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ABSTRACT

This article pursues the study of the knot state asymptotics in the large level limit initiated in Charles and Marché
(Knot state asymptotics I. Abelian representations and the A–J conjecture, 2011). As a main result, we prove the Witten
asymptotic expansion conjecture for the Dehn fillings of the figure eight knot.

The state of a knot is defined in the realm of Chern-Simons topological quantum field theory as a holomorphic
section on the SU2-character manifold of the peripheral torus.

In the previous paper, we conjectured that the knot state concentrates on the character variety of the knot with a
given asymptotic behavior on the neighborhood of the abelian representations. In the present paper we study the neigh-
borhood of irreducible representations. We conjecture that the knot state is Lagrangian with a phase and a symbol given
respectively by the Chern-Simons and Reidemeister torsion invariants. We show that under some mild assumptions, these
conjectures imply the Witten conjecture on the asymptotic expansion of WRT invariants of the Dehn fillings of the knot.

Using microlocal techniques, we show that the figure eight knot state satisfies our conjecture starting from q-
differential relations verified by the colored Jones polynomials. The proof relies on a differential equation satisfied by the
Reidemeister torsion along the branches of the character variety, a phenomenon which has not been observed previously
as far as we know.

1. Introduction

Using ideas coming from quantum field theory, E. Witten introduced in [W64]
a family of topological invariants of 3-manifolds denoted by Zk(M). For any integer k,

(1) Zk(M) =
∫

CS(A)k DA

where A is a 1-form with values in su2, CS(A) ∈ U(1) stands for the Chern-Simons
invariant of A and DA denotes an hypothetical measure on the space of connections
�1(M, su2). Doing the perturbative expansion of the partition function (1), Witten de-
rived the asymptotic behavior of Zk(M) in the large k limit. The leading order term
is a sum over the flat connections A of M which involves the Chern-Simons invariant
CS(A) and the Reidemeister torsion T(A). Here the flat connections are considered up
to gauge equivalence so that the relevant space is the moduli space M(M) of represen-
tations ρ : π1(M) → SU2 up to conjugation.

The invariants Zk(M) were later defined rigorously by Reshetikhin and Turaev in
[RT91]. The asymptotic behavior predicted from the path integral is now referred to as
the Witten asymptotic conjecture. Its interest (and difficulty) is that the gauge-theoretic
quantities as the Chern-Simons invariant and Reidemeister torsion do not enter in any
obvious way in the combinatorial definition of the Zk(M)’s. References for this problem
may be found in [FG91, J92, O01].

In this article we will prove the conjecture for the Dehn fillings of the figure eight
knot.

DOI 10.1007/s10240-015-0069-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s10240-015-0069-x&domain=pdf


324 L. CHARLES, J. MARCHÉ

Theorem 1.1. — Let M be a manifold obtained by Dehn surgery on the figure eight knot with

parameters (p, q). Suppose that p is not divisible by 4 and that for any irreducible representation ρ :
π1(M) → SU2 one has H1(M,Adρ) = 0. Then

Zk(M) =
∑

ρ∈M(M)

ei
m(ρ)π

4 kn(ρ)a(ρ)CS(ρ)k + O
(
k−1

)

where for any ρ ∈ M(M), m(ρ) is an integer, n(ρ) = 0, −1/2 or −3/2 according to whether ρ is

irreducible, abelian non-central or central.

a(ρ) =

⎧⎪⎨
⎪⎩

2−1(T(ρ))1/2 if ρ is irreducible

2−1/2(T(ρ))1/2 if ρ is abelian non-central

21/2π/p3/2 if ρ is central.

We refer to Proposition 5.8 for a discussion on the hypothesis of this theorem. It
holds true in many cases including all the slopes satisfying |p/q| < 2

√
5. One may object

that the contribution of central representations is irrelevant because of the remainder
O(k−1). We decided to keep it in view of the more general Witten conjecture (see Theo-
rem 4.5).

The Witten asymptotic conjecture has been partially proved for many Seifert man-
ifolds. This study was initiated by Jeffrey in [J92], followed by Rozansky [R96] and
Lawrence-Zagier [LZ99]. Their results were generalized by Hansen-Takata [HT01],
Hikami [Hi05] and Hansen [Ha05]. Still, this large list does not include all Seifert mani-
folds. Furthermore the identification between the coefficients a(ρ) and the Reidemeister
torsion has been proved only in [J92] for the lens spaces and the tori mapping tori, and
in [Hi05] for the Brieskorn sphere. All these works are based on explicit formulas for
the Witten-Reshetikhin-Turaev invariants of Seifert manifolds. Using the geometric con-
struction of the quantum representations of the mapping class groups, Andersen proved
the conjecture for finite order mapping tori in [A] and the first author for mapping tori of
diffeomorphisms satisfying a transversality assumption [C10b]. Nevertheless the equiva-
lence between the geometric and combinatorial constructions has not yet been proved.
Progress towards proving the Witten conjecture for the Dehn filling of the figure eight
knot was made by Andersen and Hanse [AH06] who showed that the conjecture would
follow from certain integral representation of the asymptotics of the WRT invariants.
However, to the best of our knowledge, this integral representation remains conjectural.
We will not use this integral representation in our paper.

To our knowledge, our result is the first proof of the Witten asymptotic conjec-
ture for some hyperbolic manifolds. The mapping tori considered in [C10b] include very
likely hyperbolic manifolds but the invariant is defined as a trace which is only conjec-
turally equal to the WRT invariant. Furthermore our proof does not rely on an explicit
formula or an integral representation of the WRT invariant. It is based on the q-difference
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equations satisfied by the colored Jones polynomials and uses microlocal techniques. We
hope it can be generalized to every knot.

Our strategy is to study the semi-classical properties of the family of knot states.
More precisely, for any integer k one can construct a topological quantum field theory
(TQFT) as a functor from a cobordism category to the category of hermitian vector
spaces, see [BHMV95] for instance. Given a knot K in S3, let EK be the complement
of an open tubular neighborhood of K and denote by � its boundary. The TQFT at
level k associates to � a finite dimensional hermitian space Vk(�) and to EK a vector
Zk(EK) ∈ Vk(�). These vectors will be called the knot states.

In the first part of this work, see [CM11], we give an explicit isomorphism between
Vk(�) and the geometric quantization Halt

k at level k of the moduli space M(�) of
representations π(�) → SU2 up to conjugation. This moduli space is a complex orbifold
with four singular points corresponding to the central representations. It the base of two
holomorphic line (orbi-)bundles, the Chern-Simons bundle LCS and a half-form bundle
δ respectively. The quantum space Halt

k is the space of holomorphic sections of Lk
CS ⊗ δ.

Let r : M(EK) → M(�) be the natural restriction map induced by the inclusion
� ⊂ EK. We will say that ρ ∈M(EK) is regular if H1(EK,Adρ) has dimension 1.

Conjecture 1.2. — Let K be a knot in S3 and Zk(EK) ∈Halt
k be the family of knot states. For

any x ∈M(�), we have the following trichotomy:

– if x /∈ r(M(EK)) then Zk(EK)(x) = O(k−∞)

– if r−1(x) = {ρ} and ρ is regular irreducible, then

Zk(EK)(x) ∼ eimx
π
4

k3/4

4π 3/4
CS(ρ)k

√
T(ρ)

– if r−1(x) = {ρ} and ρ is regular abelian non-central, then

Zk(EK)(x) ∼ eimx
π
4

k1/4

23/2π 3/4
CS(ρ)k

√
T(ρ)

In these formulas, mx is an integer depending continuously on x. We will actually
state more precise results where the asymptotic equivalent at x is replaced by an asymp-
totic expansion in a neighborhood of x, cf. Conjectures 4.1, 4.2 and 4.3. In the language
of semi-classical analysis, these conjectures say that the knot state is a Lagrangian state
supported by r(M(EK)) with symbol and phase given respectively by a square root of the
Reidemeister torsion and the Chern-Simons invariant.

Let us comment the ingredients of Conjecture 1.2. By construction of the line
bundle LCS, the Chern-Simons invariant CS(ρ) is a unitary vector in the fiber of LCS

at r(ρ). This is a particular case of the definition proposed in [RSW89] of the Chern-
Simons invariant of a 3-dimensional manifold with non-empty boundary.
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The square root of the Reidemeister torsion T(ρ) is naturally a vector in the fiber
of the half-form bundle δ at r(ρ). Indeed, at a regular representation ρ ∈ M(EK), the
moduli space is smooth and its tangent space is isomorphic to H1(EK,Adρ). The Reide-
meister torsion T(ρ) is a linear form on H1(EK,Adρ), well-defined up to sign. Moreover,
the restriction map r :M(EK) →M(�) is a Lagrangian immersion on the regular part.
We have two isomorphisms

δ⊗2
ρ 	 (

T1,0
ρ M(�)

)∗ 	 T∗
ρM(EK) ⊗ C

the first one being part of the definition of a half-form bundle, the second one being
the restriction of the pull-back by the linear tangent map Tρr. There are exactly four
elements

√
T(ρ) ∈ δ whose square is sent to ±T(ρ) by these isomorphisms.

Conjectures 4.1, 4.2 and 4.3 have many corollaries. They are compatible with the
gluing operation and in particular, they allow to recover the usual Witten conjecture for
Dehn fillings of the knot under some mild assumptions. More precisely, let M be the
3-manifold obtained by Dehn filling on K, that is M = EK ∪� (−N) where EK is the
knot exterior, � the peripheral torus and N is a solid torus with boundary �. The WRT
invariant of M is given by the scalar product:

(2) Zk(M) = 〈
Zk(EK),Zk(N)

〉
in Halt

k . We proved in Proposition 3.3 of [CM11] that (Zk(N)) is a Lagrangian state sup-
ported by the image of the restriction map r : M(N) → M(�). Now one can estimate
the scalar product of two Lagrangian states supported by transversal Lagrangian sub-
manifolds, the leading order term being given by a particular pairing in the half-form
bundle, see [C10a]. In particular, if the knot K satisfies Conjectures 4.1, 4.2 and 4.3
and r(M(EK)) intersects transversally r(M(N)), then the Witten asymptotic conjecture
holds, cf. Theorem 4.5 for a precise statement. Interestingly the pairing in the half-form
bundle corresponds to the computation of the Reidemeister torsion by a Mayer-Vietoris
argument. The idea that Chern-Simons invariant and Reidemeister torsion are semi-
classical data associated to 3-manifold with boundary and the fact that they behave as
expected under gluing were already present in the work of Jeffrey and Weitsman but at a
formal level, see [JW93].

We can deduce in the same way from Conjectures 4.1, 4.2 and 4.3 a generalized
Witten conjecture where the solid torus N contains a banded knot colored by an integer
� going with k to infinity, see Theorem 4.6. In particular we get asymptotic expansions of
the colored Jones polynomials in the large k and � limit. These asymptotics are parts of
the so-called generalized volume conjecture, cf. [Mu08].

Besides deriving consequences of Conjecture 4.2, we show it for the figure eight
knot. The case of the torus knots is proved in [C11]. Let us explain the main steps of
the proof. We start from q-difference relations satisfied by the colored Jones polynomials
JK

n (t) ∈ C[t±1] of the knot:

P(M,L, t)JK
n = R

(
t, tn

)
.
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Here M and L are operators acting on the sequence of colored Jones polynomial by
(Mf )n = t2nfn and (Lf )n = fn+1, P is a polynomial expression in M, L and t, and R is a
rational function of two variables.

