ (see (2.13c)) which appears as a
coefficient in �t ; see Section 4.2 for more information. This lemma expresses something
important: that the multipliers coming from w exactly ‘match’ the loss of ellipticity in �L.
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Lemma 6.1. — Under the bootstrap hypotheses,

〈t〉2s
∥∥|∇|1−s/2χNRAP �=0φ

∥∥2

2
�
∥∥∥∥
〈
∂v

t∂z

〉−1 |∇|s/2

〈t〉s
�LAP �=0φ

∥∥∥∥
2

2

(6.11a)

∥∥∥∥
√

∂tw

w

|∂v|2
∂2

z 〈t−1∂v − ∂z〉2
χ rχNRÃP �=0φ

∥∥∥∥
2

2

�
∥∥∥∥
〈
∂v

t∂z

〉−1
√

∂tw

w
�LÃP �=0φ

∥∥∥∥
2

2

(6.11b)

∥∥∥∥
√

w

∂tw
|∇| wR

wNR
χRÃP �=0φ

∥∥∥∥
2

2

�
∥∥∥∥
〈
∂v

t∂z

〉−1
√

∂tw

w
�LÃP �=0φ

∥∥∥∥
2

2

(6.11c)

∥∥∥∥
√

w

∂tw
|∂z|χRÃP �=0φ

∥∥∥∥
2

2

�
∥∥∥∥
〈
∂v

t∂z

〉−1
√

∂tw

w
�LÃP �=0φ

∥∥∥∥
2

2

.(6.11d)

Proof. — Note that (6.11) is only a statement about the Fourier multipliers and has
nothing really to do with Aφ. Indeed, (6.11a) follows from the pointwise inequality: for
all t ≥ 1 l �= 0 and ξ ∈ R,

〈t〉s|l, ξ |1−s/21t /∈Il,ξ
�
〈
ξ

lt

〉−1(
l2 + |ξ − lt|2) |l, ξ |s/2

〈t〉s
.(6.12)

Proof of (6.12): Consider the case 1
2 |lt| ≤ |ξ | ≤ 2|lt|. By the presence of 1t /∈Il,ξ

, either
|ξ − tl| � |ξ/l| ≈ t (if t2 � |ξ |) or l2 � t (if t2 � |ξ |). In either case,

〈t〉2s|l, ξ |1−s � |l|1−st1+s ≤ l2 + t2 � l2 + |ξ − lt|2,

which implies (6.12). Next consider the case |ξ | < |lt|/2, which implies

〈t〉2s|l, ξ |1−s � t2s|lt|1−s � |lt|1+s � l2 + |ξ − lt|2,

which again implies (6.12). Finally consider the case |ξ | ≥ 2|lt|, in which the leading
〈ξ/lt〉−1 plays a role. In this case (note since t ≥ 1, |ξ | ≥ 2|l|),

〈t〉2s|l, ξ |1−s � |ξ |2−s〈t〉2s−1 |lt|
|ξ | � |ξ |1+s |lt|

|ξ | �
(
l2 + |ξ − lt|2) |lt||ξ | ,

which implies (6.12). As all cases have been covered, this proves (6.11a).
Proof of (6.11b): Inequality (6.11b) follows from the pointwise inequality: Let j be

such that t ∈ Ij,ξ , then for all t ≥ 1, l �= 0 and ξ ∈ R with 2
√|ξ | ≤ t ≤ 2|ξ |:
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|ξ |2
|l|2〈j − l〉2

1t /∈Il,ξ
�
〈
ξ

lt

〉−1(
l2 + |ξ − lt|2).(6.13)

Since t /∈ Il,ξ , |ξ |2 � l2|ξ − lt|2. If 2|lt| ≥ |ξ | then the factor 〈 ξ

lt
〉−1 does not play a role and

(6.13) follows immediately. Next consider the case 2|lt| ≤ |ξ |, which implies |ξ − lt| � |ξ |.
In this case, since ξ ≈ jt and |j| ≤ |l||l − j|,

|ξ |2
|l|2〈j − l〉2

� |ξ |
〈j − l〉2|lt|

∣∣∣∣ ltξ
∣∣∣∣|ξ − lt|2 � |j|

|l|〈j − l〉2

∣∣∣∣ ltξ
∣∣∣∣|ξ − lt|2

�
∣∣∣∣ ltξ
∣∣∣∣|ξ − lt|2.

This verifies (6.13) in every case and hence (6.11b).
Proof of (6.11c): By the definitions of wR and wNR (3.5), (3.8) and (3.14),

√
w(t, ξ)

∂tw(t, ξ)
|l, ξ | wR(t, ξ)

wNR(t, ξ)
1t∈Il,ξ

� |ξ |
(

1 +
∣∣∣∣t − ξ

l

∣∣∣∣
)1/2

wR(t, ξ)

wNR(t, ξ)
1t∈Il,ξ

�
(
l2 + |ξ − tl|2)

√
∂tw(t, ξ)

w(t, ξ)
,

which proves (6.11c).
Proof of (6.11d): Similarly, by (3.14)

√
w(t, ξ)

∂tw(t, ξ)
|l|1t∈Il,ξ

� |l|
√

1 +
∣∣∣∣t − ξ

l

∣∣∣∣1t∈Il,ξ

� |l|
(

1 +
∣∣∣∣t − ξ

l

∣∣∣∣
)√

∂tw(t, ξ)

w(t, ξ)
,

which proves (6.11d). �

Finally, Lemma 6.11 completes the treatment of R1
N; in particular, after summing

in N, (A.2), (6.10) and Lemma 6.11 yield only terms appearing on the RHS of (2.27).

6.2. Corrections

6.2.1. Term Rε,1
N : O(ε) correction to R1

N

In this section we treat Rε,1
N which is higher order in ε than R1

N. We expand (1 −
v′)φl with a paraproduct only in v:
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Rε,1
N = − 1

2π

∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

A ¯̂
fk(η)Ak(η)

(
(η − ξ)l − ξ ′(k − l)

)
ρN(l, ξ)

× [ ̂

(
1 − v′)(ξ ′ − ξ

)]
<M/8

φ̂l

(
ξ ′)

M
f̂k−l(η − ξ)<N/8dηdξdξ ′

− 1
2π

∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

A ¯̂
fk(η)Ak(η)

(
(η − ξ)l − ξ ′(k − l)

)
ρN(l, ξ)

× [ ̂

(
1 − v′)(ξ ′ − ξ

)]
M
φ̂l

(
ξ ′)

<M/8
f̂k−l(η − ξ)<N/8dηdξdξ ′

− 1
2π

∑
M∈D

∑
1
8 M≤M′≤8M

∑
k,l �=0

∫
η,ξ,ξ ′

A ¯̂
fk(η)Ak(η)

(
(η − ξ)l − ξ ′(k − l)

)

× ρN(l, ξ)
[

̂

(
1 − v′)(ξ ′ − ξ

)]
M′φ̂l

(
ξ ′)

M
f̂k−l(η − ξ)<N/8dηdξdξ ′

= Rε,1
N;LH + Rε,1

N;HL + Rε,1
N;HH.

We recall that ρN denotes the Littlewood-Paley cut-off to the N-th dyadic shell in Z × R;
see (A.1). The intuition is as follows: Rε,1

N;LH can be treated in a manner very similar to
R1

N as here (1 − v′) appears essentially as part of the background and Rε,1
N;HL should be

manageable since (1−v′) is controlled by the bootstrap hypotheses and φl provides decay
in time.

Begin first with Rε,1
N;LH. On the support of the integrand,

∣∣|k, η| − |l, ξ |∣∣≤ |k − l, η − ξ | ≤ 3
16

|l, ξ |,(6.14a)

∣∣∣∣l, ξ ′∣∣− |l, ξ |∣∣≤ ∣∣ξ ′ − ξ
∣∣≤ 3

16

∣∣ξ ′∣∣≤ 3
16

∣∣l, ξ ′∣∣,(6.14b)

and hence by two applications of (A.7), there is some c ∈ (0,1) such that

eλ|k,η|s ≤ eλ|l,ξ ′|s+cλ|k−l,η−ξ |s+cλ|ξ ′−ξ |s .

Therefore, (using that |k, η| ≈ |l, ξ ′| from (6.14)),

∣∣Rε,1
N;LH

∣∣�∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

∣∣Af̂k(η)
∣∣∣∣(η − ξ)l − ξ ′(k − l)

∣∣ρN(l, ξ)Jk(η)
〈
l, ξ ′〉σ

× eλ|l,ξ ′|s∣∣φ̂l

(
ξ ′)

M

∣∣ecλ|k−l,η−ξ |s+cλ|ξ ′−ξ |s∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
<M/8

∣∣
× ∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.

From here we may proceed analogous to the treatment of R1
N with (l, ξ ′) playing the role

of (l, ξ) and using (A.5) (instead of (A.4)) together with the bootstrap hypotheses to deal
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with the low-frequency factors. We omit the details and simply conclude that the result is
analogous to (6.10), except with an additional power of ε.

Turn now to Rε,1
N;HL. Similar to what occurs in Section 4.2.2, l could be large rela-

tive to ξ − ξ ′ hence more ‘derivatives’ are appearing on φ than (1 − v′) and we are again
in a situation similar to Rε,1

N;LH. As in Section 4.2.2 we divide the integral based on the
relative size of l and ξ :

Rε,1
N;HL = − 1

2π

∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

A ¯̂
fk(η)[116|l|≥|ξ | + 116|l|<|ξ |]

× Ak(η)
(
(η − ξ)l − ξ ′(k − l)

)
ρN(l, ξ)

× ̂

(
1 − v′)(ξ ′ − ξ

)
M
φ̂l

(
ξ ′)

<M/8
f̂k−l(η − ξ)<N/8dηdξdξ ′

= Rε,1;z
N;HL + Rε,1;v

N;HL.

First consider Rε,1;z
N;HL, where on the support of the integrand, 16|l| ≥ |ξ |.

∣∣|k, η| − |l, ξ |∣∣≤ |k − l, η − ξ | ≤ 3|l, ξ |/16,(6.15a) ∣∣|l, ξ | − ∣∣l, ξ ′∣∣∣∣≤ ∣∣ξ − ξ ′∣∣≤ 38|ξ |/32 � |l|.(6.15b)

If |l| ≥ 16|ξ |, then in fact 38|ξ |/32 < |l|/4, therefore by applying twice (A.7), for some
c ∈ (0,1),

eλ|k,η|s ≤ eλ|l,ξ |s+cλ|k−l,η−ξ |s ≤ eλ|l,ξ ′|s+cλ|ξ−ξ ′|s+cλ|k−l,η−ξ |s .

Alternatively, if 1
16 |ξ | ≤ |l| ≤ 16|ξ | then |ξ − ξ ′| ≈ |l, ξ | and hence (A.7) and (A.8) imply

for some (different) c ∈ (0,1) we have,

eλ|k,η|s ≤ eλ|l,ξ |s+cλ|k−l,η−ξ |s ≤ ecλ|l,ξ ′|s+cλ|ξ−ξ ′|s+cλ|k−l,η−ξ |s .

In both cases, it follows that (using also 〈k, η〉 ≈ 〈l, ξ〉 � 〈l〉 from (6.15)),

∣∣Rε,1;z
N;HL

∣∣�∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

116|l|≥|ξ |
∣∣Af̂k(η)

∣∣∣∣(η − ξ)l − ξ ′(k − l)
∣∣

× ρN(l, ξ)Jk(η)〈l〉σ eλ|l,ξ ′|s∣∣φ̂l

(
ξ ′)

<M/8

∣∣ecλ|ξ−ξ ′|s+cλ|k−l,η−ξ |s

× ∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M

∣∣∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.

For minor technical convenience, divide into low and high frequencies: for some M0 ≥ 8,

∣∣Rε,1;z
N;HL

∣∣�
(∑

M≤M0

+
∑

M≥M0

)∑
k,l �=0

∫
η,ξ,ξ ′

116|l|≥|ξ |
∣∣Af̂k(η)

∣∣
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× ∣∣(η − ξ)l − ξ ′(k − l)
∣∣ρN(l, ξ)Jk(η)〈l〉σ eλ|l,ξ ′|s∣∣φ̂l

(
ξ ′)

<M/8

∣∣
× ecλ|ξ−ξ ′|s+cλ|k−l,η−ξ |s∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M

∣∣
× ∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′

= Rε,1;z
N;HL;L + Rε,1;z

N;HL;H.