Using that the coefficients of the knot state in a suitable basis are given by eval-
uation of the colored Jones polynomials, we deduce from each q-difference relation an
equation of the form

(3) PZk(EK) = R

where now P is a Toeplitz operator of Halt
k . Toeplitz operators have semi-classical proper-

ties similar to the ones of pseudodifferential operators depending on a small parameter.
In particular, using the work of the first author [C03] and [C06] on the eigenstates of
Toeplitz operator, we can deduce the asymptotic behaviour of Zk(EK) from Equation (3)
as follows.

Any Toeplitz operator has a principal and subprincipal symbol. In the case at
hand, these are functions defined on M(�) that we compute explicitly from the rela-
tion P(M,L, t). For the q-differential relation that we will use, the principal symbol of P
vanishes on r(Mirr(EK)) whereas the right-hand side R is a Lagrangian state supported
by r(Mab(EK)). Here Mirr(EK) and Mab(EK) are respectively the subsets of M(EK)

consisting of irreducible and abelian representations.
Let x ∈ M(�). Assume first that the principal symbol does not vanish at x. Then

we can invert P on a neighborhood of x. If in addition x does not belong to the micro-
support of R, we deduce from Equation (3) that the knot state is a O(k−∞) at x. If on the
other hand x belongs to r(Mab(EK)), we deduce that Zk(EK) is on a neighborhood of x

a Lagrangian state supported by r(Mab(EK)), the symbol of this Lagrangian state being
the quotient of the symbol of R by the principal symbol of P. For the torus and figure
eight knots, we can compute this symbol in terms of the Alexander polynomial. In this
way we prove in [CM11] the first and last assertions of Conjecture 1.2.

Assume now that the principal symbol of P vanishes at x but its differential does
not. Assume in addition that x /∈ r(Mab(EK)) so that we can neglect R. Then on a neigh-
borhood of x, Equation (3) determines the knot state up to a multiplicative constant and a
O(k−∞) term. It implies that Zk(EK) is a Lagrangian state supported by the zero level set
of the principal symbol of P. The phase of this Lagrangian state being a flat section of the
Chern-Simons bundle, it is equal to the Chern-Simons invariant up to a constant. The
symbol of this Lagrangian state satisfies a transport equation governed by the principal
and subprincipal symbol of P. We show that the Reidemeister torsion of the figure eight
and torus knots satisfies this transport equation. The last step is to compute the multi-
plicative constants, one for each component of Mirr(EK). Using symmetries of the figure
eight knot state, we show that only one initial value is needed. We obtain it from excep-
tional surgeries. As it is well-known, the ±1-surgeries on the figure eight knot yield the
Brieskorn sphere �(2,3,7). The Witten asymptotic conjecture was proved by Hikami in
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that case in [Hi05]. Then the constant is determined by Equation (2). This proves the
second assertion of Conjecture 1.2.

This strategy should work for other knots. By order of difficulty, it seems reasonable
to apply it to twist knots and two-bridge knots. The general case seems out of reach as far
as we do not have a good understanding of q-difference equations satisfied by the colored
Jones polynomial.

As already mentioned, we prove that the Reidemeister torsion of the figure eight
and torus knots satisfies a transport equation deduced from a q-difference relation of the
colored Jones polynomial. We believe that this is a new phenomenon which deserves
further investigation.

In Section 2, we construct the knot state, summing up a construction which details
can be found in [CM11]. We describe the symmetry properties of the knot state. We then
review in Section 3 the topological invariants entering into the picture, that is representa-
tion spaces, Chern-Simons invariant and Reidemeister torsion. We recall the gluing and
symmetry properties, and give some explicit formulas. In Section 4, we formulate our
main conjecture on the semi-classical properties of the knot state in the neighborhood of
irreducible representations, extending the main conjectures of [CM11]. We then show
that this conjecture implies the Witten conjecture for the Dehn fillings of the knot and
some generalization. Finally, Section 5 is devoted to the proof of the main conjecture for
the figure eight knot. We go over the tools of microlocal analysis which are needed and
discuss the transport equation of the Reidemeister torsion of the figure eight knot. We
end the proof with considerations of symmetries and exceptional surgeries. The paper
ends with a discussion on transversality assumptions needed for the proof of the Witten
conjecture for the Dehn fillings on the figure eight knot.

2. Knot state

2.1. Geometric quantization

Let (E,ω) be a symplectic vector space with a lattice R of volume 4π . Our aim is
to quantize the quotient of E by the group R � Z2, where R acts by translation and the
generator of Z2 acts by − idE. Since this quotient has four singular points, we will merely
quantize E with its symmetry group R � Z2.

Introduce a complex linear structure j on E compatible with the symplectic struc-
ture. Let (δ,ϕ) be a half-form line, that is δ is a complex line and ϕ an isomorphism from
δ⊗2 to the canonical line Kj = {α ∈ E∗ ⊗C/α( j·) = iα}. Let us denote also by δ the trivial
holomorphic line bundle over E with fiber δ. We lift the action of R � Z2 to δ by

(x, ε)( y, v) = (x + εy, εv).

Let α ∈ �1(E,C) be given by αx( y) = 1
2ω(x, y). Let L be the trivial hermitian line bundle

over E endowed with the connection d + 1
i
α. The bundle L has a unique holomorphic
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structure compatible with j and this connection. Let the Heisenberg group be E × U(1)

with the product:

(4) (x, u).( y, v) =
(

x + y, uv exp
(

i

2
ω(x, y)

))
.

The same formula with ( y, v) ∈ L defines an action of the Heisenberg group on L which
preserves the connection and the holomorphic structure. Because the volume of R is 4π ,
R × {1} is a subgroup of the Heisenberg group. Lifting trivially the action of Z2 on E, we
get an action of R � Z2 on L.

For any positive integer k, we have a representation of the group R � Z2 on the
space of holomorphic sections of Lk ⊗ δ. The space quantizing the quotient E/R � Z2

is the R � Z2-invariant subspace. We denote it by Halt
k and view it as a subspace of the

space Hk consisting of R-invariant holomorphic sections. Hk has a natural scalar product
defined by:

(5) 〈�1,�2〉 =
∫

D

〈
�1(x),�2(x)

〉
δ
|ω|(x), �1,�2 ∈Hk

where D is any fundamental domain of R.

2.2. Jones polynomial

Let K be a knot in S3. Let JK
� ∈ Z[t±1] be the Jones polynomial of K colored with

the �-dimensional irreducible representation of sl2 and normalized so that it is equal to
the quantum integer

[�] = t2� − t−2�

t2 − t−2

for the unknot, cf. [CM11] Section 4.1.
Let � be the peripheral torus of K. The 2-dimensional vector space E = H1(�,R)

has a natural symplectic product given by 4π the intersection product. The lattice R =
H1(�,Z) has volume 4π . Introduce a complex structure and a half-form line of E as in
the previous section and define the two quantum spaces Hk and Halt

k .
Let μ and λ ∈ R be a meridian and a longitude respectively. The elements

(μ/2k,1) and (−λ/2k,1) of the Heisenberg group act on the sections of Lk ⊗ δ and
preserve the subspace Hk . We denote by M and L their restriction to Hk . Let �λ ∈ δ be
such that �2

λ(λ) = 1. Then one proves (see Theorem 2.2, [CM11]) that Hk has a unique
orthonormal basis (��)�∈Z/2kZ such that

M�� = ei� π
k ��, L�� = ��−1(6)
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and

�0(0) = �k(0, τ )

(
k

2π

)k/2

�μ.

Here τ is the parameter of the complex structure of E and �k a theta series. Its precise
value is not important for our purpose, only the fact that �k(0, τ ) = 1 + O(e−k/C) for
some constant C > 0.

The state of the knot K is the following vector of Hk :

(7) Zk(EK) = sin(π/k)√
k

∑
�∈Z/2kZ

JK
�

(−eiπ/2k
)
��

We denote it by Zk(EK) because it corresponds in topological quantum field theory to the
vector associated to the exterior EK of the knot.

2.3. Symmetries of the knot state

First the knot state is an alternate section, that is it belongs to Halt
K . This comes from

the fact that JK
−� = −JK

� and that the generator of Z2 ⊂ R � Z2 acts on Hk by sending ��

to −�−�.
There is a less obvious symmetry corresponding to the translation with vector

λ/2. Denote by T∗
λ/2 the pull-back operator by the action of the element (λ/2,1) of

the Heisenberg group. We claim that

T∗
λ/2Zk(EK) = −Zk(EK)

Indeed it follows from the characterization (6) of the basis (��) of Hk that T∗
λ/2�� = ��+k .

So this additional symmetry is a consequence of the following proposition.

Proposition 2.1. — For any k ∈ Z>0, write tk = −eiπ/2k . Then for any � ∈ Z one has

JK
�+k(tk) = −JK

� (tk).

Proof. — We refer to [BHMV95] for the construction of the objects used in this
proof. For any � in N, consider the family of Jones-Wenzl idempotents f� ∈ T� where T�

is the Temperley-Lieb algebra with � points. These elements are defined over Q(t) and
we can specialize t = tk in f� provided that � ≤ k − 1. The �th colored Jones polynomial
evaluated at tk is obtained by cabling the knot K by �−1 strands, inserting the idempotent
(−1)�−1f�−1 and computing the Kauffman bracket at t = tk .

The closure of the idempotent (−1)�−1f�−1 in the skein module of the solid torus
gives the polynomial T� ∈ Z[x] where x� stands for � parallel copies of the core and T� is
defined by

T0 = 0, T1 = 1, T�+1 + xT� + T�−1 = 0
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FIG. 1. — Transparent idempotents

One proves by induction that for any � ∈ Z,

(8) Tk−� = Tk−1T� − TkT�−1.

Due to the “killing property” of fk−1, 〈TkT�−1〉 vanishes when it is evaluated at tk . Indeed,
the idempotent property implies that anything outside the idempotent can be reduced
up to a multiplicative factor to the standard closure 〈 fk−1〉 of the idempotent. Then the
formula

〈 fk−1〉 = (−1)k−1 tk
k − t−k

k

t2 − t−2
= 0

shows the result.
Let us prove now that JK

k−1 = 1. A simple computation of fusion rule shows that
changing a crossing of a bunch of k − 2 strands with fk−2 inserted with a single strand
amounts in multiplying by −1 (evaluated at tk ), see Figure 1.

As the knot K can be untied with an even number of crossing changes, we get

JK
k−1(tk) = t2k−2

k − t−2k+2
k

t2
k − t−2

k

= sin(π − π/k)

sin(π/k)
= 1.

By a similar reasoning, one shows the “transparency property” of the idempotent fk−2 and
deduces that 〈Tk−1T�〉 is equal to 〈T�〉 when evaluated at tk . Indeed, assume the knot K is
cabled by two idempotents fk−2 and fl−1. If we change a crossing between the copy cabled
by fk−2 and the copy cabled by fl−1, the result is multiplied by (−1)l−1. By changing an
even number of crossings, we can separate the two parallel copies and get

〈Tk−1T�〉 = 〈Tk−1〉〈T�〉 = 〈T�〉.
So by Equation (8), 〈Tk−�〉 = −〈T�〉, which ends the proof. �

3. Topological invariants

In this section, we will review some well-known facts about representation spaces,
Chern-Simons invariants and Reidemeister torsion. Unless these theories make sense for
any 3-manifolds with boundary, we will restrict ourselves to either closed 3-manifold or
knot exteriors.
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3.1. Representation spaces

For any compact manifold N, the moduli space

M(N) = Hom
(
π1(N),SU2

)
/SU2

is a real algebraic variety. Let ρ : π1(N) → SU2 be a representation. We denote by Adρ

the vector space su2 where γ ∈ π1(N) acts on ξ ∈ su2 by γ.ξ = Adρ(γ ) ξ . Let H∗
ρ(N)

be the cohomology of N with twisted coefficients in Adρ . It is well-known that for any
ρ ∈ M(N), the Zariski tangent space at ρ is identified with the first cohomology group
H1

ρ(N) of N with coefficient in Adρ, cf. for instance [W64] or [HK98], p. 40.
Consider on su2 the Euclidean pairing 〈A,B〉 = Tr(A∗B). When N is a n-

dimensional oriented manifold with possibly empty boundary, the Poincaré duality in
the twisted case gives a non-degenerate pairing

(9) Hk
ρ(N) × Hn−k

ρ (N, ∂N) → R.