Consider next Rε,1;z
N;HL;H. By choosing M0 sufficiently large (relative to our O(1) arithmetic

conventions), on the support of the integrand (k, η) and (l, ξ ′) are both non-resonant by
(6.15). Therefore, by (3.31) followed by (A.11),

Rε,1;z
N;HL;H �

∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

116|l|≥|ξ |
∣∣Af̂k(η)

∣∣∣∣(η − ξ)l − ξ ′(k − l)
∣∣

× ρN(l, ξ)Jl

(
ξ ′)〈l〉σ eλ|l,ξ ′|s1t /∈Il,ξ ′

∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|ξ−ξ ′|s+λ|k−l,η−ξ |s

× ∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M

∣∣∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.

Since l cannot be zero and by (6.15), we have |l, ξ | � |l|1−s/2|k, η|s/2, which implies

Rε,1;z
N;HL;H �

∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

116|l|≥|ξ ||k, η|s/2
∣∣Af̂k(η)

∣∣ρN(l, ξ)|l|1−s/2Jl

(
ξ ′)〈l〉σ

× eλ|l,ξ ′|s1t /∈Il,ξ ′
∣∣φ̂l

(
ξ ′)

<M/8

∣∣eλ|ξ−ξ ′|s+λ|k−l,η−ξ |s∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M

×∣∣|k − l, η − ξ |∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.

Therefore, since |k, η| ≈ |l, ξ | ≈ |l, ξ ′| from (6.15), by (A.5) and (A.2) (denoting χNR
l (t, ξ)

= 1t /∈Il,ξ
),

Rε,1;z
N;HL;H �

∑
M≥8

∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2χNRAP �=0φ∼N

∥∥
2

× ∥∥(1 − v′)
M

∥∥
Gλ,σ−1‖f<N/8‖Gλ,σ

�
∑
M≥8

∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2χNRAP �=0φ∼N

∥∥
2

× 1
M

∥∥(1 − v′)
M

∥∥
Gλ,σ ‖f<N/8‖Gλ,σ

�
∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2χNRAP �=0φ∼N

∥∥
2
‖f<N/8‖Gλ,σ

×
(∑

M≥8

∥∥(1 − v′)
M

∥∥2

Gλ,σ

)1/2

,
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where the last line followed by Cauchy-Schwarz. By (A.1) and the bootstrap hypotheses,

Rε,1;z
N;HL;H � ε2

∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2χNRAP �=0φ∼N

∥∥
2
.(6.16)

The treatment of Rε,1;z
N;HL;L is straightforward by a similar argument. Indeed, on the sup-

port of the integrand, if t ∈ 1l,ξ ′ then necessarily |l| + |ξ ′| � 2M0 ≈ 1. Hence for resonant
frequencies we may simply use Lemma 4.1 to handle φ (as the restriction to low frequen-
cies allows us to gain regularity on φ). For non-resonant contributions to the integral we
use the same method as that used on Rε,1;z

N;HL;H. We omit the details and state the result

∑
N≥8

Rε,1;z
N;HL;L � ε2

〈t〉2s

∥∥|∇|s/2Af
∥∥2

2
+ ε2〈t〉2s

∥∥|∇|1−s/2χNRAP �=0φ
∥∥2

2
+ ε4

〈t〉2
,(6.17)

completing the treatment of Rε,1;z
N;HL.

Next we turn to Rε,1;v
N;HL, in which case we can consider all of the ‘derivatives’ to be

landing on 1 − v′. On the support of the integrand,

∣∣|k, η| − |l, ξ |∣∣≤ |k − l, η − ξ | ≤ 3|l, ξ |/16,(6.18a) ∣∣∣∣ξ − ξ ′∣∣− |l, ξ |∣∣≤ ∣∣l, ξ ′∣∣≤ |ξ |/16 + ∣∣ξ ′∣∣≤ ∣∣ξ − ξ ′∣∣/16 + 17
∣∣ξ ′∣∣/16(6.18b)

≤ 67
∣∣ξ − ξ ′∣∣/100,

which implies by two applications of (A.7) there exists some c ∈ (0,1) such that

eλ|k,η|s ≤ eλ|l,ξ |s+cλ|k−l,η−ξ |s ≤ eλ|ξ−ξ ′|s+cλ|l,ξ ′|s+cλ|k−l,η−ξ |s .

Therefore, since also |l, ξ | ≈ |ξ − ξ ′| by (6.18),

∣∣Rε,1;v
N;HL

∣∣�∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

∣∣Af̂k(η)
∣∣116|l|≤|ξ |Jk(η)

〈
ξ − ξ ′〉σρN(l, ξ)eλ|ξ−ξ ′|s

× ∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M

∣∣|k − l, η − ξ |∣∣l, ξ ′∣∣ecλ|l,ξ ′|s+cλ|k−l,η−ξ |s

× ∣∣φ̂l

(
ξ ′)

<M/8
f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.

We will now use the following analogue of (4.8), which applies on the support of the
integrand due to the frequency localizations (6.18):

Jk(η) � JR
(
ξ − ξ ′)e20μ|ξ ′|1/2+20μ|η−ξ |1/2

.(6.19)

Applying this together with (A.11) and (A.12) implies
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∣∣Rε,1
N;HL

∣∣�∑
M≥8

∑
k,l �=0

∫
η,ξ,ξ ′

∣∣Af̂k(η)
∣∣AR
(
ξ − ξ ′)∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M

∣∣

× ρN(l, ξ)116|l|≤|ξ |eλ|l,ξ ′|s+λ|k−l,η−ξ |s

× ∣∣φ̂l

(
ξ ′)

<M/8
f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.

Since |l, ξ | ≈ |ξ − ξ ′| by (6.18), the sum only includes boundedly many terms. Therefore,
by (A.5), Lemma 4.1 and the bootstrap hypotheses,

∣∣Rε,1
N;HL

∣∣� ‖Af∼N‖2

∥∥AR
(
1 − v′)

∼N

∥∥
2
‖f ‖Gλ,σ−4‖P �=φ‖Gλ,σ−4(6.20)

� ε

〈t〉2
‖Af∼N‖2

2 + ε3

〈t〉2

∥∥AR
(
1 − v′)

∼N

∥∥2

2
,

which completes our treatment of Rε,1
N;HL.

We turn to the remainder term Rε,1
N;HH. Analogous to Section 4.2.3, there is a prob-

lem when l is large compared to ξ . The situation here is only slightly more subtle. We
divide into two cases:

Rε,1
N;HH = − 1

2π

∑
M∈D

∑
1
8 M≤M′≤8M

∑
k,l �=0

∫
η,ξ,ξ ′

A ¯̂
fk(η)[1|l|>100|ξ ′| + 1|l|≤100|ξ ′|]

× Ak(η)
(
(η − ξ)l − ξ ′(k − l)

)
ρN(l, ξ) ̂

(
1 − v′)(ξ ′ − ξ

)
M′

× φ̂l

(
ξ ′)

M
f̂k−l(η − ξ)<N/8dηdξdξ ′

= Rε,1;z
N;HH + Rε,1;v

N;HH.

First consider Rε,1;z
N;HH. On the support of the integrand we have
∣∣|k, η| − |l, ξ |∣∣≤ |k − l, η − ξ | ≤ 6|l, ξ |/32,(6.21a)

∣∣|l, ξ | − ∣∣l, ξ ′∣∣∣∣≤ ∣∣ξ − ξ ′∣∣≤ 24
∣∣ξ ′∣∣≤ 24

100

∣∣l, ξ ′∣∣.(6.21b)

Therefore by two applications of (A.7),

eλ|k,η|s ≤ eλ|l,ξ |s+cλ|k−l,η−ξ |s ≤ eλ|l,ξ ′|s+cλ|ξ−ξ ′|s+cλ|k−l,η−ξ |s .

By |l| > 100|ξ ′| and (6.21), it follows that |ξ | ≤ 2524
10000 |l| and hence (l, ξ) cannot be res-

onant and |η| ≤ 1.531|k|, which implies by N ≥ 8 that (k, η) cannot be resonant. Also
using

∣∣(η − ξ)l − ξ ′(k − l)
∣∣≤ ∣∣l, ξ ′∣∣|k − l, η − ξ |,
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we have (3.31), (A.11) and (A.12) together imply

∣∣Rε,1;z
N;HH

∣∣�∑
M∈D

∑
M′≈M

∑
k,l �=0

∫
η,ξ,ξ ′

∣∣Af̂k(η)
∣∣1|l|>100|ξ ′|ρN(l, ξ)Al

(
ξ ′)∣∣l, ξ ′∣∣

× ∣∣φ̂l

(
ξ ′)

M

∣∣eλ|ξ−ξ ′|s∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M′
∣∣

× eλ|k−l,η−ξ |s∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.

By (A.5), |l, ξ ′| ≈ N (by (6.21)) and (A.2),∣∣Rε,1;z
N;HH

∣∣� ∥∥|∇|s/2Af∼N

∥∥‖f<N/8‖Gλ,σ

∥∥|∇|1−s/2χNRAφ∼N

∥∥
2

(6.22)

×
∑
M′∈D

∥∥(1 − v′)
M′
∥∥
Gλ,σ−1

�
∥∥|∇|s/2Af∼N

∥∥‖f<N/8‖Gλ,σ

∥∥|∇|1−s/2χNRAφ∼N

∥∥
2

×
(∑

M′∈D

∥∥(1 − v′)
M′
∥∥2

Gλ,σ

)1/2

� ε2
∥∥|∇|s/2Af∼N

∥∥
2

∥∥|∇|1−s/2χNRAP �=0φ∼N

∥∥
2
,

where the last line followed from the bootstrap hypotheses.
Turn to Rε,1;v

N;HH. On the support of the integrand there holds∣∣|k, η| − |l, ξ |∣∣≤ |k − l, η − ξ | ≤ 3|l, ξ |/16,(6.23a) ∣∣ξ − ξ ′∣∣≤ 24
∣∣ξ ′∣∣≤ 24

∣∣l, ξ ′∣∣(6.23b) ∣∣l, ξ ′∣∣≤ 101
∣∣ξ ′∣∣≤ 2424

∣∣ξ − ξ ′∣∣,(6.23c)

and hence by (A.7) followed by (A.8) for some c ∈ (0,1),

eλ|k,η|s ≤ eλ|l,ξ |s+cλ|k−l,η−ξ |s ≤ ecλ|l,ξ ′|s+cλ|ξ−ξ ′|s+cλ|k−l,η−ξ |s .

Notice that here N � |ξ, l| � M. By Lemma 3.1 and (6.23),

Jk(η) � e2μ|k,η|1/2 � e2μ|k−l,η−ξ |1/2+2μ|l,ξ ′|1/2+2μ|ξ ′−ξ |1/2
.

The previous two estimates together with (A.11) and (A.12) imply

∣∣Rε,1;v
N;HH

∣∣�∑
M∈D

∑
M′≈M

∑
k,l �=0

∫
η,ξ,ξ ′

∣∣Af̂k(η)
∣∣1|l|≤100|ξ ′|ρN(l, ξ)

× eλ|ξ−ξ ′|s∣∣ ̂

(
1 − v′)(ξ ′ − ξ

)
M′
∣∣eλ|l,ξ ′|s∣∣φ̂l

(
ξ ′)

M

∣∣eλ|k−l,η−ξ |s

× ∣∣f̂k−l(η − ξ)<N/8

∣∣dηdξdξ ′.
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By applying (A.5), Lemma 4.1 and the bootstrap hypotheses similar to above,
∣∣Rε,1;v

N;HH

∣∣�∑
M∈D

∑
M′≈M

‖Af∼N‖2‖P �=0φM‖Gλ,σ−3

∥∥(1 − v′)
M′
∥∥
Gλ,σ−2‖f<N/8‖Gλ,σ

� ε
∑
M∈D

∑
M′≈M

‖Af∼N‖2
1

M2
‖P �=0φM‖Gλ,σ−3

∥∥(1 − v′)
M′
∥∥
Gλ,σ

� ε3

N〈t〉2
‖Af∼N‖2,

where the last two lines followed from N � M ≈ M′, Cauchy-Schwarz and (A.2). To-
gether with (6.22), (6.20), (6.16) and (6.17), this completes the treatment of Rε,1

N after
summing N and applying (A.2), hence reducing to terms appearing on the RHS of (2.27).

6.2.2. Term R3
N: remainder from commutator

Now we treat R3
N, which arose from the integration by parts intended for treating

transport. By (A.4) (for σ > 6), the bootstrap hypotheses,

∣∣R3
N

∣∣�∑
k,l

∫
η,ξ

∣∣Af̂k(η)
∣∣|k − l, η − ξ |∣∣ûl(ξ)N

∣∣Ak−l(η − ξ)

× ∣∣̂fk−l(η − ξ)<N/8

∣∣dηdξ

� ‖Af∼N‖2‖uN‖Hσ−4‖Af<N/8‖2

� ε

〈t〉2−KDε/2
‖Af∼N‖2

2 + ε〈t〉2−KDε/2‖uN‖2
Hσ−4,

where we also used that |k − l, η − ξ | � |l, ξ | on the support of the integrand. By (A.2),
Lemma 4.1 and the bootstrap hypotheses,

∑
N≥8

∣∣R3
N

∣∣� ε3

〈t〉2−KDε/2
.