3.1.1. The torus case

Let � be an oriented 2-dimensional torus. The smooth part Ms(�) of M(�)

consists of the non-central representations. Let π be the map from E = H1(�,R) onto
M(�) defined by

π(x)(γ ) = exp
(
(γ · x)D

) ∀γ ∈ H1(�,Z)

where · stands for the intersection product and D is the diagonal matrix with entries
2iπ,−2iπ . Let R = H1(�,Z) and consider the action of R � Z2 on E as in Section 2.1.
The projection π factors through a bijection between the quotient of E by R � Z2 and
M(�).

Let us describe the tangent map to π at x ∈ H1(�,R). First H1(�,R) is iso-
morphic with H1(�,R) by the Poincaré duality mapping y ∈ H1(�,R) to the cocycle
z → z · y. Then, the inclusion R → Adπ(x) mapping t to tD induces a map H1(�,R) →
H1

π(x)(�). The tangent map is the composition

Txπ : H1(�,R) 	 H1(�,R) → H1
π(x)(�).

When π(x) is not central, that is x /∈ 1
2R, Txπ is easily shown to be an isomorphism.

Furthermore, the action of R � Z2 on Es = E \ 1
2R being proper and free, the quotient

Es/R � Z2 is smooth and π induces a diffeomorphism from Es/R � Z2 to Ms(�).
Finally, if ρ ∈ M(�) is not central, the pairing on H1

ρ(�) 	 H1(�,R) given
by Equation (9) is a symplectic form whose integral over a fundamental domain for
H1(�,Z) is Tr(D∗D) = 8π 2. So it is equal to 2πω, where ω is the symplectic form
considered in Section 2.1.



KNOT STATE ASYMPTOTICS II: WITTEN CONJECTURE AND IRREDUCIBLE . . . 333

3.1.2. The knot exterior case

Let K be a knot in S3 and denote as previously its exterior by EK and its peripheral
torus by �. Since � is contained in EK, we have a restriction map r :M(EK) →M(�).
The set M(EK) is the disjoint union of Mab(EK) and Mirr(EK), which consist respec-
tively of the abelian and irreducible representations.

The moduli space Mab(EK) is homeomorphic to a closed interval. The restric-
tion of r to Mab(EK) is injective and its image is π([0,1]λ), where λ ∈ H1(�,Z) is a
longitude. An abelian representation ρ ∈ M(EK) is said to be regular if none of the
eigenvalues of ρ(μ)2, with μ a meridian of K is a root of the Alexander polynomial
of K.

We say that an irreducible representation ρ ∈ M(EK) is regular if its restriction
to the boundary r(ρ) is not central and if the vector space H1

ρ(EK) is one-dimensional.
If it is the case, the morphism H1

ρ(EK) → H1
r(ρ)(�) induced by the inclusion � ⊂ EK is

injective. Conversely, if ρ satisfies this last condition and r(ρ) is not central, then ρ is
regular, cf. [HK98], p. 42.

The set Ms(EK) consisting of irreducible regular representations is a smooth
open one-dimensional submanifold of M(EK). Its tangent space at ρ is H1

ρ(EK). Fur-
thermore the map r restricts into an immersion from Ms(EK) to M(�), the tangent
map at ρ ∈ Ms(EK) being the morphism H1

ρ(EK) → H1
r(ρ)(�) induced by the inclu-

sion � ⊂ EK.

3.1.3. Symmetries on representation spaces

Denote by ρ±1 ∈M(EK) the central representations mapping the meridian to ±1.
As the product of any representation with a central one is again a representation, one
gets an action of Z2 on M(EK). Its quotient M(EK) can be identified with the set of
representations of EK in SO3. Indeed two representations in M(EK) are the same as
representations of SO3 if and only if they differ by a central representation. Moreover,
any representation in SO3 lifts to SU2, as the obstruction to the existence of such a lifting
is in H2(EK,Z2) = 0.

Consider the quotient M(�) = E/�′ where �′ = R′
� Z2 and R′ = μZ ⊕ 1

2λZ.
This quotient is in intermediate position between the representation spaces of � in SU2

and SO3. It has the nice property that the restriction map descends to a map r in the
following diagram:

M(EK)
r

M(�)

M(EK)
r

M(�)

The topological invariants introduced in the next subsection will descend to these quo-
tients.
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3.2. Chern-Simons invariants

3.2.1. Generalities

We review in this section a construction due to Ramadas, Singer and Weitsman
in [RSW89]. Most details can be found in [Fre95]. Let M be a manifold with a possibly
non-empty boundary and of dimension not greater than 3. Then any representation
ρ ∈ M(M) is the holonomy of a flat connection α ∈ �1(M, su2). This connection form
is unique up to gauge transformation, that is any other one has the form

αg = g−1αg + g−1dg

for some g : M → SU2. In other terms, we may identify the moduli space M(M) with
the quotient of the space �1

�(M, su2) of flat connections by the action of C∞(M,SU2).
Assume that M is compact and 3-dimensional. We define the Chern-Simons func-

tional by the following formula:

(10) CS(α) = exp
(

1
12iπ

∫
M

Tr(α ∧ α ∧ α)

)
, α ∈ �1

�(M, su2)

If M is closed, a well-known computation shows that CS(αg) = CS(α), cf. [Fre95]. So we
can define the Chern-Simon invariant of ρ ∈M(M) by CS(ρ) = CS(α) ∈ U(1).

Assume now that the boundary � of M is not empty. Then Equation (10) does not
give a gauge invariant quantity, but

CS
(
αg

)
CS(α)−1 = c(a, h)

with a and h the restrictions of α and g respectively to � and

c(a, h) = exp
(

iW(h) + 1
4iπ

∫
�

Tr
(
a ∧ dhh−1

))

where W(h) = 1
π

∫
M Tr((g−1dg)∧3) is the Wess-Zumino-Witten functional of h which is

independent on g modulo 2π .
The vector space �1(�, su2) has a symplectic form

�(α,β) = − 1
2π

∫
�

Tr(α ∧ β)

The quotient of the subset of all flat connections by the gauge group action can be viewed
as a symplectic reduction. The trivial line bundle �1(�, su2)×C equipped with the con-
nection �A(α) = 1

2�(A, α) is a prequantum bundle, that is a Hermitian line bundle with
connection whose curvature is 1

i
�. The gauge group C∞(�,SU2) acts on �1(�, su2)×C

by

h.(α, z) = (
αh, c(α, h)z

)
.
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Restricting to the flat connections and dividing by this action, we get a line bundle LCS →
M(�), called the Chern-Simons line bundle.

Let r be the restriction map from M(M) to M(�) induced by the inclusion of
� into M. By construction, for any representation ρ ∈ M(M), the family CS(α) where
α runs over the flat connections with holonomy ρ, defines a vector CS(ρ) in the fiber
at r(ρ) of LCS. Furthermore, the connection descends to the Chern-Simons bundle and
the section ρ → CS(ρ) of r∗LCS is flat. Here to avoid the singularities, we should restrict
everything to the subspace of irreducible connections when � has a genus � 2, and to
the non-central ones when � has genus 1. We refer the reader to [Fre95] for more details.

Consider two compact oriented manifolds M1 and M2 with boundary identified
with �. Let M be the gluing of M1 with −M2 along �. Then one checks easily that for
any ρ ∈M(�),

(11) CS(ρ) = 〈
CS(ρ1),CS(ρ2)

〉
where ρ1 and ρ2 are the restriction of ρ to M1 and M2 respectively. The bracket in the
right hand side is the scalar product in the fiber of LCS at the restriction of ρ to �.

3.2.2. Comparison between bundles

Assume now that � is a torus so that M(�) 	 E/R � Z2. Recall that we intro-
duced in Section 2.1 a prequantum bundle L → E.

Lemma 3.1. — The quotient of L by � = R � Z2 is isomorphic to the Chern-Simons bundle

LCS. The restrictions of these two bundles over Ms(�) have isomorphic connections.

Proof. — We can represent any representation ρ ∈ M(�) by an element in
�1

�(�,SU2) of the form bD with D = diag(2iπ,−2iπ) and b a real valued 1-form on �.
It is unique up to a gauge transformation of the form h1h2 where

h1 =
(

0 1
−1 0

)
or id, h2 =

(
e2iπH 0

0 e−2iπH

)

where H is a map from � to R/Z. Identify E with H1(�,R) so that the de Rham class
of b defines an element of E satisfying π([b]) = ρ. Observe furthermore that

(bD)h1 = ±bD, (bD)h2 = (b + dH)D

which proves again that M(�) is the quotient of E by R � Z2. One shows that
c(bD, h1) = 1 and

c(bD, h2) = exp
(

2iπ

∫
�

b ∧ dH
)

= exp
(

i

2
ω

([b], [dH])
)

Comparing with Equation (4), the result follows. �
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Assume now that M is a knot exterior EK, so that � is the peripheral torus of the
knot. Then the map sending ρ ∈ M(EK) to CS(ρ) is a section of the bundle r∗LCS →
M(EK). Its restrictions to Ms(EK) and Mab(EK) are flat.

3.2.3. Symmetry

The group � = R � Z2 is an index 2 normal subgroup of �′ = R′
� Z2. Here

R′ = μZ ⊕ 1
2λZ. We extend the action of � on the bundle L to �′ in such a way that

(λ/2,1).(x, v) = (
x + λ/2, e

i
2 ω(λ/2,x)v

)
, (x, v) ∈ L

Denote by τ and τL respectively the actions of the generator of �′/� on M(�) 	 E/�

and LCS 	 L/�. We denote by σ the action of ρ−1 on M(EK).

Lemma 3.2. — For any representation ρ ∈M(EK) one has

CS
(
σ(ρ)

) = τL

(
CS(ρ)

)

Proof. — Let F ⊂ EK be a Seifert surface of K such that F ∩ � = ∂F = λ. Let
α ∈ �1

�(EK, su2) be a flat connection representing ρ. Thicken F such that there is an
embedding j : F × [0,1] → EK. Then, up to gauge transformation, one can suppose
that

– α = bD on the boundary where b ∈ �1(�,R) and D is the diagonal matrix with
entries 2iπ and −2iπ .

– j∗α = p∗β where p : F × [0,1] → F is the projection on the first factor and β is a
flat connection in �1

�(F, su2).

Let φ be a smooth function on [0,1] which is equal to 0 on a neighborhood of 0
and 1 on a neighborhood of 1. Then one can construct a connection α′ which represents
τ(ρ) in the following way: α′ coincide with α outside F ×[0,1] and satisfies on F ×[0,1]

j∗α′ = e−Dφ/2
(
p∗β

)
eDφ/2 + 1

2
Ddφ.

Using the formula defining the Chern-Simons invariant, we get

CS
(
α′) = CS(α) exp(θ) with θ = 3

12iπ

∫
F×[0,1]

Tr
(

D
2

dφ ∧ β ∧ β

)
.

Integrating over [0,1] and using the flatness of β , we get

θ = i

8π

∫
F

Tr(Ddβ) = i

8π

∫
∂F

b Tr
(
D2

) = −iπ

∫
λ

b = i

2
ω

(
λ/2, [b]).

One recognizes the action of τL on the pair ([b],CS(α)) and the lemma is proved. �
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3.3. Reidemeister torsion

Let M be an oriented manifold with possibly empty boundary. We will be inter-
ested in the cases when M is a closed 3-manifold, a 2-torus or a knot exterior although
Reidemeister torsion makes sense in the general case. A comprehensive reference for the
combinatorial torsion is [Tu02].

3.3.1. Construction

Given a real vector space V, we denote by |det V| the vector space of densities on
V. Consider on su2 the Euclidean pairing 〈A,B〉 = Tr(A∗B) and denote by ν ∈ |det su2 |
the Euclidean density.

Suppose that M is homeomorphic to a finite connected CW-complex and let ρ :
π1(M) → SU2 be a representation. We denote by Adρ the vector space su2 where γ ∈
π1(M) acts on ξ ∈ su2 by γ.ξ = Adρ(γ ) ξ .

For a lighter notation, we will denote by C∗
ρ(M) the complex C∗(M,Adρ). It is a

finite complex isomorphic to a direct sum of copies of su2 (one for each cell of M). Define

∣∣det C∗
ρ(M)

∣∣ =
⊗

i

∣∣det Ci
ρ(M)

∣∣(−1)i+1

This line has a generator obtained by taking a convenient tensor product of copies of ν

and its inverse, this generator is well-defined up to sign. Using the well-known isomor-
phism between |det C∗

ρ(M)| and |det H∗
ρ(M)| we obtain a generator of the latter space

that we denote by Tor(M, ρ). This generator does not depend on the way M is presented
as a cellular complex.

The torsion T(M, ρ) is constructed from Torρ(M) by a procedure which de-
pends on the pair (M, ρ). We review here the cases which occur in this article. As
M is connected, one may view H0

ρ(M) as a subspace of su2. Hence it inherits from
su2 an Euclidean structure and a corresponding volume element denoted by v(N, ρ) ∈
|det H0

ρ(M)|−1. Using the pairing on su2 and Poincaré duality, we see that for a manifold
M of dimension n and for k ≤ n, there is a natural isomorphism Hk

ρ(M) 	 Hn−k
ρ (M, ∂M)∗.

Hence, if M is closed, we can associate to v(M, ρ) a density ν(M, ρ) in |det Hn
ρ(M)|.

1. If M is closed 3-manifold, we will suppose that H1
ρ(N) = 0 which means

that ρ is (infinitesimally) isolated in M(M). By Poincaré duality, one has
also H2

ρ(N) = 0. Hence we have an element Tor(M, ρ) in |det H∗
ρ(M)| =

|det H0
ρ(M)|−1 ⊗ |det H3

ρ(M)|. We define T(M, ρ) ∈ R by the equation

Tor(M, ρ) = v(M, ρ)ν(M, ρ)T(M, ρ).

Observe that if ρ is irreducible, the normalizations v and ν are useless.
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2. If M is a torus, we have Tor(M, ρ) ∈ |det H0
ρ(M)|−1 ⊗ |det H1

ρ(M)| ⊗
|det H2

ρ(M)|−1. Define in that case T(M, ρ) by the formula

Tor(M, ρ) = v(M, ρ)T(M, ρ)ν(M, ρ)−1.

It is well-known that the density T(M, ρ) coincides with the symplectic density
associated to the Poincaré pairing on H1

ρ(M) that we described in Section 3.1,
see [W91], p. 187.

3. If M is a knot exterior and ρ is regular abelian representation with non-
central restriction to the boundary then we have H2

ρ(M) = H3
ρ(M) = 0. So

Tor(M, ρ) ∈ |det H0
ρ(M)|−1 ⊗ |det H1

ρ(M)|. We define T(M, ρ) by

Tor(M, ρ) = v(M, ρ)T(M, ρ)

It is a density on the one-dimensional space H1
ρ(M). It can be computed in

terms of the Alexander polynomial, cf. Section 3.3.2.
4. If M is a knot exterior and ρ is an regular irreducible representation then we

have H0
ρ(M) = H3

ρ(M) = 0. So Tor(M, ρ) ∈ |det H1
ρ(M)|⊗ |det H2

ρ(M)|−1. Be-
cause of the regularity assumption, H1

ρ(M) is 1-dimensional, the map

r∗ : H1
ρ(M) → H1

r(ρ)(∂M)

is injective and the map

r∗ : H2
ρ(M) → H2

r(ρ)(∂M)

is an isomorphism, see [HK98], p. 42. We define T(M, ρ) by

Tor(M, ρ) = T(M, ρ)
(
r∗)−1(

ν(∂M, ρ)−1
)
.

It is a density on the one-dimensional space H1
ρ(M).

To summarize, we obtained for any closed 3-manifold M equipped with a repre-
sentation ρ such that H1

ρ(M) is trivial, a numerical invariant T(M, ρ). Furthermore for
any regular representation ρ of some knot exterior M, we defined a density on H1

ρ(M).

Remark 1. — The Reidemeister torsion at a point ρ ∈ M(EK) is defined through
the adjoint representation Adρ . So it depends only on the projection of ρ in M(EK).

3.3.2. Examples

Let a and b be two coprime integers. The torsion of the lens spaces L(a, b) was
computed by Franz in [Fra35]. The fundamental group of L(a, b) is Z/aZ: for n ∈ Z/aZ,
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we let ρn : Z/aZ → SU2 be the representation mapping the generator to the matrix
exp(nD/a). Denote by b∗ an inverse of b mod a. Then

T
(
L(a, b), ρn

) = 16
a

∣∣∣∣sin
(

2πn

a

)
sin

(
2πb∗n

a

)∣∣∣∣.
Let EK be the complement of a knot K in S3. Denote by ρq the abelian represen-

tation of EK mapping the meridian to the matrix exp(qD). Let �K be the normalized
Alexander polynomial. Then it is shown in Theorem 4 of [Mi62] that:

(12) T(EK, ρq) = 4 sin2(2πq)

|�K(exp(4iπq))|2 23/2π
∣∣r∗dq

∣∣.
Here r is the restriction map from M(EK) to M(�), p and q are the coordinates on
M(�) such that one has r(ρ) = π(pμ + qλ). We use the same notation in the two fol-
lowing examples.

Let a and b be two coprime integers and Ea,b be the complement in S3 of the torus
knot with parameters a, b. The fundamental group of Ea,b is

π1(Ea,b) 	 〈
x, y

∣∣ xa = yb
〉
.

Any irreducible representation ρ of Ea,b is regular, its Reidemeister torsion being given by

T(Ea,b, ρ) = 16
a2b2

sin2

(
π�

a

)
sin2

(
πm

b

)
23/2π

∣∣r∗dp
∣∣,

where m and � are two integers such that Tr(ρ(x)) = 2 cos(π�/a) and Tr(ρ(y)) =
2 cos(πm/b).

Let E8 be the complement of the figure eight knot. Then any irreducible represen-
tation ρ of E8 is regular (see Proposition 4.19 in [P97]) and

(13) T(E8, ρ) = 23/2π |r∗dp|
1 − 4 cos(4πq)

where r(ρ) = π(pμ + qλ).

3.3.3. Gluing formula

Let E1,E2 be two knot complements with boundaries identified to a torus �. Let ρj

be elements of M(Ej) which are either regular abelian or regular irreducible and whose
restrictions on M(�) coincide with a representation ρ which is not central. Correspond-
ing to the decomposition M = E1 ∪ (−E2), there is a short exact sequence of complexes
induced by restriction maps:

0 → C∗
ρ̃(M) → C∗

ρ1
(E1) ⊕ C∗

ρ2
(E2) → C∗

ρ(�) → 0.
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This sequence provides the following isomorphism:
∣∣det H∗

ρ(M)
∣∣ ⊗ ∣∣det H∗

ρ̃(�)
∣∣ 	 ∣∣det H∗

ρ1
(E1)

∣∣ ⊗ ∣∣det H∗
ρ2

(E2)
∣∣.

The well-known formula linking the four torsions is

(14) Tor(E1, ρ1)Tor(E2, ρ2) = Tor(M, ρ̃)Tor(�,ρ)Tor(H),

where H is the long Mayer-Vietoris exact sequence, see [Mi66], Theorem 3.2. A simple
argument shows that the correction term Tor(H) is trivial, see [Fre92], Lemma 1.18.

These considerations imply the following proposition:

Proposition 3.3. — Let M be a 3-manifold obtained by gluing two knot exteriors E1 and E2

along a torus �. Let ρ̃ be a representation in M(M) which restricts to ρ1, ρ2 and ρ on E1,E2 and

� respectively. Suppose that ρ1 and ρ2 are regular, one of the two is abelian, ρ is not central, and

H1
ρ̃(M) = 0. Then from the Mayer-Vietoris sequence, one has an isomorphism

H1
ρ(�) 	 H1

ρ1
(E1) ⊕ H1

ρ2
(E2)

induced by the two restriction maps r1 and r2. Denoting by π1,π2 the corresponding projections, one has:

T(M, ρ)T(�,ρ) = π∗
1 T(E1, ρ1) ∧ π∗

2 T(E2, ρ2)

Proof. — The proof follows directly from Equation (14) by checking that the nor-
malization terms cancel. The less obvious cancellation comes from the case when all
representations are reducible. We check that the normalizations ν(M, ρ̃) and ν(�,ρ)−1

cancel via the boundary map ∂ : H2
ρ(�) → H3

ρ̃(M). �

4. Witten conjectures and generalization

4.1. Knot state asymptotics

Consider a knot K with exterior EK and peripheral torus �. The state of K is
the vector Zk(EK) given by (7). It belongs to the vector space Halt

k quantizing E/R � Z2,
where E = H1(�,R) and R = H1(�,Z). So it may be viewed as a R � Z2-invariant
section over E, or as a Z2-invariant section over E/R or even as a section of an orbifold
bundle over the moduli space M(�) 	 E/R � Z2. In the sequel we use these three
different representations according to our needs.

4.1.1. Microsupport

Recall first that Zk(EK) is admissible, that is there exist N and C such that
∥∥Zk(EK)

∥∥ � CkN
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for any k (see [CM11], Section 5.5). Define the microsupport of any admissible family
(�k ∈Hk, k ∈ Z>0) as the subset MS(�k) of E such that for any x ∈ E, x does not belong
to MS(�k) if and only if there exists a neighborhood U of x and a sequence of positive
number (CN) such that for any N and for any k

∣∣�k( y)
∣∣ � CNk−N, ∀y ∈ U.

The microsupport is R-invariant. If the �k ’s are alternate, it is R � Z2-invariant and
so it can be viewed as a subset of M(�) = E/R � Z2. In [CM11], we conjectured the
following statement:

Conjecture 4.1. — The microsupport of (Zk(EK)) is contained in r(M(EK)).

The conjecture has been proved for the eight knot [CM11] and for the torus knots
[C11]. To complete this, we make two conjectures on the asymptotic behavior of the knot
state on a neighborhood of r(M(EK)).