This completes the treatment of R3
N, as this appears on the RHS of (2.27).

6.3. Zero mode reaction term

Next we turn to R2
N, which is the part of the reaction term involving [∂tv]. Here

we need to make sure that assigning slightly less regularity to [∂tv] than f is consistent
with R2

N. Also note that [∂tv] has non-resonant regularity, but forces resonant frequencies
here, expressed in the loss that Lemma 3.6 could incur. Write R2

N on the frequency-side
and divide into the two natural cases
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R2
N = −

∑
k

∫
η,ξ

A ¯̂
fk(η)
[
χD + χ∗]Ak(η)[̂∂tv](ξ)Ni(η − ξ)

× f̂k(η − ξ)<N/8dηdξ

= R2;D
N + R2;∗

N ,

where χD = 1t∈Ik,η
1t∈Ik,ξ

and χ∗ = 1−χD. Next note that on the support of the integrand
we have

|k| + |η − ξ | ≤ 3N/32 ≤ 3|ξ |/16(6.24)

which implies |k| � |η| ≈ |ξ |. Also note |ξ | � N.
First treat the term R2;∗

N . By (A.7), (3.31), (A.11) and (A.12),

∣∣R2;∗
N

∣∣�∑
k

∫
η,ξ

χ∗∣∣Af̂k(η)
∣∣A0(ξ)

∣∣[̂∂tv](ξ)N

∣∣eλ|k,η−ξ |s∣∣f̂k(η − ξ)<N/8

∣∣dηdξ.

To deal with the norm imbalance between [∂tv] and f , by |ξ | � 1 and |η| ≈ |ξ |,
∣∣R2;∗

N

∣∣�∑
k

∫
η,ξ

χ∗∣∣Af̂k(η)
∣∣ |η|s/2|ξ |s/2

〈ξ〉s
A0(ξ)

∣∣[̂∂tv](ξ)N

∣∣

× eλ|k,η−ξ |s∣∣f̂k(η − ξ)<N/8

∣∣dηdξ.

It follows from (A.4) and the bootstrap hypotheses that

∣∣R2;∗
N

∣∣� ε
∥∥|∇|s/2Af∼N

∥∥
2

∥∥∥∥|∂v|s/2 A
〈∂v〉s

[∂tv]N

∥∥∥∥
2

(6.25)

� ε

〈t〉2s

∥∥|∇|s/2Af∼N

∥∥2

2
+ ε〈t〉2s

∥∥∥∥|∂v|s/2 A
〈∂v〉s

[∂tv]N

∥∥∥∥
2

2

.

The former is absorbed by CKλ and the latter is controlled by CKv,1
λ .

Next turn to R2;D
N . Applying (A.7) and (6.24), there exists a c ∈ (0,1) such that,

∣∣R2;D
N

∣∣�∑
k

∫
η,ξ

χD
∣∣Af̂k(η)

∣∣A0(ξ)
Jk(η)

J0(ξ)

∣∣[̂∂tv](ξ)N

∣∣ecλ|k,η−ξ |s |η − ξ |

× ∣∣f̂k(η − ξ)<N/8

∣∣dηdξ.

Since t ∈ Ik,η, Ak(η) � Ãk(η). Moreover, by (3.34), (A.11) and (A.12),
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∣∣R2;D
N

∣∣�∑
k

∫
η,ξ

χD
∣∣Ãf̂k(η)

∣∣A0(ξ)
∣∣[̂∂tv](ξ)N

∣∣ |η|
k2

√
∂twk(η)

wk(η)

√
∂tw0(ξ)

w0(ξ)

× eλ|k,η−ξ |s∣∣f̂k(η − ξ)<N/8

∣∣dηdξ.

Since t ≈ η

k
, by (6.24), (A.4) and the bootstrap hypotheses,

∣∣R2;D
N

∣∣�∑
k

∫
η,ξ

χD
∣∣Ãf̂k(η)

∣∣A0(ξ)
∣∣[̂∂tv](ξ)N

∣∣ t1+s

|k|1−s〈ξ〉s

√
∂twk(η)

wk(η)
(6.26)

×
√

∂tw0(ξ)

w0(ξ)
eλ|k,η−ξ |s∣∣f̂k(η − ξ)<N/8

∣∣dηdξ

� εt1+s

∥∥∥∥
√

∂tw

w
Ãf∼N

∥∥∥∥
2

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

[∂tv]N

∥∥∥∥
2

� ε

∥∥∥∥
√

∂tw

w
Ãf∼N

∥∥∥∥
2

2

+ εt2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

[∂tv]N

∥∥∥∥
2

2

.

The first term is absorbed by CKw and the latter is controlled by CKv,1
w . This completes

the treatment of R2
N. Combining the results of (6.25), (6.26) with Sections 6.2.1 and 6.2.2

and applying (A.2) completes the treatment of RN, proving Proposition 2.3.

7. Remainder

In this section we prove Proposition 2.6. The commutator cannot gain us anything
so we may as well treat each term separately,

R= 2π
∑
N∈D

∑
1
8 N≤N′≤8N

∫
Af
[
A(uN∇fN′)

]
dxdv

− 2π
∑
N∈D

∑
1
8 N≤N′≤8N

∫
AfuN∇AfN′dxdv

=Ra +Rb.

Consider first Ra, written on the Fourier side:

Ra =
∑
N∈D

∑
N′≈N

∑
k,l

∫
η,ξ

A ¯̂
fk(η)Ak(η)ûl(ξ)N · ∇̂f k−l(η − ξ)N′dξdη.
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On the support of the integrand, |l, ξ | ≈ |k − l, η − ξ | and hence by (A.8) for some
c ∈ (0,1),

|k, η|s ≤ c|k − l, η − ξ |s + c|l, ξ |s.
Hence,

|Ra| �
∑
N∈D

∑
N′≈N

∑
k,l

∫
η,ξ

∣∣Af̂k(η)
∣∣Jk(η)〈l, ξ〉σ/2+1ecλ|l,ξ |s∣∣ûl(ξ)N

∣∣

× 〈k − l, η − ξ〉σ/2−1ecλ|k−l,η−ξ |s∣∣∇̂f k−l(η − ξ)N′
∣∣dξdη.

By Lemma 3.1, (A.11) and (A.12) (since c < 1 and s > 1/2),

|Ra| �
∑
N∈D

∑
N′≈N

∑
k,l

∫
η,ξ

∣∣Af̂k(η)
∣∣eλ|l,ξ |s∣∣ûl(ξ)N

∣∣

× eλ|k−l,η−ξ |s∣∣∇̂f k−l(η − ξ)N′
∣∣dξdη.

Hence by (A.4), Lemma 4.1 and the bootstrap hypotheses,

|Ra| �
∑
N∈D

∑
N′≈N

‖Af ‖2‖uN‖Gλ,σ−4‖fN′‖Gλ,σ−1

�
∑
N′∈D

ε

t2−KDε/2N′ ‖Af ‖2‖fN′‖Gλ,σ � ε3

t2−KDε/2
.

This completes the treatment of Ra. The term Rb is similar and hence omitted. This
completes the proof of Proposition 2.6.

8. Coordinate system controls

In this section we detail the controls on (2.13) and prove Proposition 2.5.

8.1. Derivation of (2.13)

As in Section 2.2, denote v′(t, v(t, y)) = ∂yv(t, y), v′′(t, v(t, y)) = ∂yyv(t, y) and
[∂tv](t, v(t, y)) = ∂tv(t, y). Since by (2.9b), v(t, y) satisfies

d

dt

(
t
(
vy(t, y) − 1

))= −ω0(t, y),

we can directly derive (2.13a) via the chain rule. Similarly, we may also derive (2.13c) via
the chain rule using the definitions of v′ and v′′.
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Deriving (2.13b) requires more work. Notice that

d

dt

(
t
(
v(t, y) − y

))= Ux
0(t, y),(8.1)

and denote C(t, v(t, y)) = v(t, y) − y. From (8.1) we get (recalling the definitions
[∂tv](t, v(t, y)) = ∂tv(t, y) and ũ0(t, v(t, y)) = Ux

0(t, y)):

(8.2)
∂tv(t, y) = 1

t
Ux

0(t, y) − 1
t

(
v(t, y) − y

)

[∂tv](t, v) = 1
t
ũ0(t, v) − 1

t
C(t, v).

Via the chain rule,

∂tC
(
t, v(t, y)

)= ∂tv(t, y) − ∂vC
(
t, v(t, y)

)
∂tv(t, y).(8.3)

Differentiating (8.2) in time and using (8.3), (8.2) and (2.12) eliminates C entirely and
derives (2.13b).

Moreover,

v′(t, v(t, y)
)− 1 = ∂yv(t, y) − 1 = ∂vC

(
t, v(t, y)

)
∂yv(t, y),

which in particular implies

∂vC(t, v) = v′(t, v) − 1
v′(t, v)

.(8.4)

Finally, notice that (8.2) together with (8.4) and (2.14) implies

v′∂v[∂tv](t, v) = −1
t
f0(t, v) − 1

t

(
v′ − 1

)
(t, v).(8.5)

Remark 12. — From (2.13a), (2.13c) and the bootstrap hypotheses, one can show
with relative ease that∥∥A(1 − v′)(t)∥∥

2
+ ∥∥A((v′)2 − 1

)
(t)
∥∥

2
+ ∥∥〈∂v〉−1Av′′(t)

∥∥
2
� ε2.(8.6)

The estimates on (1 − v′) follow from energy estimates on (2.13a) performed with the
unknown t(v′(t, v) − 1) in a manner that is very similar to, but easier than, techniques
applied in Sections 5, 6.3 and 7. Similar control on (v′)2 − 1 and v′′ then follows from
(3.40) (recalling (2.13c)).

The estimates (8.6) suffice for most purposes, however they do not obtain control
on the CCK terms in (2.29). This is because the estimates just described are insensitive
to whether the background shear flow is converging and so cannot ensure that the CCK
integrals are convergent. Hence, in order to do better, in Section 8.2 below we make
estimates that imply the convergence of the shear flow.
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8.2. Proof of Proposition 2.5

The purpose of this section is to prove Proposition 2.5, announced in Section 2.3.
In order to get good control on (2.29), we will rearrange (2.13a) in the following man-
ner using also (8.5) (see also Remark 12). For notational convenience, denote h(t, v) =
v′(t, v) − 1 and write

∂th + [∂tv]∂vh = 1
t
(−f0 − h) = v′∂v[∂tv].(8.7)

For notational convenience we will denote

h̄(t, v) = v′∂v[∂tv] = 1
t
(−f0 − h).(8.8)

The decay of h̄ quantifies how rapidly h is converging to −f0; one can also see this is as
a measure of how rapidly the x-averaged vorticity is converging. The overline does not
refer to complex conjugation but rather to emphasize that h̄ is a measure of how close h

is to −f0. From (8.7) and (2.11) we derive,

∂t h̄ = − h̄

t
− 1

t
(∂t f0 + ∂th) = −2

t
h̄ − [∂tv]∂v h̄ + 1

t

〈
v′∇⊥P �=0φ · ∇f

〉
.(8.9)

The crucial step of the proof of Proposition 2.5 is the decay estimate on h̄ given
in (2.30b). The primary challenge to proving (2.30b) is controlling the last term in (8.9),
which is the transfer of information to the zero modes by nonlinear interactions of non-
zero modes (see (8.10) below). Since it is most crucial, it is natural to begin there.

Proof of (2.30b): From (8.9) we have

d

dt

(
〈t〉2+2s

∥∥∥∥ A
〈∂v〉s

h̄

∥∥∥∥
2

2

)
= −(2 − 2s)t〈t〉2s

∥∥∥∥ A
〈∂v〉s

h̄

∥∥∥∥
2

2

− CKv,2
λ − CKv,2

w(8.10)

− 2〈t〉2+2s

∫
A

〈∂v〉s
h̄

A
〈∂v〉s

([∂tv]∂v h̄
)
dv

+ 2t−1〈t〉2+2s

∫
A

〈∂v〉s
h̄

A
〈∂v〉s

〈
v′∇⊥P �=0φ · ∇f

〉
dv

= −CKv,2
L − CKv,2

λ − CKv,2
w + T h + F.