4.1.2. Irreducible representation

Here it is more convenient to consider the knot state as a section over the moduli
space M(�). Recall first that the smooth part Ms(�) is diffeomorphic to Es/R � Z2.
The symplectic and the complex structure of E descend to Ms(�). The quotient of
L → Es is the restriction of the Chern-Simons bundle LCS. The quotient of δ → Es is
a line bundle over Ms(�) that we still denote by δ. Each section � ∈ Halt

k defines a
holomorphic section of Lk

CS ⊗ δ →Ms(�). We could actually extend δ and LCS to orbi-
bundles over M(�) in such a way that Halt

k gets identified with the space of holomorphic
sections of Lk

CS ⊗ δ →M(�), but it is not necessary for our purposes.
The morphism ϕ : δ2 → Kj does not descend to the quotient Ms(�), because

R � Z2 acts on the canonical line Kj by (x, n).z = (−1)nz. But the square ϕ2 descends
to an isomorphism between δ4 → Ms(�) and the square of the canonical bundle of
Ms(�). We still use ϕ for notational purpose even if it is only defined up to a sign.

Conjecture 4.2. — For any open set U of Ms(�) such that V = r−1(U) is connected, con-

tained in Ms(EK) and r restricts to an embedding from V into U, we have on U

Zk(EK) = ei mπ
4

k3/4

4π 3/4
Fkf (· , k) + O

(
k−∞)

where m is an integer

– F is a section of L → U such that F(r(ρ)) = CS(ρ) for any ρ ∈ V and which satisfies

the Cauchy-Riemann equations, ∇ZF ≡ 0 for all holomorphic vector field Z, up to a term

vanishing to infinite order along r(Ms).
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– f (· , k) is a sequence of C∞(U, δ) admitting an asymptotic expansion of the form f0 +
k−1f1 + · · · for the C∞ topology with coefficients fi ∈ C∞(U, δ). Furthermore

(
r∗ϕ

(
f 2
0

))
(ρ) = ±T(ρ)

for any ρ ∈ V.

Observe that for any regular irreducible representation ρ ∈ M(EK) such that
r−1(r(ρ)) = {ρ}, r(ρ) has a neighborhood U satisfying the assumption of the conjecture.
Furthermore the conjecture implies that

(15) Zk(EK)
(
r(ρ)

) ∼ ei mπ
4

k3/4

4π 3/4
CS(ρ)kτ

1
2

where τ ∈ δ2
r(ρ) is such that r∗ϕ(τ) = ±T(ρ). Hence, the Chern-Simons invariant and

the torsion at ρ are determined by the asymptotic behavior of Zk(EK).

4.1.3. Abelian representations

Our second conjecture describes the knot state on a neighborhood of any reg-
ular abelian representation. Denote by �K the Alexander polynomial of K. We say
that a point x ∈ λR is regular if a neighborhood of π(x) does not meet r(Mirr) and
�K(e4iπq) �= 0 if x = qλ. In the following statement, we consider Zk(EK) as an R � Z2-
invariant section of Lk ⊗ δ → E.

Conjecture 4.3. — Any regular point of Rλ has an open neighborhood V in E such that

V ∩ Rλ consists of regular points and

Zk(EK)(x) = eim π
4

(
k

2π

)1/4

tk
λ(x) ⊗ f (x, k)�λ + O

(
k−∞)

, ∀x ∈ V

where m is an integer,

– tλ is the holomorphic section of L → E restricting to 1 on Rλ.

– f (· , k) is a sequence of C∞(V) admitting an asymptotic expansion of the form f0 + k−1f1 +
· · · for the C∞ topology with coefficients fi ∈ C∞(V), the first one satisfying

f0(qλ) = 1√
2

σ − σ−1

�K(σ 2)
with σ = e2iπq

for any qλ ∈ V.

– �λ ∈ δ such that �2
λ(λ) = 1.
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Let ρ ∈M(EK) be an abelian representation so that r(ρ) = π(x) for some x ∈ Rλ.
Then CS(ρ) = tλ(x). Assume furthermore that r(ρ) is regular and non-central, then the
Reidemeister torsion T(ρ) is given in terms of the Alexander polynomial by (12). Con-
jecture 4.3 implies that

Zk(EK)
(
r(ρ)

) ∼ ei mπ
4

k1/4

23/2π 3/4
CS(ρ)kτ 1/2,(16)

where τ ∈ δ2
r(ρ) is such that r∗ϕ(τ) = ±T(ρ).

4.2. The Witten Conjecture for Dehn fillings

In this part we show that under some mild assumptions, the previous conjectures
imply the Witten conjecture about the asymptotic expansion of the WRT invariants of
the Dehn fillings of a knot exterior. Consider a knot K in S3 and two relatively prime
integers p, q. The Dehn filling of K with parameters (p, q) is

M = EK ∪φ (−N)

where N is the solid torus D2 × S1 and φ an oriented diffeomorphism ∂N → � sending
the homology class of ∂D2 into pμ + qλ. Here μ and λ are the homology classes of a
meridian and longitude of K.

Consider the segment

Ip/q = π
(
(pμ + qλ)R

) ⊂M(�).

One has to assume that Ip/q intersects transversally r(M(EK)) at points where we can
describe the state Zk(EK) with the previous conjectures. The precise hypothesis are the
following.

(H1) p �= 0 and Ip/q ∩ I0 consists of regular abelian points.
(H2) Z = Ip/q ∩ r(Mirr(EK)) is finite and for any of x ∈ Z, r−1(x) consists of a

single regular irreducible representation ρ which satisfies for any generator
ξ ∈ H1

ρ(EK):
〈
r∗ξ, pμ + qλ

〉 �= 0

In this last formula, r∗ξ is an element of H1
ρ(�) which is isomorphic to H1(�,R) via the

derivative of π . Hence the pairing involved here is the duality between H1(�,R) and
H1(�,R).

The fundamental group of M is the quotient of the fundamental group of EK by
the subgroup generated by the homotopy class of pμ + qλ. So there is a one to one
correspondence between M(M) and the set of ρ ∈ M(EK) such that r(ρ) ∈ Ip/q. In
particular, under the previous hypothesis, M(M) is finite.

The hypothesis (H1) and (H2) can be completely transcribed in terms of the moduli
space M(M), as it is explained in the following lemma.
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Lemma 4.4. — Let K be a knot in S3 and p, q be two relatively prime integers. Let M be the

Dehn filling of the exterior of K with parameters (p, q) and L be the core of the solid torus glued to the

exterior of K in order to obtain M. Then, the hypothesis (H1) and (H2) are satisfied if and only if

(H1′) The restriction map M(M) →M(L) is injective.

(H2′) For any non central representation ρ ∈M(M), one has H1
ρ(M) = 0.

Proof. — Write as above M = EK ∪φ (−N). The knot L is the core of N hence
the moduli space M(L) is identified with M(N) which is itself identified to Ip/q by the
restriction mapping M(N) → M(�). The representation space M(M) is in bijection
with the set of representations ρ ∈ M(EK) such that r(ρ) ∈ Ip/q. The assumption that
r−1(r(ρ)) = {ρ} for all such representations is equivalent to the hypothesis H1′.

Let ρ be such a representation in M(EK). Abusing notation, we also denote by
ρ the corresponding representations in M(M),M(N) and M(�). The Mayer-Vietoris
sequence of the gluing M = EK ∪φ (−N) gives:

H1
ρ(M) H1

ρ(EK) ⊕ H1
ρ(N) H1

ρ(�)

0 H0
ρ(M) H0

ρ(EK) ⊕ H0
ρ(N) H0

ρ(�)

∂

If the hypothesis H1 and H2 are satisfied, then the exactness of the bottom line shows
that ∂ = 0. The geometric interpretation of H1

ρ(EK),H1
ρ(N) and H1

ρ(�) as the tangent
spaces of M(EK), Ip/q and M(�) respectively shows that H1

ρ(M) is identified with the
intersection of the tangent spaces of r(M(EK)) and Ip/q at ρ ∈ M(�). The transver-
sality assumption implies that this latter space vanishes. Reciprocally, if we suppose that
H1

ρ(M) = 0 for all non central ρ, we get that H1
ρ(EK) has dimension 1, showing that ρ

represents a regular element of M(EK) and the geometric interpretation holds again,
implying the transversality assumption. �

Theorem 4.5. — Let K be a knot satisfying Conjectures 4.1, 4.2 and 4.3. Let p and q be two

relatively prime integers and M be the Dehn filling of K with parameters p, q. Assume that (H1) and

(H2) are verified. Then

Zk(M) =
∑

ρ∈M(M)

ei
m(ρ)π

4 kn(ρ)λk(ρ)CS(ρ)k + O
(
k−∞)

where for any ρ ∈ M(M), m(ρ) is an integer, n(ρ) = 0, −1/2 or −3/2 according to whether ρ

is irreducible, abelian non-central or central. Furthermore (λk(ρ)) is a sequence of complex numbers

admitting an asymptotic expansion of the form

λk(ρ) = a0(ρ) + a1(ρ)k−1 + a2(ρ)k−2 + · · ·
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with coefficient a�(ρ) ∈ C, the leading one being given by

a0(ρ) =

⎧⎪⎨
⎪⎩

2−1(T(ρ))1/2 if ρ is irreducible

2−1/2(T(ρ))1/2 if ρ is abelian non-central

21/2π/p3/2 if ρ is central.

Because of the anomalies, the WRT invariant is well-defined only up to a power
of τk = e

3iπ
4 − 3iπ

2k . Since τk = e
3iπ
4 + O(k−1), this factor appears in the leading order term in

the power m(ρ).
For the abelian representation, the Chern-Simons invariant is easily computed ex-

actly as for the lens spaces (cf. [CM11], proof of Theorem 6.2)

CS(ρ�) = e2iπ�2q/p, � = 0,1, . . . , p − 1

where ρ� ∈Mab(EK) is such that r(ρ�) = π(�
q

p
λ). Similarly if � �= 0 and p/2, then

T(ρ�) = 2√
p

sin(2π�/p) sin(2πq�/p)

�K(e4iπq�/p)

where �K is the Alexander polynomial of the knot. Furthermore one has for some integer
m that: m(ρ�) = m − 2 if ρ� is central and m(ρ�) = m otherwise.

Proof. — We use in this article a family of topological quantum field theories de-
noted by (Vk,Zk) which associate to any surface � a complex hermitian vector space
Vk(�) and to any 3-manifold N bounding � a vector Zk(M) ∈ Vk(�). The key prop-
erty that we shall use in the proof is the gluing formula stating that for any two 3-
manifolds bounding � denoted by N1,N2, one has Zk(N1 ∪ (−N2)) = 〈Zk(N1),Zk(N2)〉.
In [CM11], Theorem 2.4, we identified the hermitian space Vk(�) with the space Halt

k in
a natural way, that is compatible with the (projective) actions of SL2(Z) on both spaces.
The knot states Zk(EK) and Zk(N) in Halt

k are compatible with these identifications, hence
we have

Zk(M) = 〈
Zk(EK),Zk(N)

〉

To estimate this scalar product, we consider Zk(EK) and Zk(N) as sections over the
torus T = E/R.

By Theorem 3.3 in [CM11], the microsupport of Zk(N) is contained in Ip/q. By
Conjecture 4.1, the microsupport of Zk(EK) is contained in r(M(EK)). Hence for any
compact neighborhood C of r(M(EK)) ∩ Ip/q in M(�), we have

(17)
〈
Zk(EK),Zk(N)

〉 =
∫

C̃

(
Zk(EK),Zk(N)

)
Lk⊗δ

(x) μT(x) + O
(
k−∞)
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where (· , ·)Lk⊗δ denote the pointwise hermitian product of Lk ⊗δ → T, μT is the Liouville
measure of T and C̃ is the preimage of C by the projection T →M(�).