The term T h is the same nonlinearity that occurs in [∂tv]∂vf we can treat T h in a manner
similar to (2.23) but with u replaced just with [∂tv], f replaced by h̄, A replaced with
〈∂v〉−sA and an additional t2+2s out front (balanced by the decay of h̄). We omit the details
and conclude by the methods of Sections 5, 6.3 and 7 (except neither the zero mode
reaction nor the transport have ‘D’ contributions) and the bootstrap hypotheses that

∣∣T h
∣∣� εCKv,2

λ + εCKv,1
λ + ε〈t〉2s+KDε/2

∥∥∥∥ A
〈∂v〉s

h̄

∥∥∥∥
2

2

.(8.11)
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We apply the bootstrap control on CKv,1
λ and absorb the rest by CKv,2

λ and CKv,2
L

in (8.10).
The main challenge is in the F term (for ‘forcing’). This term describes the nonlin-

ear feedback of the non-zero frequencies onto the zero frequencies, which could lead to
potential instability by arresting the convergence of the background shear flow (which we
are ruling out). First divide into leading order and higher order contributions:

F =
∑
k �=0

2t−1〈t〉2+2s

∫
A

〈∂v〉s
h̄

A
〈∂v〉s

(∇⊥φk · ∇f−k

)
dv

+
∑
k �=0

2t−1〈t〉2+2s

∫
A

〈∂v〉s
h̄

A
〈∂v〉s

(
h∇⊥φk · ∇f−k

)
dv

= F0 + Fε.

As suggested by Section 6.2.1, Fε is not significantly harder than F0, in fact the primary
complications that arise in the treatment of Rε,1

N do not arise in the treatment of Fε . Hence
we focus only on F0; the control of Fε results in, at worst, similar contributions with an
additional power of ε. We begin the treatment of F0 with a paraproduct in v only:

F0 = 2
∑
M≥8

∑
k �=0

t−1〈t〉2+2s

∫
A

〈∂v〉s
h̄

A
〈∂v〉s

((∇⊥φk

)
<M/8

· (∇f−k)M

)
dv

+ 2
∑
M≥8

∑
k �=0

t−1〈t〉2+2s

∫
A

〈∂v〉s
h̄

A
〈∂v〉s

((∇⊥φk

)
M

· (∇f−k)<M/8

)
dv

+ 2
∑
M∈D

∑
M′≈M

∑
k �=0

t−1〈t〉2+2s

∫
A

〈∂v〉s
h̄

A
〈∂v〉s

((∇⊥φk

)
M′ · (∇f−k)M

)
dv

= F0
LH + F0

HL + F0
R.

The term F0
HL looks something like the reaction term as studied in Section 6; dealing with

it in a way that allows us to deduce (2.30b) requires the use of the regularity gap between
h̄ and φ. Consider a single dyadic shell and subdivide based on whether φ has resonant
frequency or not:

F0
HL;M = 1

π

∑
k �=0

t−1〈t〉2+2s

∫
η,ξ

(
χR + χNR

)A0(η)

〈η〉s

̂̄h(η)
A0(η)

〈η〉s

× (∇̂⊥φk(ξ)M · ∇̂f −k(η − ξ)<M/8

)
dηdξ

= F0;R
HL;M + F0;NR

HL;M,

where χR = 1t∈Ik,ξ
and χNR = 1 − χR.
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Consider first the NR contribution. Subdivide further based on the relationship
between time and frequency:

F0;NR
HL;M = 1

π

∑
k �=0

t−1〈t〉2+2s

∫
10|η|≥t

χNR A0(η)

〈η〉s

̂̄h(η)
A0(η)

〈η〉s
(8.12)

× (∇̂⊥φk(ξ)M · ∇̂f −k(η − ξ)<M/8

)
dηdξ

+ 1
π

∑
k �=0

t−1〈t〉2+2s

∫
10|η|<t

χNR A0(η)

〈η〉s

̂̄h(η)
A0(η)

〈η〉s

× (∇̂⊥φk(ξ)M · ∇̂f −k(η − ξ)<M/8

)
dηdξ

= F0;NR,S
HL;M + F0;NR,L

HL;M ,

where the ‘S’ is for ‘short time’ and the ‘L’ is for ‘long time’ (relative to frequency). Con-
sider first the ‘S’ contribution, for which we take advantage of the 〈∂v〉−s to reduce the
power of t (also using |η| ≈ |ξ | � 1),

F0;NR,S
HL;M �

∑
k �=0

t1+s

∫
10|η|≥t

χNR

×
∣∣∣∣A0(η)

〈η〉s

̂̄h(η)A0(η)
(∇̂⊥φk(ξ)M · ∇̂f −k(η − ξ)<M/8

)∣∣∣∣dηdξ

�
∑
k �=0

t1+s

∫
10|η|≥t

χNR

∣∣∣∣ |η|s/2A0(η)

〈η〉s

̂̄h(η)A0(η)|k, ξ |1−s/2φ̂k(ξ)M|k|s/2

× ∣∣∇̂f −k(η − ξ)<M/8

∣∣∣∣∣∣dηdξ.

Hence, by (3.31), (A.7) (using the frequency localizations as usual), (A.11), (A.12), (A.4)
and the bootstrap hypotheses (along with (A.1)),

∑
M≥8

F0;NR,S
HL;M �

∑
M≥8

εt1+s

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄∼M

∥∥∥∥
2

∑
k �=0

〈k〉−2
∥∥|∇|1−s/2χNR(Aφk)M

∥∥
2

(8.13)

� εt2

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄

∥∥∥∥
2

2

+ ε〈t〉2s
∥∥|∇|1−s/2χNRAφ

∥∥2

2
.

The first term can be absorbed by CKv,2
λ whereas the latter requires (6.11) and then

Proposition 2.4 with the bootstrap controls on the CCK integrals.
Turn next to the ‘long’ contribution in (8.12). By (3.31), (A.7) (using also that ||η|−

|ξ || ≤ |η − ξ | < 3|η|/16 on the support of the integrand) and (A.11) we have for some
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c ∈ (0,1),

F0;NR,L
HL;M �

∑
k �=0

t1+2s

∫
10|η|<t

χNR

∣∣∣∣A0(η)

〈η〉s

̂̄h(η)

∣∣∣∣|k, ξ |1−s
∣∣Aφk(ξ)M

∣∣ecλ|k,η−ξ |s

× |k|s∣∣∇̂f k(η − ξ)<M/8

∣∣dηdξ.

Then we use the assumption s ≥ 1/2 in order to deduce |k, ξ |1−s ≤ |k, ξ |s together
with |ξ − kt| � t, which holds on the support of the integrand since 10|η| < t and
1 � 13|η|/16 ≤ |ξ | ≤ 19|η|/16. Hence,

F0;NR,L
HL;M �

∑
k �=0

t2s−1

∫
10|η|<t

χNR|η|s/2

∣∣∣∣A0(η)

〈η〉s

̂̄h(η)

∣∣∣∣|k, ξ |s/2
(
k2 + |ξ − kt|2)

× ∣∣Aφk(ξ)M

∣∣ecλ|k,η−ξ |s |k|2∣∣∇̂f k(η − ξ)<M/8

∣∣dηdξ.

Therefore (also multiplying by 1 ≈ 〈 ξ

kt
〉−1),

F0;NR,L
HL;M �

∑
k �=0

t3s−1

∫
10|η|<t

χNR|η|s/2

∣∣∣∣A0(η)

〈η〉s

̂̄h(η)

∣∣∣∣
〈
ξ

tk

〉−1(
k2 + |ξ − kt|2)

× |k, ξ |s/2

〈t〉s

∣∣Aφk(ξ)M

∣∣ecλ|k,η−ξ |s〈k〉2
∣∣∇̂f −k(η − ξ)<M/8

∣∣dηdξ.

Summing in k and M (using (A.1)) and applying (A.4) and (A.12) we have,

∑
M≥8

F0;NR,L
HL;M � ε

∑
M≥8

t3s−1

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄∼M

∥∥∥∥
2

(8.14)

×
∑
k �=0

k−2

∥∥∥∥
〈
∂v

t∂z

〉−1

�L
|∇|s/2

〈t〉s
(Aφk)M

∥∥∥∥
2

� εt6s−2

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄

∥∥∥∥
2

2

+ ε

∥∥∥∥
〈
∂v

t∂z

〉−1

�L
|∇|s/2

〈t〉s
Aφ

∥∥∥∥
2

2

.

One can verify that we may always choose q̃ > 1/2 such that 6s−2 < 2+2s−2q̃ provided
that we take the restriction that s < 3/4; this is an artifact due to the fact that we took
s in Proposition 2.4 rather than q̃. However, as discussed in Section 2.3, we can without
loss of generality take s close to 1/2. Therefore, the first term is absorbed by CKv,2

λ and
the second term is controlled by Proposition 2.4 and the bootstrap controls on the CCK
terms, completing the treatment of F0;NR,L

HL .
Next consider F0;R

HL;M where, similar to the RNR,R
N term in Section 6, we have to use

the gain from passing A onto φ. By (6.6), (3.32), (A.7), (A.12) and (A.11) we deduce for
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some c ∈ (0,1),

∣∣F0;R
HL;M
∣∣�∑

k �=0

t1+2s

∫
χR

∣∣∣∣
(√

∂tw0(η)

w0(η)
+ |η|s/2

〈t〉s

)
A0(η)

〈η〉s

̂̄h(η)

∣∣∣∣

×
√

wk(ξ)

∂twk(ξ)

|k, ξ |
〈η〉s

wR(ξ)

wNR(ξ)

∣∣Aφ̂k(ξ)M

∣∣∣∣∇̂f −k(η − ξ)<M/8

∣∣
× ecλ|k,η−ξ |s dηdξ

�
∑
k �=0

t1+s

∫
χR

∣∣∣∣
(√

∂tw0(η)

w0(η)
+ |η|s/2

〈t〉s

)
A0(η)

〈η〉s

̂̄h(η)

∣∣∣∣

×
√

wk(ξ)

∂twk(ξ)
|k, ξ | wR(ξ)

wNR(ξ)

∣∣Aφ̂k(ξ)M

∣∣∣∣∇̂f −k(η − ξ)<M/8

∣∣
× ecλ|k,η−ξ |s dηdξ,

where the last line followed since η ≈ kt. Hence, (A.4) and the bootstrap hypotheses imply
(also using (A.12) and the low frequency factor to sum in k as well as k2 � |η| to replace
A with Ã):

∑
M≥8

∣∣F0;R
HL;M
∣∣� εt2

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄

∥∥∥∥
2

2

+ εt2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

h̄

∥∥∥∥
2

2

(8.15)

+ ε

∥∥∥∥
√

w

∂tw
|∇| wR

wNR
χRÃφ

∥∥∥∥
2

2

.

The first two terms are absorbed by the CKv,2 terms and hence this suffices for F0;R
HL after

(6.11), Proposition 2.4 and the bootstrap controls on the CCK terms.
Next, we deal with F0

LH:

F0
LH;M �

∑
k �=0

t1+2s

∫ ∣∣∣∣A0(η)

〈η〉s

ˆ̄h(η)

∣∣∣∣A0(η)

〈η〉s

∣∣∇̂⊥φ−k(η − ξ)<M/8

∣∣

× ∣∣∇̂f k(ξ)M

∣∣dηdξ.

Here there is a serious loss of regularity from the ∇f factor, and we will make fundamental
use of s ≥ 1/2. Indeed, by the frequency localization |η − ξ | ≤ 3|η|/16, (3.31) and (A.11)
we get the following, by absorbing s derivatives using the regularity gap and M ≥ 8,

∣∣F0
LH;M
∣∣�∑

k �=0

t1+2s

∫ ∣∣∣∣A0(η)

〈η〉s

ˆ̄h(η)

∣∣∣∣|ξ |1−seλ|k,η−ξ |s〈k〉∣∣∇̂⊥φ−k(η − ξ)<M/8

∣∣
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× ∣∣Âfk(ξ)M

∣∣dηdξ.

Then crucially we use 1 − s ≤ s and |η| ≈ |ξ | to deduce

∣∣F0
LH;M
∣∣�∑

k �=0

t1+2s

∫
|η|s/2

∣∣∣∣A0(η)

〈η〉s

ˆ̄h(η)

∣∣∣∣eλ|k,η−ξ |s〈k〉∣∣∇̂⊥φ−k(η − ξ)<M/8

∣∣

× ∣∣|ξ |s/2Âfk(ξ)M

∣∣dηdξ.

Therefore, we apply (A.4) and Lemma 4.1 to deduce (also gaining additional powers in k

to sum):

∣∣F0
LH;M
∣∣� ε

∑
k �=0

k−2t2s−1

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄∼M

∥∥∥∥
2

∥∥|∂v|s/2(Afk)M

∥∥
2
.

Therefore, summing in k and M,

∑
M≥8

∣∣F0
LH;M
∣∣� εt2+2s−2q̃

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄

∥∥∥∥
2

2

+ εt2(s+q̃)−4
∥∥|∂v|s/2Af

∥∥2

2
.(8.16)

We have 2(s + q̃) − 4 < −2q̃ if we choose 1/2 < q̃ < 1 − s/2, which can always be done
for s close to 1/2. Therefore for ε sufficiently small, the first term (8.16) is absorbed by
CKv,2

λ and the latter term is controlled by εCKλ.
The remainder term F0

R is easy to handle, as in Section 7. We omit the treatment
and conclude from the bootstrap hypotheses

∣∣F0
R
∣∣� 〈t〉2s−1ε2

∥∥∥∥ A
〈∂v〉s

h̄

∥∥∥∥
2

� εt1+2s

∥∥∥∥ A
〈∂v〉s

h̄

∥∥∥∥
2

2

+ ε3〈t〉2s−3.(8.17)

The first term is absorbed by CKv,2
L and the latter is time integrable since s < 1.

Combining (8.10), (8.11), (8.13), (8.14), (8.15), (8.16), (8.17) with the bootstrap hy-
potheses and Proposition 2.4 completes the proof of (2.30b).

Proof of (2.30a): From (8.7) we have

1
2

d

dt

∥∥ARh
∥∥2

2
= −CKh

λ − CKh
w −
∫

ARhAR
([∂tv]∂vh

)
dv +

∫
ARhARh̄dv,(8.18)

where

CKh
w(τ) =

∥∥∥∥
√

∂tw

w
ARh(τ )

∥∥∥∥
2

2

(8.19a)

CKh
λ(τ ) = (−λ̇(τ )

)∥∥|∂v|s/2ARh(τ )
∥∥2

2
.(8.19b)
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Using the integration by parts trick as in Section 2.3:

−
∫

ARhAR
([∂tv]∂vh

)
dv

= 1
2

∫
∂v[∂tv]∣∣ARh

∣∣2dv +
∫

ARh
([∂tv]AR∂vh − AR

([∂tv]∂vh
))

dv

= E +M.

By Sobolev embedding and the bootstrap control on [∂tv],
E � ε

〈t〉2−KDε/2

∥∥ARh
∥∥2

2
.

As in Section 2.3, the commutator M is decomposed with a paraproduct,

M=
∑
M≥8

∫
ARh
([∂tv]<M/8AR∂vhM − AR

([∂tv]<M/8∂vhM

))
dv

+
∑
M≥8

∫
ARh
([∂tv]MAR∂vh<M/8 − AR

([∂tv]M∂vh<M/8

))
dv

+
∑
M∈D

∑
M′≈M

∫
ARh
([∂tv]MAR∂vhM′ − AR

([∂tv]M∂vhM′
))

dv

= Th + Rh +Rh.

The Th and Rh terms can be treated as in the methods used in Sections 5 and 7 with u

replaced just with [∂tv] (also there are no R vs NR losses from Lemma 3.6 since the high
frequency factors all have the same ‘resonant’ regularity). Hence, we omit the treatment
and simply conclude

Th +Rh � εCKh
λ + ε3〈t〉−2+KDε/2.(8.20)

In the ‘reaction’ term, Rh, we have an issue: a loss of regularity as [∂tv] has only ‘non-
resonant’ regularity. Consider one dyadic shell on the frequency side as in Section 6,

Rh
M = − 1

2π

∫
η,ξ

ARĥ(η)∼M

[
AR(η) − AR(η − ξ)

][̂∂tv](ξ)M

× ∂̂vh(η − ξ)<M/8dηdξ

= Rh;1
M + Rh;2

M .

The treatment of Rh;2
M is essentially the same as the analogous R3

N in Section 6 and is
hence omitted:

∑
M≥8

∣∣Rh;2
M

∣∣� ε3

〈t〉2−KDε/2
.(8.21)
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The more interesting Rh,1
M is treated in a manner similar to Section 6.3 above. We first di-

vide the integral into the contributions where AR(t, η) disagrees noticeably with A0(t, ξ)

and where it does not:

Rh,1
M = − 1

2π

∫
η,ξ

[∑
k �=0

1t∈Ik,η
1t∈Ik,ξ

+ χ∗
]

× ARĥ(η)∼MAR(η)[̂∂tv](ξ)M∂̂vh(η − ξ)<M/8dηdξ

=
(∑

k �=0

Rh,1;D
M,k

)
+ Rh,1;∗

M ,

where χ∗ = 1 −∑k �=0 1t∈Ik,η
1t∈Ik,ξ

. We first treat Rh,1;∗
M . Due to the presence of χ∗, we

do not lose much by replacing JR(t, η) with J0(t, ξ) (recall the definition of AR and JR in
(3.10)). Indeed, by the proof of Lemma 3.6 we have on the support of the integrand:

χ∗ JR(t, η)

J0(t, ξ)
� e10μ|η−ξ |1/2

χ∗.

Therefore, since ||η| − |ξ || ≤ |η − ξ | < 3|η|/16 on the support of the integrand, (A.7),
(A.11) and (A.12) together imply that for some c ∈ (0,1) we have,

∣∣Rh,1;∗
M

∣∣�
∫

η,ξ

χ∗∣∣ARĥ(η)∼M

∣∣∣∣A0(ξ)[̂∂tv](ξ)Mecλ|η−ξ |s

× ∂̂vh(η − ξ)<M/8

∣∣dηdξ.

Using that |η| ≈ |ξ | � 1 on the support of the integrand and applying (A.4) (with the
bootstrap hypotheses) we deduce,

∣∣Rh,1;∗
M

∣∣�
∫

η,ξ

χ∗∣∣ARĥ(η)∼M

∣∣ |η|s/2|ξ |s/2

〈ξ〉s

∣∣A0(ξ)[̂∂tv](ξ)M(8.22)

× ecλ|η−ξ |s ∂̂vh(η − ξ)<M/8

∣∣dηdξ

� ε
∥∥|∂v|s/2ARh∼M

∥∥
2

∥∥∥∥|∂v|s/2 A
〈∂v〉s

[∂tv]M

∥∥∥∥
2

� ε〈t〉−2s
∥∥|∂v|s/2ARh∼M

∥∥2

2
+ ε〈t〉2s

∥∥∥∥|∂v|s/2 A
〈∂v〉s

[∂tv]M

∥∥∥∥
2

2

.

For ε sufficiently small, the first term is absorbed by CKh
λ and the second term is con-

trolled by CKv,1
λ since 2s < 2 + 2s − 2q̃.
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Next turn to Rh,1;D
M,k . The following version of (3.34) applies on the support of the

integrand with an analogous proof (recall (3.10)):

JR(η)

J0(ξ)
� |η|

k2

√
∂tw0(t, η)

w0(t, η)

√
∂tw0(t, ξ)

w0(t, ξ)
e20μ|η−ξ |1/2

.(8.23)

Therefore, by (A.7) and (A.11) there exists c ∈ (0,1) such that

∣∣Rh,1;D
M,k

∣∣�
∫

η,ξ

1t∈Ik,η
1t∈Ik,ξ

∣∣∣∣
√

∂tw

w
ARĥ(η)∼M

∣∣∣∣ |η|
k2

×
∣∣∣∣
√

∂tw

w
A[̂∂tv](ξ)Mecλ|η−ξ |s ∂̂vh(η − ξ)<M/8

∣∣∣∣dηdξ.

On the support of the integrand kt ≈ η ≈ ξ , so by (A.4) and the bootstrap hypotheses,

∣∣Rh,1;D
M,k

∣∣� t1+s

∫
η,ξ

1t∈Ik,η
1t∈Ik,ξ

∣∣∣∣
√

∂tw

w
ARĥ(η)∼M

∣∣∣∣ 1
〈ξ〉s

×
∣∣∣∣
√

∂tw

w
A[̂∂tv](ξ)Mecλ|η−ξ |s ∂̂vh(η − ξ)<M/8

∣∣∣∣dηdξ

� εt1+s

∥∥∥∥
√

∂tw

w
AR1t∈Ik,∂v

h∼M

∥∥∥∥
2

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

1t∈Ik,∂v
[∂tv]M

∥∥∥∥
2

,

where we are denoting the Fourier multiplier ̂(1t∈Ik,∂v
f )(t, η) = 1t∈Ik,η

f̂ (t, η). For t fixed,
the supports of these multipliers for different k are disjoint in frequency, and hence we
can sum:

∑
k �=0

∣∣Rh,1;D
M,k

∣∣�∑
k �=0

ε

∥∥∥∥
√

∂tw

w
AR1t∈Ik,∂v

h∼M

∥∥∥∥
2

2

(8.24)

+ εt2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

1t∈Ik,∂v
[∂tv]M

∥∥∥∥
2

2

≈ ε

∥∥∥∥
√

∂tw

w
ARh∼M

∥∥∥∥
2

2

+ εt2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

[∂tv]M

∥∥∥∥
2

2

,

which are respectively absorbed by CKh
w and bounded by CKv,1

w . This concludes the
treatment of the first (non CK) term in (8.18).

The treatment of the term involving h̄ in (8.18) is similar to Rh,1
M . That the depen-

dence is linear is the reason for the presence of the large constant Kv in (2.30a). As in the
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treatment of Rh,1
M we divide based on frequency:

∫
ARhARh̄dv =

∫
η

[∑
k �=0

1t∈Ik,η
+ χ∗
]

ARĥ(η)AR(η)̂h̄(η)dη

=
(∑

k �=0

HD
k

)
+ H∗,

where χ∗ = 1 −∑k �=0 1t∈Ik,η
.

First turn to HD
k . Here, (8.23) with ξ = η holds on the support of the integrand, as

does |η| � 1, and hence

∣∣HD
k

∣∣�
∫

η

1t∈Ik,η

∣∣ARĥ(η)
∣∣∂tw(η)

w(η)

|η|1+s

k2

∣∣∣∣A0(η)

〈η〉s

̂̄h(η)

∣∣∣∣dη.

As the Fourier restrictions have disjoint support and since kt ≈ η on the support of the
integrand, we get, by Cauchy-Schwarz, the following for some fixed constant C > 0,

∑
k �=0

∣∣HD
k

∣∣≤∑
k �=0

1
4

∥∥∥∥
√

∂tw

w
AR1t∈Ik,∂v

h

∥∥∥∥
2

2

+ Ct2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

1t∈Ik,∂v
h̄

∥∥∥∥
2

2

(8.25)

≤ 1
4

∥∥∥∥
√

∂tw

w
ARh

∥∥∥∥
2

2

+ Ct2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

h̄

∥∥∥∥
2

2

.

The first term is absorbed by CKh
w and the latter controlled by the bootstrap hypothesis

on CKv,2
w , provided we choose Kv � C.
Next we turn to H∗. Due to the presence of χ∗, AR(t, η) ≈ A0(t, η) on the support

of the integrand, by the same proof as (3.31). Hence, we do not need to concern ourselves
with the distinction. However, we still need to recover the gap of s derivatives. We treat
high and low frequencies separately: for some C > 0, we have by Cauchy-Schwarz,

∣∣H∗∣∣�
∫

|η|≥1
χ∗∣∣ARh(η)

∣∣|η|s
∣∣∣∣ A
〈η〉s

h̄(η)

∣∣∣∣dη(8.26)

+
∫

|η|<1
χ∗∣∣ARh(η)

∣∣∣∣∣∣ A
〈η〉s

h̄(η)

∣∣∣∣dη

�
∥∥|∂v|s/2ARh

∥∥
2

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄

∥∥∥∥
2

+ ∥∥ARh
∥∥

2

∥∥∥∥ A
〈∂v〉s

h̄

∥∥∥∥
2

≤ δλ

10t2q̃

∥∥|∂v|s/2ARh
∥∥2

2
+ C

δλ

t2q̃

∥∥∥∥|∂v|s/2 A
〈∂v〉s

h̄

∥∥∥∥
2

2

+ C
∥∥ARh

∥∥
2

∥∥∥∥ A
〈∂v〉s

h̄

∥∥∥∥
2

.
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The first term is absorbed by CKh
λ and the latter terms are controlled by the bootstrap

hypotheses on CKv,2
λ and h̄ provided we choose Kv � Cδ−2

λ and 2 + 2s > 4q̃.
Finally, summing together (8.20), (8.21), (8.22), (8.24), (8.25), (8.26) (using almost

orthogonality) with (8.18) and the bootstrap hypotheses implies that for ε chosen suffi-
ciently small,

∥∥ARh(t)
∥∥2

2
+ 1

2

∫ t

1
CKh

w(τ)dτ + 1
2

∫ t

1
CKh

λ(τ )dτ � Kvε
2,(8.27)

which almost proves (2.30a). To complete the proof we need to apply the product rules in
Lemma 3.8. Indeed, writing (v′)2 − 1 = (v′ − 1)2 + 2(v′ − 1), and applying Lemma 3.8
and (8.27) gives,

CCK1
w + CCK1

λ � CKh
w + CKh

λ + ε2
(
CKh

w + CKh
λ

)
.(8.28)

Similarly, for CCK2
λ and CCK2

w terms, write v′∂vv
′ = ∂v(v

′ − 1)+ (v′ − 1)∂v(v
′ − 1) and

apply Lemma 3.8:

CCK2
λ + CCK2

w � CKh
w + CKh

λ +
∥∥∥∥
√

∂tw

w

AR

〈∂v〉
((

1 − v′)∂vv
′)∥∥∥∥

2

2

(8.29)

+
∥∥∥∥|∂v|s/2 AR

〈∂v〉
((

1 − v′)∂vv
′)∥∥∥∥

2

2

� CKh
w + CKh

λ + ε2
(
CKh

w + CKh
λ

)
.