Let γ = pμ+qλ. We proved in Theorem 3.3 of [CM11] that Zk(N) is a Lagrangian
state supported by the circle Cp/q = {tγ, t ∈ R} ⊂ T. More precisely, for any real t and
x = [tγ ] ∈ Cp/q,

(18) Zk(N)(x) = ei π
4 m

(
2k

π

)1/4

sin(2π t)�γ ⊗ sγ (x) + O
(
k−3/4

)

where m is an integer, �γ ∈ δ is such that �2
γ (γ ) = 1 and sγ is the flat section of L → Cp/q

lifting to the constant section of L → γ R equal to 1. Now consider the representation ρ ∈
M(N) whose restriction to � is π(x). Assume that ρ is not central, then Equation (18)
may be rewritten as

(19) Zk(N)(x) = ei π
4 m k1/4

23/2π 3/4
τ ⊗ CSk(ρ) + O

(
k−3/4

)

where τ ∈ δrN(ρ) is such that r∗
Nτ 2 = T(ρ). Here rN is the restriction map M(N) →

M(�).
By our assumptions, on a neighborhood of each point of r(M(EK)) ∩ Ip/q, Zk(N)

and Zk(EK) are Lagrangian states supported by two transversal curves. So we can esti-
mate the integral (17) by a pairing formula [C10a], see also Proposition 6.1 of [CM11].
This leads to

Zk(M) =
∑

ρ∈M(M)

CSk(ρ)knρ
(
aρ,0 + aρ,1k−1 + · · · ) + O

(
k−∞)

Here we used the fact that the restriction map M(M) →M(�) gives a bijection between
M(M) and r(M(EK))∩ Ip/q, the abelian representations being sent in r(Mab(EK))∩ Ip/q

and the irreducible ones in r(Mirr(EK))∩Ip/q. The Chern-Simons invariant CS(ρ) comes
from the gluing formula (11). The power nρ is equal to 0 or −1/2 according to ρ is abelian
or irreducible.

The leading coefficients aρ,0 are computed as follows. If ρ is abelian and non-
central, then by (16) and (19),

aρ,0 = ±2
2π

(23/2π 3/4)2

(
T(rEK(ρ))T(rN(ρ))

ω

)1/2

= ±2−1/2
(
T(ρ)

)1/2

The factor 2 comes from the fact that the projection Es/R →Ms(�) is two to one. The
maps rEK, rN and r� are the restriction map from M(M) to M(EK), M(N) and M(�)

respectively. We used that ω = (2π)−1T(r�(ρ)) and Proposition 3.3 to obtain the last
equality.
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In the case when ρ is an irreducible representation, we deduce similarly from (15)
and (19) that

aρ,0 = ±2
2π

(4π 3/4)(23/2π 3/4)

(
T(rEK(ρ))T(rN(ρ))

ω

)1/2

= ±2−1
(
T(ρ)

)1/2
.

Finally if ρ is central, a0,ρ = 0 because the sinus in (18) vanish. One could also compute
the second coefficient in the asymptotic expansion exactly as we did for the lens spaces,
cf. proof of Theorem 6.2 of [CM11]. �

4.3. Some generalization

Consider a knot K in S3 . Denote by EK its exterior and by � its peripheral torus.
Let N be the solid torus D2 × S1 and L be the banded link [0,1/2] × S1 ⊂ N. Let φ

be a diffeomorphism from S1 × S1 to � preserving orientations. Consider the Witten-
Reshetikhin-Turaev invariant

Zk,� := Zk

(
EK ∪φ (−N),L, �,0

)
,

where the color � is any integer satisfying 0 < � < k.
Let (μ′, λ′) be the basis of H1(�) given by μ′ = φ(S1 ×{1}) and λ′ = φ({1}× S1).

For any real q̇ ∈ (0, 1
2), consider the circle

Cq̇ = π
(
q̇λ′ + Rμ′) ⊂M(�).

The following assumptions are similar to the ones of the previous part

(I1) μ′ �= λ and Xab
q̇ = Cq̇ ∩ I0 consists of regular abelian points.

(I2) Xirr
q̇ = Cq̇ ∩ r(Mirr(EK)) is finite and for any of x ∈ Xirr

q̇ , r−1(x) consists of a
single regular irreducible representation ρ which satisfies for any generator
ξ ∈ H1

ρ(EK):
〈
r∗ξ,μ′〉 �= 0

If these assumptions are satisfied, any representation ρ ∈ Xirr
q̇ ∪ Xab

q̇ has a unique exten-
sion ρK ∈ M(EK). We denote by Tμ′(ρK) the torsion of ρK normalized by μ′. It is the
complex number defined by

Tμ′(ρK) = T(ρK)/ω
(
μ′, ·).

For any real q̇, consider the flat section of Lk → E over the affine line q̇λ′ + Rμ′

which is equal to 1 at q̇λ′. It is explicitly given by

q̇λ′ + xμ′ → exp(2ikπ q̇x).
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When q̇ ∈ (2k)−1Z, this section descends to a section tk
q̇ of the kth power of the Chern-

Simons bundle LCS →M(�) over the circle Cq̇.

Theorem 4.6. — Let 0 < qm < qM < 1/2 such that any q̇ ∈ [qm, qM] satisfies the previous

assumptions I1 and I2. Then for any integers k > 0 and � such that �/2k ∈ [qm, qM] we have

Zk,� = k−1/2
∑

ρ∈Xab
q̇ ∪Xirr

q̇

ei
m(ρ)π

4 kn(ρ)λk(ρ)
〈
CSk(ρK), tk

q̇(ρ)
〉 + O

(
k−∞)

where the O(k−∞) is uniform with respect to k and � and for any ρ, m(ρ) is an integer, n(ρ) = 0,

−1/2 according to whether ρ is in Xirr
q̇ or Xab

q̇ . Furthermore, (λk(ρ)) is a sequence of complex numbers

admitting an asymptotic expansion of the form

λk(ρ) = a0(ρ) + a1(ρ)k−1 + a2(ρ)k−2 + · · ·
with coefficients a�(ρ) ∈ C, the leading one being given by

a0(ρ) =
{

2−3/4(Tμ′(ρK))1/2 if ρ ∈ Xirr
q̇

2−1/4(Tμ′(ρK))1/2 if ρ ∈ Xab
q̇

where ρK ∈ M(EK) is the unique extension of ρ, Tμ′(ρK) is the μ′ normalized torsion of ρK and

CS(ρK) ∈ LCS,ρ is the Chern-Simons invariant of ρK.

Proof. — Let e� = Zk(N,L, �,0) ∈ Vk(�) so that

Zk,� = (τk)
m
〈
Zk(EK), e�

〉
for some integer m. Here τk = e3iπ/4−3iπ/2k is the anomaly factor. Let �μ′ ∈ δ be such
that �2

μ′(μ′) = 1. By Theorem 2.2 of [CM11], there exists a unique orthonormal basis
(��)�∈Z/2kZ of Hk such that

T∗
μ′/2k�� = ei� π

k ��, T∗
λ′/2k�� = ��+1

and

��(0) = �k(0, τ )

(
k

2π

)1/2

�μ′ .

By Theorem 2.4 of [CM11], there exist integers n and n′ such that

e� = eiπ( n
4 + n′

2k )

√
2

(�� − �−�)

Finally by Proposition 3.2 of [CM11], we have the following estimate
∣∣∣∣��(x) −

(
k

2π

)1/4

T∗
�λ′/2kt

k(x) ⊗ �μ′

∣∣∣∣ � C(δ)e−k/C(δ)
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FIG. 2. — Projection of the character variety of the figure eight knot

for any δ ∈ (0,1) and x ∈ − �

2k
λ′ + [δ, δ]λ′ + Rμ′. Here t is the holomorphic section of

L → E whose restriction to Rμ′ is equal to 1. The final result follows by an application
of the pairing formula of Proposition 6.1 of [CM11] as for Theorem 4.5. �

5. The figure eight knot state

Let E8 be the exterior of the figure eight knot. The moduli space Mirr(E8) is dif-
feomorphic to a circle, see for instance [K91]. The restriction map Mirr(E8) → Ms(�)

is an immersion with one double point xo = π(λ

4 ), its image is shown in Figure 2.

r
(
Mirr(E8)

)
= {

π( pμ + qλ), cos(2πp) − cos(8πq) + cos(4πq) + 1 = 0
}

\ {
π(μ/2)

}

Its intersection with r(Mab(E8)) is reduced to the point xo. So r(Mirr(E8)) \ {xo} is the
disjoint union of two embedded open arcs in Ms(�) \ r(Mab(E8)).

As it will be proved in Lemma 5.4, the bundle r∗δ →Mirr(�) has a section σ such
that σ 4 = T2, with T the Reidemeister torsion normalized as in Section 3.3. The aim of
this section is to prove the following theorem.

Theorem 5.1. — We have on the set V =Ms(�) \ r(Mab(E8))

Zk(E8) = λke
i mπ

4
k3/4

4π 3/4
Fkg(· , k) + O

(
k−∞)

where the O(k−∞) is uniform on any compact set of V, m is an integer

– F is a section of L → V such that F(r(ρ)) = CS(ρ) for any ρ ∈ Mirr(E8) \ r−1(xo)

and which satisfies the Cauchy-Riemann equation up to a term vanishing to infinite order along

r(Mirr(E8)).
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– g(· , k) is a sequence of C∞(V, δ) admitting an asymptotic expansion of the form g0 +
k−1g1 + · · · with g0(r(ρ)) = σ(ρ) for any ρ ∈Mirr(E8) \ r−1(xo).

– λk is a sequence of complex numbers equal to 1 + O(k−1).

The result is weaker than Conjecture 4.2 because of the sequence λk . Our proof
relies on a q-difference equation satisfied by the Jones polynomials of the figure eight knot.
By Proposition 4.4 in [CM11], the figure eight knot state Zk(E8) satisfies the following
equation:

(20) Q kZk(E8) = RkZ0
k

Here Q k and Rk are the operators

Q k = (
q−1M2 − qM−2

)
L + (

qM2 − q−1M−2
)
L−1 + (

M2 − M−2
)(−M4

− M−4 + M2 + M−2 + q2 + q−2
)
,(21)

Rk = (
M5 + M−5 + M3 + M−3 − (

q2 + q−2
)(

M + M−1
))

with q = eiπ/k and Z0
k is the section of Hk given by

Z0
k = 1

2i
√

k

∑
�∈Z/2kZ

��.

5.1. Toeplitz operator and Lagrangian states

In this section we introduce the analytical tools necessary to prove Conjecture 4.2
for the figure eight knot. It is convenient to work on the torus T = E/R, because the
quotient E/R � Z2 is singular and E is not compact. Abusing notation, we denote again
by δ and L the line bundles over T obtained from the line bundles δ and L over E. So Hk

consists of the holomorphic sections of Lk ⊗ δ → T. The group (R � Z2)/R = Z2 acts
linearly on Hk , the invariant subspace being Halt

k .

5.1.1. Toeplitz operators

Let H2
k be the space of sections of Lk ⊗ δ → T which are locally of class L2. We

denote by �k the orthogonal projector of H2
k onto the (closed) finite dimensional subspace

Hk . For any bounded function f ∈ C∞(T) we denote by M(f ) the operator acting on H2
k

by multiplication by f .
A Toeplitz operator is a family (Tk ∈ End(Hk), k ∈ Z>0) of the form

Tk = �kM
(

f (· , k)
) + Rk :Hk →Hk, k = 1,2, . . .

where ( f (· , k))k is a sequence of C∞(T) which admits an asymptotic expansion

f (· , k) = f0 + k−1f1 + · · ·
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for the C∞ topology, with coefficients f0, f1, . . . ∈ C∞(T). Furthermore the family (Rk ∈
End(Hk), k ∈ Z>0) is a O(k−∞), i.e. for any N, ‖Rk‖ = O(k−N). Here ‖ · ‖ is the uniform
norm of operators.

As a result, the coefficients f0, f1, . . . are uniquely determined by the family (Tk)k .
We call f0 the principal symbol of (Tk) and f1 − 1

2�f0 the subprincipal symbol of (Tk).
It follows from Theorem 3.1 of [CM11] that the families (Q k) and (Rk) defined

in (21) are Toeplitz operator of Hk . The principal and subprincipal symbols of (Q k) are
given by:

f0(x) = −4i sin(4πq)
(
cos(2πp) − cos(8πq) + cos(4πq) + 1

)
(22)

f1(x) = −8π cos(4πq) sin(2πp)(23)

where x = [pμ + qλ] ∈ T.

5.1.2. Microlocal solution

Let U be an open set of E/R. Consider a family (�k ∈ C∞(U,Lk ⊗ δ), k ∈ Z>0).
We call such a family a local state on U. For any N ∈ Z, we say that (�k) is a O(kN) if for
any compact subset K of U, there exists C such that

∣∣�k(x)
∣∣ � CkN, ∀x ∈ K.

We say that (�k) is admissible (resp. a O(k−∞)) if for some integer N (resp. for any nega-
tive integer N), it is a O(kN).

Let (Tk) be a Toeplitz operator and assume that (�k) is an admissible local state
on U. We say that (�k) is a microlocal solution on U of

(24) Tk�k = 0

if for any x in U, there exists a function ϕ ∈ C∞(M) such that suppϕ ⊂ U, ϕ ≡ 1 on a
neighborhood of x and

�k(ϕ�k) = �k + O
(
k−∞)

, Tk

(
�k(ϕ�k)

) = O
(
k−∞)

on a neighborhood of x.
As expected although the proof is not so obvious, for any family (�k ∈Hk, k ∈ Z>0)

such that Tk�k = 0, the restriction (�k|U) is a microlocal solution on U. Observe that the
set S of microlocal solution of (24) is a R-module where R consists of the admissible
sequences (λk) of complex number. Here admissible means that λk = O(kN) for some N.
Furthermore S contains as a submodule the set of local state (�k) which are a O(k−∞).
It is known that if the principal symbol of (Tk) does not vanish on U, S consists only of
the O(k−∞) local states. This assertion is equivalent to the fact that the microsupport of
any admissible family (�k ∈Hk)k satisfying Tk�k = 0 is contained into the zero set of the
principal symbol of (Tk).
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Consider now the figure eight knot state Z8
k . Let Y be the following subset of T

(25) Y = {
cos(2πp) − cos(8πq) + cos(4πq) + 1 = 0

}
.

The set Y intersects the circle {p = 0} at two points P and P′. Our aim is to describe the
asymptotic behaviour of (Zk(E8)) on a neighborhood of Y \ {P,P′}.

By Theorem 5.4 of [CM11], the microsupport of the left hand side RkZ0
k of Equa-

tion (20) is contained in {p = 0}. So the restriction of the knot state Zk(E8) to the open set
T \ {p = 0} is a microlocal solution of Q k�k = 0.

5.1.3. Lagrangian microlocal solution

Consider a Toeplitz operator (Tk) of Hk with a real valued principal symbol f0.
Then on a neighborhood of any regular point of f0, the microlocal solutions of Tk�k = 0
are Lagrangian states supported by f −1

0 (0) in the following sense.
Let U be any open set of E such that I = f −1

0 (0)∩U is diffeomorphic to an interval
and df0 does not vanish on I. Let t be a flat section of L → I with constant norm equal
to 1. Let σ ∈ �1(I) be a non vanishing solution of the following transport equation

(26) LX0σ + 2if1σ = 0

Here X0 is the restriction to I of the Hamiltonian vector field of f0 and L is the Lie
derivative.

Theorem 5.2 [C03, C06]. — The equation Tk�k = 0 has a microlocal solution U of the form

Fkg(· , k) where

– F is a section of L → U satisfying the Cauchy-Riemann equation up to a section vanishing

to infinite order along I and F|I = t.

– g(· , k) is a sequence C∞(U, δ) admitting an asymptotic expansion for the C∞ topology of the

form g0 + k−1g1 + · · ·
– The leading coefficient g0 satisfies j∗ϕ(g⊗2

0 ) = σ , where ϕ is the squaring map of the half-

form bundle δ and j is the injection I → M.

Furthermore for any admissible local solution (�k ∈ C∞(U,Lk ⊗ δ), k ∈ Z>0) of Tk�k = 0 on U,

we have

�k = λkFkg(· , k) + O
(
k−∞)

for some admissible sequence (λk) of complex number.

As in the previous section, let S be the R-module of microlocal solutions of
Tk�k = 0 on U. The previous theorem shows that S/O(k−∞) has dimension 1 and gives
the asymptotic behaviour of a generator.
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For the figure eight knot state, we can apply this result on each of the four open
rectangles:

(27) Ui =
{
[pμ + qλ], p ∈ (0,1), q ∈

(
i

4
,

i + 1
4

)}
, i = 0,1,2,3

Indeed, since each Ui is contained in T \ {p = 0}, the restriction of Zk(E8) to Ui is a
microlocal solution of Q k�k = 0. Furthermore, Ii = Ui ∩ f −1

0 (0) is connected.
Observe also that U1 ∪ U2 ∪ U3 ∪ U4 is a neighborhood of Y \ {P,P′}. So it is

sufficient to consider these open sets to prove Theorem 5.1. Furthermore, Z2 acts on
T by switching U1 with U4 and U2 with U3. Since Zk(E8) is Z2-invariant, it is actually
sufficient to consider two of these rectangles. We will use in Section 5.3 the fact that
Zk(E8) satisfies an additional symmetry which reduces everything to one rectangle.

Another remark is that we can define the flat section t from the Chern-Simons
invariant in the following way. The map sending x ∈ Ii to the representation ρ ∈Mirr(E8)

such that [x] = r(ρ) is a diffeomorphism from Ii onto an open set of Mirr(E8). Let t be the
section of L → Ii given by t(x) = CS(ρ) where [x] = r(ρ). This section is flat as recalled
in Section 3.2.

5.2. Torsion and transport equation

We prove in this part that the torsion of the exterior of the figure eight knot satisfies
the transport Equation (26) where f0 and f1 are the principal and subprincipal symbols of
the operator (Q k) given respectively by Equations (22) and (23).

More precisely since f0 and f1 do not descend to the quotient M(�), we lift ev-
erything to the torus T. The set Y defined in (25) is the reunion of two immersed circles
and two points. Let σ be the restriction of dp/(1 − 4 cos(4πq)) to these circles. Since f0
vanishes on Y, the Hamiltonian vector field of f0 is tangent to Y.

Proposition 5.3. — One has that LX0σ + 2if1σ = 0.

Since σ does not vanish anywhere, its absolute value |σ | satisfies the same transport
equation. This density is up to a constant the torsion T(EK, ρq) defined in Section 3.3.2.

Proof. — Introduce the following functions on the torus T

h = cos(2πp) + 1 − cos(8πq) + cos(4πq)

a = 1 − 4 cos(4πq), b = sin(4πq).

So Y is the zero set of h, f0 = −4ibh and σ = dp/a. We have

(28) dh = −2π sin(2πp)dp + (
8π sin(8πq) − 4π sin(4πq)

)
dq

= −2π sin(2πp)dp + (
16π sin(4πq) cos(4πq) − 4π sin(4πq)

)
dq

= −2π sin(2πp)dp − 4πbadq
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Let Z be the Hamiltonian vector field of h. Since h vanishes on Y, the Hamiltonian vector
field of f0 coincides on Y with −4ibZ. Simplifying the factor −4i, we have to prove that

(29) LbZσ + 4π cos(4πq) sin(2πp)σ = 0

We have that

(30) LbZσ = bLYσ + σ(Z)db = b

(
dLZp

a
− LZa

a2
dp

)
+ LZp

a
db

Since the symplectic form of T is 4πdp ∧ dq, we have by (28)

LZp = − 1
4π

∂qh = ba

Furthermore LZa = 16π sin(4πq)LZq = 16πbLZq and

LZq = 1
4π

∂ph = −1
2

sin(2πp)

where we used (28) again. Inserting these expressions into (30) we obtain

LbZσ = b

(
d(ba)

a
+ 8π

b

a2
sin(2πp)dp

)
+ bdb

= 2bdb + b2

a
da + 8π

b2

a2
sin(2πp)dp

= 2bdb + b2

a
da − 16π

b3

a
dq

where we used that dh = 0 on Y and (28). Finally since da = 16πbdq, we obtain

LbZσ = 2bdb = 8πb cos(4πq)dq = −4π cos(4πq) sin(2πp)
dp

a

where we used again that dh = 0 on Y and (28). Since σ = dp/a, this shows (29) and
concludes the proof. �

5.3. Symmetry

Let � = R � Z2 and �′ = R′
� Z2 with R′ the lattice μZ ⊕ λ

2 Z. It is easily checked
that we can extend the action of � on the bundles L and δ to �′ in such a way that

(λ/2,1).(x, v) = (x + λ/2,−v), (x, v) ∈ δ

(λ/2,1).(x, v) = (
x + λ/2, e

i
2 ω(λ/2,x)v

)
, (x, v) ∈ L

The second formula is just the action of the element (λ/2,1) of the Heisenberg group. By
Proposition 2.1, the state of any knot is a �′-invariant holomorphic section of Lk ⊗δ → E.
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5.3.1. On the half-form bundle

As previously denote by τ the action of the generator of �′/� on M(�) 	 E/�

and by σ the action of ρ−1 on M(EK). The restriction map r : M(EK) → M(�) in-
tertwines τ and σ . Denote by τδ the action of the generator of �′/� on the half-form
bundle δ →M(�).

Consider now the complement of the figure eight knot. Its set of irreducible repre-
sentations is a circle C, preserved by σ . Denote by δC → C the pull-back of δ → M(�)

by r and σδ the pull-back of τδ . We have an isomorphism ϕC between δ4
C and (T∗C ⊗ C)2

defined as follows

u2 ∈ δ4
C,p = δ4

r(p) 	 (∧1,0T∗
r(p)Ms(�)

)2 → (
r∗u

)2 ∈ (
T∗C ⊗ C

)2

This isomorphism intertwines the morphisms σ 4
δ and (σ ∗)2.

The square of the torsion T is a section of (T∗C ⊗ C)2.

Lemma 5.4. — The bundle δC → C has a smooth section g such that ϕC(g4) = T2. It is

unique up to multiplication by a power of i and is σδ-invariant.

Proof. — Let us prove the existence of a non-vanishing section g satisfying g4 = T2.
We identify smoothly C with R/2Z in such a way that the involution σ is the map sending
[p] ∈ C to [−p] ∈ C. The two fixed points [0] and [1] are sent by r to π(λ/4). Let C+ =
{[p]; p ∈ ]0,1[} and C− = {[p]; p ∈ ]1,2[}.

Define g over C+ in such a way that g4 = T2. Since σ ∗T2 = T2, we can extend g

over C+ ∪ C− in such a way that g is σδ -invariant and g4 = T2 is still satisfied. Because of
Equation (13), g has left and right limits at [0] and [1]. By symmetry reason, the left and
right limits are the same, so that g extends continuously to C. �

5.3.2. The operator Q

Let I be the endomorphism of Hk given by I�(x) = �(−x) where we view the
elements of Hk as R-invariant section over E. So Halt

k = ker(I + idHk
).