Hence, by possibly adjusting Kv and choosing ε even smaller, (8.27), (8.28) and (8.29)
imply (2.30a).

Proof of (2.30d): Both of the terms in (2.30d) are controlled in essentially the same
way. To see the control on the first term, start with dividing into high and low frequency
and use the bootstrap control on [∂tv]:

〈τ 〉2+2s
∣∣λ̇(τ )

∣∣∥∥∥∥|∂v|s/2 A
〈∂v〉s

[∂tv](τ )

∥∥∥∥
2

2

(8.30)

≤ 〈τ 〉2+2s
∣∣λ̇(τ )

∣∣∥∥∥∥|∂v|s/2 A
〈∂v〉s

[∂tv](τ )≤1

∥∥∥∥
2

2

+ 〈τ 〉2+2s
∣∣λ̇(τ )

∣∣
∥∥∥∥|∂v|s/2 A

〈∂v〉s
[∂tv](τ )>1

∥∥∥∥
2

2

� 〈τ 〉2s−2−2q̃+KDεε2 + 〈τ 〉2+2s
∣∣λ̇(τ )

∣∣∥∥∥∥|∂v|s/2 A
〈∂v〉s

∂v[∂tv](τ )>1

∥∥∥∥
2

2

.
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The first term is integrable for ε small and the latter term is bounded by

∥∥∥∥|∂v|s/2 A
〈∂v〉s

∂v[∂tv](τ )

∥∥∥∥
2

2

�
∥∥∥∥|∂v|s/2 A

〈∂v〉s

(
v′∂v[∂tv](τ )

)∥∥∥∥
2

2

(8.31)

+
∥∥∥∥|∂v|s/2 A

〈∂v〉s

(
v′ − 1

v′ v′∂v[∂tv](τ )

)∥∥∥∥
2

2

.

The first term in (8.31) is already controlled by CKv,2
λ . By (3.39b), the second term is

bounded by the following for some c ∈ (0,1):

∥∥∥∥|∂v|s/2 A
〈∂v〉s

(
v′ − 1

v′ v′∂v[∂tv](τ )

)∥∥∥∥
2

2

(8.32)

�
∥∥∥∥|∂v|s/2 A

〈∂v〉s

(
v′ − 1

v′

)∥∥∥∥
2

2

∥∥v′∂v[∂tv](τ )
∥∥2

Gcλ,σ

+
∥∥∥∥|∂v|s/2 A

〈∂v〉s
v′∂v[∂tv](τ )

∥∥∥∥
2

2

∥∥∥∥v
′ − 1
v′

∥∥∥∥
2

Gcλ,σ

.

By the bootstrap hypotheses, we may write (v′)−1 as the uniformly convergent geometric
series

1
v′(t, v)

= 1 +
∞∑

n=1

(
v′(t, v) − 1

)n
.

Therefore, by (A.10) and the bootstrap control on v′ − 1, for some C > 0 we have for ε

small:
∥∥∥∥v

′ − 1
v′

∥∥∥∥
Gcλ,σ

=
∥∥∥∥

∞∑
n=1

(
v′ − 1

)n∥∥∥∥
Gcλ,σ

≤
∞∑

n=1

(Cε)n � ε.(8.33)

Together with the bootstrap control on CKv,2
λ , this suffices to treat the second term in

(8.32). To control the first term, we use a repeated application of (3.39a) and (3.40), choos-
ing ε sufficiently small to sum the resulting series (denoting constants in these inequalities
as Cp and Ca respectively),

∥∥∥∥|∂v|s/2 A
〈∂v〉s

(
v′ − 1

v′

)∥∥∥∥
2

2

=
∥∥∥∥|∂v|s/2 A

〈∂v〉s

∞∑
n=1

(
v′ − 1

)n∥∥∥∥
2

2
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≤
( ∞∑

n=1

∥∥∥∥|∂v|s/2 A
〈∂v〉s

(
v′ − 1

)n∥∥∥∥
2

)2

≤
(∥∥∥∥|∂v|s/2 A

〈∂v〉s

(
v′ − 1

)∥∥∥∥
2

∞∑
n=1

εn−14n−1Kn−1
v

n∑
j=1

Cn−j
p Cj−1

a

)2

≤
∥∥∥∥|∂v|s/2 A

〈∂v〉s

(
v′ − 1

)∥∥∥∥
2

2

( ∞∑
n=1

εn−1n4n−1Cn−1
p Kn−1

v Cn−1
a

)2

�
∥∥∥∥|∂v|s/2 A

〈∂v〉s

(
v′ − 1

)∥∥∥∥
2

2

.

Therefore, putting this together with (8.30), (8.31), (8.32), (8.33) and the bootstrap control
on v′∂v[∂tv] implies,

〈τ 〉2+2s
∣∣λ̇(τ )

∣∣
∥∥∥∥|∂v|s/2 A

〈∂v〉s
∂v[∂tv](τ )

∥∥∥∥
2

2

� CKv,2
λ + ε2

∣∣λ̇(τ )
∣∣∥∥∥∥|∂v|s/2 A

〈∂v〉s

(
v′ − 1

)∥∥∥∥
2

2

.

The first term is integrable by the bootstrap hypotheses and the latter term is integrable
by the CKh

λ bound in (8.27). From (8.30), this completes the treatment of the first term in
(2.30d).

To see control on the second term in (2.30d), first divide into high and low fre-
quency and use that ∂tw is only supported in frequencies larger than 1/2 (see (3.9)):

〈τ 〉2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

[∂tv](τ )

∥∥∥∥
2

2

� 〈τ 〉2+2s

∥∥∥∥
√

∂tw

w

A
〈∂v〉s

∂v[∂tv](τ )>1/2

∥∥∥∥
2

2

.

From here, it is very similar to the treatment of the first term in (2.30d), except now we
apply (3.39b) as opposed to (3.39a). We omit this for the sake of brevity.

Proof of (2.30c): This estimate is relatively straightforward to prove since, due to the
lower regularity, we can utilize Lemma 4.1 as opposed to Proposition 2.4. It is possible to
only use a gap of s derivatives and apply Proposition 2.4, however, one will be repeating
a more intricate version of the arguments used to deduce (2.30b).

Computing the evolution of [∂tv] gives

d

dt

(〈t〉4−KDε
∥∥[∂tv]∥∥2

Gλ(t),σ−6

)= (4 − KDε)t〈t〉2−KDε
∥∥[∂tv]∥∥2

Gλ(t),σ−6(8.34)

+ 〈t〉4−KDε d

dt

∥∥∥∥ A
〈∂v〉s

[∂tv]
∥∥∥∥

2

Gλ(t),σ−6

.
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Denoting the multiplier AS(t, ∂v) = eλ(t)|∂v |s〈∂v〉σ−6 (‘S’ for ‘simple’), the latter term gives

〈t〉4−KDε d

dt

∥∥[∂tv]∥∥2

Gλ(t),σ−6 = 2〈t〉4−KDελ̇(t)
∥∥|∂v|s/2[∂tv]∥∥2

Gλ(t),σ−6(8.35)

+ 2〈t〉4−KDε

∫
AS[∂tv]AS∂t[∂tv]dv.

From (2.13b),

2〈t〉4−KDε

∫
AS[∂tv]AS∂t[∂tv]dv(8.36)

= −4〈t〉4−KDε

t

∥∥[∂tv]∥∥2

Gλ(t),σ−6

− 2〈t〉4−KDε

∫
AS[∂tv]AS

([∂tv]∂v[∂tv])dv

− 2〈t〉4−KDε

t

∫
AS[∂tv]AS

(
v′〈∇⊥P �=0φ · ∇ ũ

〉)
dv

= V1 + V2 + V3.

By (A.10), an argument analogous to (8.33) and the bootstrap hypotheses we have,

V2 � 〈t〉4−KDε
∥∥[∂tv]∥∥Gλ,σ−6

∥∥∥∥[∂tv]
(

1 + 1 − v′

v′

)
v′∂v[∂tv]

∥∥∥∥
Gλ,σ−6

(8.37)

� 〈t〉4−KDε
∥∥[∂tv]∥∥2

Gλ,σ−6

∥∥v′∂v[∂tv]∥∥Gλ,σ−6

(
1 +
∥∥∥∥v

′ − 1
v′

∥∥∥∥
Gλ,σ−6

)

≤ KDε

2
〈t〉3−KDε−s

∥∥[∂tv]∥∥2

Gλ,σ−6,

where we define KD to be the maximum of the constant appearing in this term and one
other below.

Treating V3 is not hard due to the regularity gap of 6 derivatives. Note that

∇ ũ = −
(

v′(∂v − t∂z)∂zφ

∂vv
′(∂v − t∂z)φ + v′(∂v − t∂z)∂vφ

)
,(8.38)

and therefore by (A.10), (8.38), Lemma 4.1 and the bootstrap hypotheses,∥∥∇P �=0ũ(t)
∥∥
Gλ(t),σ−5 � ε

〈t〉 .(8.39)

Projecting to individual frequencies in z and noting that k �= 0 (by the z average and the
projection on φ), by (A.10) and Cauchy-Schwarz we have

V3 =
∑
k �=0

2〈t〉4−KDε

t

∫
AS[∂tv]AS

[
v′∇⊥φk · ∇ ũ−k

]
dv
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�
∑
k �=0

〈t〉4−KDε

t

∥∥AS[∂tv]∥∥
2

∥∥AS∇⊥φk

∥∥
2

∥∥AS∇ ũ−k

∥∥
2

× (1 + ∥∥AS
(
v′ − 1

)∥∥
2

)

� 〈t〉4−KDε

t

∥∥[∂tv]∥∥Gλ,σ−6

∥∥∇⊥P �=0φ
∥∥
Gλ,σ−6‖∇P �=0ũ‖Gλ,σ−6

× (1 + ∥∥v′ − 1
∥∥
Gλ,σ−6

)
.

By (8.39), the bootstrap hypotheses on v′ − 1, and Lemma 4.1 we then have for some
C > 0,

V3 � 〈t〉−KDεε2
∥∥[∂tv]∥∥Gλ,σ−6 ≤ KDε〈t〉4−KDε

2t

∥∥[∂tv]∥∥2

Gλ,σ−6 + Cε3t−3−KDε.(8.40)

Putting together (8.37),(8.40) with (8.36) and (8.35) and integrate, we derive (2.30c). This
completes the proof of Proposition 2.5. Being the last Proposition remaining, the proof of
Theorem 1 is complete.

9. Conclusion

Our proof is very different from that of Mouhot and Villani [70], however there
are still some analogies and common themes that are worth pointing out. Let us mention
the most important mathematical parallels:

• In [70], the role of the plasma echoes has similarities with that of the Orr critical
times, being that both are responsible for the main nonlinear growth. The mo-
ment estimates in [70] controls this growth whereas here the “toy model” plays
this role. Note that the exponential growth in time of [70] is replaced here by a
controlled regularity loss.

• The use of para-differential calculus (combined with the well-established exis-
tence theory) allows to avoid the use of the Newton iteration in [70]. For exam-
ple, the paraproduct decomposition permits us to separate the natural transport
effects and the reaction effects.

• Our treatment of transport in the energy estimates and the well-chosen change
of variables allow us to avoid the use of ‘deflection maps’ as in [70].

Although the Euler and Vlasov-Poisson systems have several fundamental differences, af-
ter completing this work we succeeded, with C. Mouhot, to extend the Landau damping
result in [70] to all Gevrey class smaller than three (e.g. s > 1/3) using some of the ideas
of this work [12].

An obvious question about Theorem 1 is whether or not s > 1/2 is optimal. The
toy model (3.3), which estimates the worst possible growth and is behind the regularity
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requirement, took absolute values and hence does not take into account the potential
for oscillations and cancellations. In fact, numerical simulations of the 3-wave model of
[92] show dramatic oscillations. Even when there are infinitely many interacting modes,
oscillations may often cancel and yield much weaker growth than the one given by (3.3).
However, we think it would be extremely difficult to rule out the possibility that there
exist rare configurations which are “resonant” in some sense and lead to a growth which
matches our toy model (we expect that such configurations are highly non-generic).

There are many other related problems where the linear operator predicts a decay
by mixing similar to (1.1). The most obvious extension is to include a more general class
of shear flows where now we linearize around the flow (V(y),0). We believe that this
requires the incorporation of several non-trivial enhancements, since it fundamentally
changes the structure of the critical times which would manifest in our approach most
clearly in the elliptic estimates. A related extension would be to study the problem in
the presence of no-penetration boundaries in y. A third problem would be to remove the
periodicity in x, altering the physical mechanism from mixing to filamentation (in fact the
behavior may be different, as is possible in Landau damping, see [40, 41]). Here there
are fundamental difficulties: our proof relies heavily on the ‘well-separation’ of critical
times, which no longer holds in the unbounded case. Other examples in fluid mechan-
ics pointed out in Section 1 include the β-plane model, stratified flows and the vortex
axisymmetrization problem. Proving decay by mixing on the nonlinear level for any of
these models seems to be a very interesting question. Of all of these, we expect the β-
plane model to be the easiest.
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Appendix A

A.1 Littlewood-Paley decomposition and paraproducts

In this section we fix conventions and notation regarding Fourier analysis, Littlewood-
Paley and paraproduct decompositions. See e.g. [4, 14] for more details.
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For f (z, v) in the Schwartz space, we define the Fourier transform f̂k(η) where
(k, η) ∈ Z × R,

f̂k(η) = 1
2π

∫
T×R

e−izk−ivηf (z, v)dzdv.

Similarly we have the Fourier inversion formula,

f (z, v) = 1
2π

∑
k∈Z

∫
R

eizk+ivη f̂k(η)dη.

As usual the Fourier transform and its inverse are extended to L2 via duality. We also
need to apply the Fourier transform to functions of v alone, for which we use analogous
conventions. With these conventions note,∫

f (z, v)g(z, v)dzdv =
∑

k

∫
f̂k(η)ĝk(η)dη

f̂g = 1
2π

f̂ ∗ ĝ

(∇̂f )k(η) = (ik, iη)f̂k(η).

This work makes heavy use of the Littlewood-Paley dyadic decomposition. Here
we fix conventions and review the basic properties of this classical theory, see e.g. [4] for
more details. First we define the Littlewood-Paley decomposition only in the v variable.
Let ψ ∈ C∞

0 (R;R) be such that ψ(ξ) = 1 for |ξ | ≤ 1/2 and ψ(ξ) = 0 for |ξ | ≥ 3/4 and
define ρ(ξ) = ψ(ξ/2) − ψ(ξ), supported in the range ξ ∈ (1/2,3/2). Then we have the
partition of unity

1 = ψ(ξ) +
∑

M∈2N

ρ
(
M−1ξ

)
,

where we mean that the sum runs over the dyadic numbers M = 1,2,4,8, . . . ,2j, . . .

and we define the cut-off ρM(ξ) = ρ(M−1ξ), each supported in M/2 ≤ |ξ | ≤ 3M/2. For
f ∈ L2(R) we define

fM = ρM

(|∂v|
)
f ,

f 1
2
= ψ
(|∂v|
)
f ,

f<M = f 1
2
+
∑

K∈2N:K<M

fK,

which defines the decomposition

f = f 1
2
+
∑

M∈2N

fM.
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Normally one would use f0 rather than the slightly inconsistent f 1
2
, however f0 is reserved

for the much more commonly used projection onto the zero mode only in z (or x). Re-
call the definition of D from Section 1.2. There holds the almost orthogonality and the
approximate projection property

‖f ‖2
2 ≈
∑
M∈D

‖fM‖2
2(A.1a)

‖fM‖2 ≈ ∥∥(fM)M

∥∥
2
.(A.1b)

The following is also clear:∥∥|∂v|fM
∥∥

2
≈ M‖fM‖2.

We make use of the notation

f∼M =
∑

K∈D: 1
C M≤K≤CM

fK,

for some constant C which is independent of M. Generally the exact value of C which is
being used is not important; what is important is that it is finite and independent of M.
Similar to (A.1) but more generally, if f =∑k Dk for any Dk with 1

C2k ⊂ supp Dk ⊂ C2k it
follows that

‖f ‖2
2 ≈C

∑
k

‖Dk‖2
2.(A.2)

During much of the proof we are also working with Littlewood-Paley decompositions
defined in the (z, v) variables, with the notation conventions being analogous. Our con-
vention is to use N to denote Littlewood-Paley projections in (z, v) and M to denote
projections only in the v direction.

We have opted to use the compact notation above, rather than the commonly used
alternatives

�j f = f2j , Sj f = f<2j ,

in order to reduce the number of characters in long formulas. The last unusual notation
we use is

P �=0f = f − 〈f 〉,
which denotes projection onto the non-zero modes in z.

Another key Fourier analysis tool employed in this work is the paraproduct de-
composition, introduced by Bony [14] (see also [4]). Given suitable functions f , g we may
define the paraproduct decomposition (in either (z, v) or just v),

fg = Tf g + Tg f +R(f , g)
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=
∑
N≥8

f<N/8gN +
∑
N≥8

g<N/8fN +
∑
N∈D

∑
N/8≤N′≤8N

gN′ fN,

where all the sums are understood to run over D. In our work we do not employ the
notation in the first line since at most steps in the proof we are forced to explicitly write the
sums and treat them term-by-term anyway. This is due to the fact that we are working in
non-standard regularity spaces and, more crucially, are usually applying multipliers which
do not satisfy any version of ATf g ≈ Tf Ag. Hence, we have to prove almost everything
‘from scratch’ and can only rely on standard para-differential calculus as a guide.

A.2 Elementary inequalities and Gevrey spaces

In the sequel we show some basic inequalities which are extremely useful for working
in this scale of spaces. The first three are versions of Young’s inequality (applied on the
frequency-side here).

Lemma A.1. — Let f (ξ), g(ξ) ∈ L2
ξ (R

d), 〈ξ〉σ h(ξ) ∈ L2
ξ (R

d) and 〈ξ〉σ b(ξ) ∈ L2
ξ (R

d)

for σ > d/2, Then we have

‖f ∗ h‖2 �σ,d ‖f ‖2

∥∥〈·〉σ h
∥∥

2
,(A.3) ∫ ∣∣f (ξ)(g ∗ h)(ξ)

∣∣dξ �σ,d ‖f ‖2‖g‖2

∥∥〈·〉σ h
∥∥

2
(A.4)

∫ ∣∣f (ξ)(g ∗ h ∗ b)(ξ)
∣∣dξ �σ,d ‖f ‖2‖g‖2

∥∥〈·〉σ h
∥∥

2

∥∥〈·〉σ b
∥∥

2
.(A.5)

Proof. — Inequality (A.3) follows from the L2 × L1 → L2 Young’s inequality and
Cauchy-Schwarz:

∫ ∣∣h(ξ)
∣∣dξ ≤

(∫
1

〈ξ〉2σ
dξ

)1/2∥∥〈·〉σ h
∥∥

2
�
∥∥〈·〉σ h

∥∥
2
.

Inequality (A.4) follows from Cauchy-Schwarz and (A.3). For (A.5), apply Young’s in-
equality twice: ∫ ∣∣f (ξ)(g ∗ h ∗ b)(ξ)

∣∣dξ � ‖f ‖2‖g ∗ h ∗ b‖2 � ‖f ‖2‖g‖2‖h ∗ b‖1

� ‖f ‖2‖g‖2‖h‖1‖b‖1,

and proceed as above. �

The next set of inequalities show that one can often gain on the index of regularity
when comparing frequencies which are not too far apart (provided 0 < s < 1).
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Lemma A.2. — Let 0 < s < 1 and x ≥ y ≥ 0 (without loss of generality).

(i) If x + y > 0,

∣∣xs − ys
∣∣�s

1
x1−s + y1−s

|x − y|.(A.6)

(ii) If |x − y| ≤ x/K for some K > 1 then

∣∣xs − ys
∣∣≤ s

(K − 1)1−s
|x − y|s.(A.7)

Note s

(K−1)1−s < 1 as soon as s
1

1−s + 1 < K.

(iii) In general,

|x + y|s ≤
(

x

x + y

)1−s(
xs + ys

)
.

In particular, if y ≤ x ≤ Ky for some K < ∞ then

|x + y|s ≤
(

K
1 + K

)1−s(
xs + ys

)
.(A.8)

Proof. — Inequality (A.6) follows easily from considering separately x ≥ 2y and
x < 2y.

To prove (A.7) we use that in this case y−1 ≤ K/(K − 1)x−1 and hence,

xs ≤ ys + s

y1−s
(x − y) ≤ ys + s

(K − 1)1−s
|x − y|s.

To see (A.8),

|x + y|s =
(

x

x + y

)
|x + y|s +

(
y

x + y

)
|x + y|s ≤

(
x

x + y

)1−s(
xs + ys

)
. �

Using (A.4), (A.7) and (A.8) together with a paraproduct expansion, the following
product lemma is relatively straightforward. For contrast, the lemma holds when s = 1
only for c = 1.

Lemma A.3 (Product lemma). — For all 0 < s < 1, σ ≥ 0 and σ0 > 1, there exists c =
c(s) ∈ (0,1) such that the following holds for all f , g ∈ Gλ,σ ;s:

‖fg‖Gλ,σ ;s � ‖f ‖Gcλ,σ0;s‖g‖Gλ,σ ;s + ‖g‖Gcλ,σ0;s‖f ‖Gλ,σ ;s,(A.9a)

in particular, Gλ,σ ;s has the algebra property:

‖fg‖Gλ,σ � ‖f ‖Gλ,σ ‖g‖Gλ,σ .(A.10)

As σ0 > 1 = d/2 (where d is the dimension), the implicit constants are independent of λ.
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Gevrey and Sobolev regularities can be related with the following two inequalities.

(i) For all x ≥ 0, α > β ≥ 0, C, δ > 0,

eCxβ ≤ eC( C
δ
)

β
α−β

eδxα;(A.11)

(ii) For all x ≥ 0, α,σ, δ > 0,

e−δxα � 1

δ
σ
α 〈x〉σ

.(A.12)

Together these inequalities show that for α > β ≥ 0, ‖f ‖GC,σ ;β �α,β,C,δ,σ ‖f ‖Gδ,0;α .

A.3 Coordinate transformations in Gevrey spaces

The proof of Theorem 1 requires moving from (x, y) to (z, v) coordinates at the be-
ginning (in Lemma 2.1) and then back again in Section 2.4. It is crucial to notice the
regularity losses incurred in this section, as discussed in more depth in [70] where related
inequalities play an important role.

It is well-known (see e.g. [54]) that the Gλ;s norms have an equivalent ‘physical-side’
representation which will be convenient here:

‖f ‖Gλ ≈
[ ∞∑

n=0

(
λn

(n!) 1
s

∥∥Dnf
∥∥

2

)2]1/2

.(A.13)

In this section it will also be useful to have a slightly more general scale of norms:

‖f ‖lqLp;λ =
[ ∞∑

n=0

(
λn

(n!) 1
s

∥∥Dnf
∥∥

p

)q]1/q

.(A.14)

By Hölder’s inequality and Sobolev embedding (also (A.12)): for λ > λ′ and p, q ∈
[1,∞],

‖f ‖lpLq;λ′ ≤ ‖f ‖l1Lq;λ′ �λ−λ′ ‖f ‖lpLq;λ,(A.15a)

‖f ‖l2L∞;λ′ �λ−λ′ ‖f ‖l2L2;λ.(A.15b)

One of the norms in the scale (A.14) satisfies an algebra property:

‖fg‖l1L∞;λ ≤ ‖f ‖l1L∞;λ‖g‖l1L∞;λ,(A.16)

which follows from Leibniz’s rule and Young’s inequality in a manner similar to several
proofs in [70]; we omit the details. A more sophisticated inequality is the following, which
estimates the effect of composition on Gevrey regularity.
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Lemma A.4 (Composition inequality). — For all s ∈ (0,1], p ∈ [1,∞] and λ > 0,

∥∥F ◦ (Id + G)
∥∥

l1Lp;λ ≤ ∥∥det (Id + ∇G)−1
∥∥1/p

∞ ‖F‖l1Lp;λ+ν,(A.17)

where

ν = ‖G‖l1L∞;λ.