Lemma 5.5. — The operator Q defined in (21) commutes with T∗
λ/2 and anticommutes with I.

Proof. — Since M and L are respectively the pull-back by the actions of the elements
(μ/2k,1) and (−λ/2k,1) of the Heisenberg group, we have that

T∗
λ/2M = −MT∗

λ/2, T∗
λ/2L = LT∗

λ/2

Since Q is a polynomial expression in the variables M2 and L, it commutes with T∗
λ/2.

That Q anticommutes with I follows from the relations MI = IM−1 and LI = IL−1. �
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5.3.3. Symmetric microlocal solution of Q�k = 0

Let us now work on the torus T = E/R. The action of �′ on E descends to an
action of �′/R 	 Z2 × Z2 on T. The two generators act on T by [x] → [−x] and [x] →
[x + λ/2].

Observe that �′/R acts simply transitively on the family (U1,U2,U3,U4). Let
V = U1 ∪ U2 ∪ U3 ∪ U4. We deduce from Theorem 5.2 and Lemma 5.5 that the
module of �′/R-invariant microlocal solutions of Q�k = 0 on U modulo O(k−∞) is
a one-dimensional R-module. Furthermore this module has a generator (�k ∈ C∞(V,

Lk ⊗ δ), k ∈ Z>0) of the form

(31) �k = k3/4

4π 3/4
Fk g̃(· , k)

where F and g satisfies the same assumption as in Theorem 5.2. By Lemma 5.4 and
Lemma 3.2, we can also assume that for any irreducible representation ρ ∈ Mirr(E8)

and x ∈ E such that π(x) = ρ, we have that

F
([x]) = CS(ρ), g̃(x, k) = g(ρ) + O

(
k−1

)
where g satisfies the same assumption as in Lemma 5.4. Finally, we have that

Zk(E8) = λk�k + O
(
k−∞)

on V(32)

where (λk) is an admissible sequence of complex numbers.

5.4. End of the proof

In this part, we show that the sequence (λk) in (32) satisfies

(33) λk = eim π
4 + O

(
k−1

)
for some integer m. To prove this we use the fact that the surgery of index 1 on the
figure eight knot is homeomorphic to the Brieskorn sphere �(2,3,7). Hikami proved
in [Hi05] that the Brieskorn spheres satisfy the Witten asymptotic conjecture. In the
following theorem we present the leading order term for �(2,3,7).

Theorem 5.6 [Hi05]. — The WRT invariant of the Brieskorn sphere �(2,3,7) satisfies

Zk

(
�(2,3,7)

) = eim π
4

2

∑
i=1,2

CS(ρi)
kT(ρi)

1/2 + O
(
k−1

)

for some integer m with Mirr(�(2,3,7)) = {ρ1, ρ2}. Furthermore

T(ρ1) = 23/2

71/2
sin

(
2π

7

)
, CS(ρ1) = e−i 25π

84
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and

T(ρ2) = 23/2

71/2
sin

(
3π

7

)
, CS(ρ2) = ei 47π

84 .

Let N be a solid torus with boundary � such that μ + λ vanishes in H1(N). Then
〈
Zk(E8),Zk(N)

〉 = Zk

(
�(2,3,7)

)

Recall that the microsupport of Zk(N) is the circle � = {[s(λ + μ)]/s ∈ R} whereas the
microsupport of Zk(E8) is contained in {p = 0} ∪ Y where Y is the characteristic set (25).
Hence, for any closed neighborhood K of � ∩ ({p = 0} ∪ Y) we have

〈
Zk(E8),Zk(N)

〉 =
∫

K

(
Zk(E8),Zk(N)

)
Lk⊗δ

(x) μT(x) + O
(
k−∞)

where (· , ·)Lk⊗δ denote the pointwise hermitian product of Lk ⊗ δ at x ∈ T and μT is the
Liouville measure of T.

Let K1 and K2 be two disjoint compact sets neighborhood of � ∩ {p = 0} and
� ∩ Y respectively. Let I1 and I2 the integrals of (Zk(E8),Zk(N))Lk⊗δμT over K1 and K2

respectively. Using that Zk(N) and Zk(E8) are Lagrangian states on a neighborhood of
{0T} = � ∩ {p = 0}, we can estimate I1 as in the proof of Theorem 4.5. We deduce that
I1 = O(k−3/2) as there are no abelian non central representations of π1(�(2,3,7)).

Assume that K2 is contained in the reunion U of the open sets Ui defined in (27).
Because of (32), we have

I2 = λk

∫
K2

(
�k,Zk(N)

)
Lk⊗δ

μT + O
(
k−∞)

Lemma 5.7. — We have that∫
K2

(
�k,Zk(N)

)
Lk⊗δ

μT = eim′ π
4 Zk

(
�(2,3,7)

) + O
(
k−1

)

for some integer m′.

Proof. — Since � intersects transversally Y, we can argue exactly as in the proof of
Theorem 4.5. We deduce that∫

K2

(
�k,Zk(N)

)
Lk⊗δ

μT = 2−1
∑
i=1,2

eimi
π
4 CS(ρi)

kT(ρi)
1/2 + O

(
k−1

)

where ρ1 and ρ2 are the two irreducible representations of �(2,3,7) as in Theorem 5.6.
To conclude, we have to show that the two integers m1 and m2 are equal. Let us recall
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the half-form pairing. Given two transversal lines F1 and F2 of E, we define a sesquilinear
map

δ × δ → C, α1, α2 → 〈α1, α2〉F1,F2

Here we denote by δ the complex line and not the bundle. Recall that its square is iden-
tified with the canonical line of (E, j) and that the square of the latter pairing is given
by

(34) 〈α1, α2〉2
F1,F2

= i
α2

1(X1)α
2
2(X2)

ω(X1,X2)

where Xi is any vector non-vanishing vector in Fi for i = 1,2. The way the square root
is determined is explained in [C10a]. Here we will only use the fact that the pairing
depends continuously on F1 and F2. As an application of the pairing formula [C10a] or
Proposition 6.1 of [CM11], we obtain

∫
K2

(
�k,Zk(N)

)
Lk⊗δ

μT ∼ 2−1
∑
i=1,2

CS(ρi)
kai

where ai is the pairing

(35) ai =
〈
g(xi), sin

(
2πq(xi)

)
�λ+μ

〉
Tr(xi )

r(M(EK)),(λ+μ)R

Here g is a section of δC → C satisfying the assumption of Lemma 5.4. The representa-
tions x1, x2 ∈ Mirr(EK) have restrictions ρ1 and ρ2 respectively. q(xi) is the second coor-
dinate of r(xi) in the base μ,λ. Finally �λ+μ ∈ δ satisfies �2

λ+μ(λ + μ) = 1.
Observe that for any x ∈ Mirr(EK), the tangent space Tr(x)r(M(EK)) intersects

transversally the line directed by μ + λ. Furthermore one can define q : Mirr(EK) → R
continuously so that q(x) is the coefficient of λ in r(x). From Equation (25) defining Y,
one can choose q such that it satisfies 1/6 < q(x) < 1/3. Since the section g is continuous,
the right hand side of (35) depends continuously on x ∈ Mirr(EK) and does not vanish.
Its fourth power being negative by Equation (34), its phase is constant. �

Collecting together the previous estimates we obtain that
(
1 − λke

im′ π
4
)
Zk

(
�(2,3,7)

) = O
(
k−1

)

Using that T(ρ1) �= T(ρ2), we deduce from Theorem 5.6 that there exists k0 and ε > 0
such that

∣∣Zk

(
�(2,3,7)

)∣∣ � ε

for all k � k0. This implies (33).
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5.5. Regular slopes of the figure eight knot

By Theorem 5.1, our conjectures on the knot state hold for the figure eight knot.
Using Theorem 4.5, we can conclude that the Witten conjecture holds for the Dehn
filling with parameters p, q on the figure eight knot as soon as the non-degeneracy con-
ditions H′1 and H′2 are satisfied. We collect in the following proposition the state of our
knowledge on that question.

Proposition 5.8. — Let p, q be two positive coprime integers and consider the hypothesis H′1
and H′2 concerning the Dehn fillings of the figure eight knot with parameters p, q.

– H′1 is satisfied if and only if p �≡ 0 mod 4.

– H′2 is satisfied if p/q < 2
√

5.

– H′2 is satisfied if and only if the polynomial

�p,q = X2p − Xp+4q + Xp+2q + 2Xp + Xp−2q − Xp−4q + 1

has no simple roots on the unit circle except −1 (p ≡ 1 mod 2) and ±i (p ≡ 0 mod 4).

– H′2 is satisfied if 0 < 2
√

5q < p ≤ 200.

– Let � be an odd prime divisor of p and ξ be a root of ξ 2 − ξ/2 + 1 in F�2 . If 28q �= ξ±p,

then H′2 holds.

We conjecture that the hypothesis H′2 holds for any p, q: we do not know any
theoretical reason why such a rigidity result should hold.

Proof. — Set F(x, y) = cos(x) + 1 − cos(4y) + cos(2y) such that the characteristic
variety of the figure eight knot is given by

Y8 =
{

2πxμ + 2πyλ ∈ E,F(x, y) = 0 and (x, y) /∈ μ(1/2 + Z) + λ

2
Z

}

The real double points of Y8 are located at 2π(μZ + λ( 1
4 + 1

2Z)) and correspond to 2
representations of the figure eight knot complement in SU2 whereas the points 2π(μ( 1

2 +
Z) + λ

2 Z) are imaginary double points and correspond to representations in SL(2,R).
One can parameterize Ip/q by setting x = pt and y = qt. This line meets the real

double points if and only if p is divisible by 4, proving the first point. A computation
shows that the slopes of the tangents of Y8 at the double points are ±2

√
5. Moreover,

on each branch of Y8, the slope varies continuously in ±[2√
5,+∞]. This shows that if

p/q < 2
√

5 the sets Ip/q and Y8 meet transversally: this shows the second point.
The hypothesis H′2 is equivalent to saying that Ip/q has only first order contact with

Y8. A way to formulate this condition is that the map t �→ F(pt, qt) has only simple zeros.
Writing X = exp(it), we deduce immediately the third point. The zero −1 correspond
to an intersection of Ip/q with the imaginary double points (which can be disregarded)
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whereas the zeroes ±i correspond to an intersection with the real double points. The
intersection of Ip/q with each branch meeting at those points is transversal because the
slope is irrational. Therefore, these double points can also be disregarded in order to
state H′2.

The third item comes from the non vanishing of the discriminants of the following
polynomials that we computed with the computer.⎧⎨

⎩
�p,q p = 2 mod 4
�p,q/(X + 1)2 p = 1,3 mod 4
�p,q/(X2 + 1)2 p = 0 mod 4

Finally, the last point comes from a computation of the common zeros of �p,q and �′
p,q in

the field F�. We compute in Fl :

�′
p,q = 2qXp−1

(
X2q − X−2q

)(−2X2q + 1 − 2X−2q
)
.

A root α of �′
p,q satisfies either α = 0, α4q = 1 or α2q +α−2q = 1/2. We check now whether

these roots can be also roots of �p,q. The first cannot, the second neither because p and q

are coprime (with exceptions depending on p mod 4) and the third gives the condition of
the proposition. We observed that this condition is satisfied very often but not always, the
simplest case when it is not being p = 83 and q = 1. �
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