Proof. — For simplicity we restrict the following proof to one dimension, however
it holds also in higher dimensions with a similar proof. Denote H = Id + G. Proceeding
as in [70], by the Faà di Bruno formula we have

‖F ◦ H‖l1Lp;λ ≤
∞∑

k=0

∥∥(DkF
) ◦ H

∥∥
p

∑
∑n

j=1 jmj=n,
∑n

j=1 mj=k

λn

(n!) 1
s −1m1! . . .mn!

×
n∏

j=1

(j!)( 1
s
−1)mj

∥∥∥∥DjH

(j!) 1
s

∥∥∥∥
mj

∞
,

where the second summation runs over all possible combinations which satisfy the con-
ditions indicated. Under these conditions, we claim by induction on k that the following
always holds:

k!
n∏

j=1

(j!)mj ≤ n!.(A.18)

Since k ≤ n it is trivial for k = n = 1. To see the inductive step, suppose it is true for a given
combination of mj with

∑n

j=1 mj = k and
∑n

j=1 jmj = n for some choices of k and n. Now
consider replacing mj0 �→ mj0 + 1 for some 1 ≤ j0 ≤ n + 1 (where we consider mn+1 = 0).
This increments k by one and n by j0 and hence by the inductive hypotheses we need only
check

(k + 1)j0! ≤ (n + 1) . . . (n + j0),

which is clear since n ≥ k, from which (A.18) follows. Hence by (A.18),

‖F ◦ H‖l1Lp;λ ≤
∞∑

k=0

∥∥(DkF
) ◦ H

∥∥
p

1

(k!) 1
s −1

×
∑

∑n
j=1 jmj=n,

∑n
j=1 mj=k

λn

m1! . . .mn!
n∏

j=1

∥∥∥∥DjH

(j!) 1
s

∥∥∥∥
mj

∞

=
∞∑

k=0

∥∥(DkF
) ◦ H

∥∥
p

1

(k!) 1
s

[ ∞∑
j=1

λj

∥∥∥∥DjH

(j!) 1
s

∥∥∥∥
∞

]k

,



INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS 293

=
∞∑

k=0

∥∥(DkF
) ◦ H

∥∥
p

1

(k!) 1
s

[
λ +

∞∑
j=1

λj

∥∥∥∥DjG

(j!) 1
s

∥∥∥∥
∞

]k

,

where the second to last line followed from the multinomial formula. The proof is com-
pleted by changing variables in the Lebesgue norm. �

The next tool is the following inverse function theorem in Gevrey regularity.

Lemma A.5 (Inverse function theorem). — Let α(x) : T × R → T × R be a given smooth

function and consider the equation

β(x) = α
(
x + β(x)

)
.(A.19)

For all λ > λ′ > 0, there exists an ε0 = ε0(λ,λ′) > 0 such that if ‖α‖l1L∞;λ < ε0 then (A.19) has

a smooth solution β which satisfies

‖β‖l1L∞;λ′ � ‖α‖l1L∞;λ.

By (A.19) and Lemma A.4 we have the following for p ∈ [1,∞] (the RHS is not necessarily finite)

‖β‖l1Lp;λ′ � ‖α‖l1Lp;λ′+‖β‖
l1L∞;λ′ .(A.20)

Proof. — The proof follows from a Picard iteration. It is important that we chose a
norm which has an algebra property (A.16) and for which composition does not lose too
much regularity; otherwise one would have to use a Newton iteration. Let β0(x) = α(x)

and inductively define

βk+1(x) = α
(
x + βk(x)

)
.

Hence,

βk+1(x) − βk(x) =
∫ 1

0
Dα
(
x + sβk−1(x) + (1 − s)βk(x)

)

× (βk(x) − βk−1(x)
)
ds.

Therefore from (A.16) and Lemma A.4.

‖βk+1 − βk‖l1L∞;λ′ ≤
(

sup
s∈(0,1)

‖Dα‖l1L∞;λ′+s‖βk−1‖l1L∞;λ′+(1−s)‖βk‖l1L∞;λ′

)

× ‖βk − βk−1‖l1L∞;λ′ .

By induction, for ε0 chosen sufficiently small the iteration converges and the lemma fol-
lows. �
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Using Lemma A.5 we may prove Lemma 2.1 stated in Section 2.3.

Lemma 2.1. — From the results of [9, 33, 54], it follows that any initial data ωin ∈
Gμ,σ ;β for β ∈ (0,1] which is mean zero and satisfies

∫ |yωin(x, y)|dxdy < ∞ (to ensure
finite kinetic energy as in (2.33)) will result in a unique global solution ω(t) ∈ Gμ(t),σ ;β for
some μ(t) > 0 and all t ∈ R which remains mean zero and satisfies

∫ |yω(t, x, y)|dxdy <

∞ for all t ∈ R. In particular, this holds for β = s and μ = μ(0) = λ0 as well as for
analytic data, which shows that if we regularize ωin to be analytic at time zero, it remains
so for all time. Using the characteristics, we may also assert the spatial localization for
any fixed ε̄ < ε (possibly after reducing ε ′),

max
t∈[0,1]

∫ ∣∣yω(t, x, y)
∣∣dxdy ≤ ε̄,

as well as the a priori estimate on the kinetic energy of the zero frequency velocity field
(recall this is not a conserved quantity):

max
t∈[0,1]
∥∥Ux

0(t)
∥∥

2
≤ ε̄.

We next want to show a short-time estimate on ω(t) which has the mixing due to the
Couette flow removed and then transfer this information to (z, v) coordinates. We first
use the linear change of variables of (2.2) (although we will change the notation to not
clash with the proof itself). Define q(t, z̄, y) = ω(t, z̄ + ty, y) and φ̃(t, z̄, y) = ψ(t, z̄ + ty, y),
which satisfies (2.7):

∂tq + ∇⊥
z̄,yφ̃ · ∇z̄,yq = 0(A.21a)

�Lφ̃ = q.(A.21b)

From (2.4), it is easy to verify for any μ(t) that∥∥∇⊥P �=0φ̃
∥∥
Gμ,σ � t‖q‖Gμ,σ(A.22a) ∥∥∇⊥P �=0φ̃

∥∥
Gμ,σ−3 � 〈t〉−2‖q‖Gμ,σ .(A.22b)

Moreover, we have the same spatial localization

max
t∈[0,1]

∫ ∣∣yq(t, z̄, y)
∣∣dz̄dy ≤ ε̄

and the associated a priori estimate on the kinetic energy in the shear flow

max
t∈[0,1]
∥∥∂yφ̃0(t)

∥∥
2
= max

t∈[0,1]
∥∥Ux

0(t)
∥∥

2
≤ ε̄.(A.23)

Let μ(t) be chosen to satisfy

μ̇(t) = −ε̄1/2μ(t),
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μ(0) = 9λ0/10 + λ′/10,

where we will choose ε̄ such that μ(1) > 8λ0/9 + λ′/9. Using the methodology of Sec-
tion 5, in particular, Section 5.1 combined with the integration by parts trick discussed
in (2.23) (see also e.g. [49, 54]), it follows from (A.22) and (A.23), for ε̄ chosen sufficiently
small, that

max
t∈[0,1]
∥∥q(t)∥∥Gμ(t),σ < 2ε̄.

Via the Biot-Savart law and an argument like that used in (2.33),

max
t∈[0,1]
∥∥Ux

0(t)
∥∥
Gμ(t),σ � ε̄.(A.24)

Next we now need to convert estimates on q into estimates on f and the associated
nonlinear coordinate system. From (A.24) and (2.9), we have Gevrey control on v = v(t, y)

and z = z(t, x, y). Notice that we can also write z in terms of z̄ and y via

z(t, z̄, y) = z̄ − t
(
v(t, y) − y

)
,(A.25)

and f (t, z, v) = q(t, z̄(t, z, v), y(t, v)). Therefore, in order to control the Gevrey norm of
f we need to solve for z̄, y in terms of z, v. From (2.9) we have (on t ≤ 1),∥∥v(t, y) − y

∥∥
Gμ,σ � ε̄.

Hence, writing α(y) = y − v(t, y), β(v) = y(t, v) − v and β(v) = α(v + β(v)) we may
apply (A.15) and Lemma A.5 (adjusting ε̄ if necessary) to solve for y(t, v) − v with
‖y(t, v) − v‖Gμ′ � ε̄, with μ′ < μ(1) and 3λ0/4 + λ′/4 < μ′. In turn, from (2.9), this
allows us to write ‖z̄(t, z, v) − z‖Gμ′ � ε̄. Then by (A.15) and Lemma A.4 we can deduce
(for ε̄ sufficiently small)

sup
t∈(0,1)

∥∥f (t)∥∥
3λ0/4+λ′/4

< ε

E(1) < ε2

∥∥1 − v′∥∥
∞ < 6/10.

This completes the proof of Lemma 2.1. �

A.4 Rapid convergence of background flow

The proof of (1.7a) found in Section 2.4 follows from writing the x average of (1.2) in
the (z, y) variables to (2.39) and integrating using that the priori estimates (2.32) provide
decay estimates in the (z, y) variables. In fact, the derivation of (2.39) is capturing a subtle
cancellation between the vorticity and Uy that originates from the structure of the linear
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problem. Consider (1.2) and take x averages of the first equation. Then one derives the
following:

∂t

〈
Ux
〉+ 〈Uy∂yUx

〉= 0.

We will consider the nonlinear term with Uy and Ux replaced by solutions to the lin-
earized Euler equations. Since y derivatives are growing linearly, from a rough order of
magnitude approximation one would expect that the nonlinear term decays like O(t−2).
In fact, we have 〈Uy∂yUx〉 = −〈Uyω〉, so anything faster than a O(t−2) decay indicates
that something interesting is happening. First note from the Biot-Savart law:

〈
Uy∂yUx

〉= − 1
2π

∫
ψxψyydx.

Writing ψyy on the Fourier side and using the (x, y) analogue of (1.4):

ψ̂yy(t, k, ξ) = ξ 2ω̂in(k, ξ + kt)

k2 + ξ 2
= (|kt|2 − 2kt(ξ + kt) + |ξ + kt|2)(A.26)

× ω̂in(k, ξ + kt)

k2 + ξ 2
.

Therefore, while P�=φyy is not decaying or strongly converging to anything, we have the
remarkable property that ψyy = t2ψxx + O(t). Indeed, from (A.26) we have the following,
since the leading order cancels due to the x average:

∣∣∣∣
(

̂1
2π

∫
ψxψyydx

)
(t, η)

∣∣∣∣
=
∣∣∣∣ i

2π

∑
k �=0

∫
ξ

k
(|ξ + kt|2 − 2kt(ξ + kt)

)

× ωin(−k, η − ξ − kt)ωin(k, ξ + kt)

(k2 + ξ 2)(k2 + |η − ξ |2) dξ

∣∣∣∣
� t
∑
k �=0

∫
ξ

∣∣∣∣ωin(−k, η − ξ − kt)〈k, ξ + kt〉3ωin(k, ξ + kt)

(k2 + ξ 2)(k2 + |η − ξ |2)
∣∣∣∣dξ

� t
∑
k �=0

∫
ξ

∣∣∣∣ωin(−k, η − ξ − kt)〈k, η − ξ − kt〉2〈k, ξ + kt〉5ωin(k, ξ + kt)

(k2 + ξ2)(k2 + |η − ξ |2)〈k, η − ξ − kt〉2〈k, ξ + kt〉2

∣∣∣∣dξ

� t

〈t〉4

∑
k �=0

∫
ξ

〈−k, η − ξ − kt〉2

× ∣∣ωin(−k, η − ξ − kt)〈k, ξ + kt〉5ωin(k, ξ + kt)
∣∣dξ.
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Then from (A.3) we have (without making an attempt to be optimal),

∥∥〈Uy∂yUx〉∥∥
2
=
∥∥∥∥ 1

2π

∫
ψxψyydx

∥∥∥∥
2

� 1
〈t〉3

‖ωin‖2
H5 .

Since the nonlinear behavior matches the linear behavior to leading order, this indicates
that indeed, (1.7a) should be expected on the nonlinear level.
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