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ABSTRACT

A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions
of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT (0) groups
with rank 1 elements, mapping class groups and Out(Fn). As an application, we show that mapping class groups act on
finite products of δ-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class
groups have finite asymptotic dimension.
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1. Introduction

In this paper we define a new combinatorial complex which we call the projection

complex, and a closely related complex called the quasi-tree of metric spaces. To motivate the
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FIG. 1. — Axiom (P1). The bold line is the shortest segment between A and B. Note that C and this segment stay close for a
long time, therefore dπ

C (A,B) is large, while dπ
A (B,C) and dπ

B (A,C) are small

construction consider a discrete group G of isometries of hyperbolic n-space Hn and let
γ ∈ G be an element with an axis � ⊂ Hn. Denote by Y the set of all G-translates of �,
i.e. the set of axes of conjugates of γ . When A,B ∈ Y, A �= B, denote by πA(B) ⊂ A the
image of B under the nearest point projection πA : Hn → A. We call this set the projection

of B to A and we observe:

(P0) The diameter diamπA(B) is uniformly bounded by θ ≥ 0, independently of
A,B ∈ Y.

This is because a line in Hn will have a big projection to another line only if the two lines
have long segments with small Hausdorff distance between them, since G is discrete (an
easy exercise).

When B �= A �= C we define a pseudo-distance function (and abusing the termi-
nology, we frequently drop “pseudo”)

dπ
A (B,C) = diam

(
πA(B) ∪ πA(C)

)

which is symmetric and satisfies the triangle inequality, but in general we have
dπ

A (B,B) > 0. We observe further, again since G is discrete, for a perhaps larger con-
stant θ :

(P1) For any triple A,B,C ∈ Y of distinct elements at most one of the three num-
bers

dπ
A (B,C), dπ

B (A,C), dπ
C(A,B)

is greater than θ . See Figure 1.
(P2) For any A,B ∈ Y the set

{
C ∈ Y

∣∣ dπ
C(A,B) > θ

}

is finite.
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For an even more basic example where (P0)–(P2) hold with θ = 0 consider the
Cayley tree of the free group F2 = 〈a, b〉 and for Y take the F2-orbit of the axis of a. We
will discuss this example in more detail in Section 2.5.

The main construction in this paper reverses this procedure. We start with a col-
lection of metric spaces Y and a collection of subsets πA(B) ⊂ A for A �= B satisfying
(P0)–(P2) and we “reconstruct” the ambient space. Note that in general the image of the
nearest point projection to A of each point in B may contain more than one point (such
functions are called coarse maps).

Theorem A. — Suppose Y is a collection of geodesic metric spaces and for every A,B ∈ Y with

A �= B we are given a subset πA(B) ⊂ A such that (P0)–(P2) hold. Then there is a geodesic metric

space C(Y) that contains isometrically embedded, totally geodesic, pairwise disjoint copies of each A ∈ Y
such that for all A �= B the nearest point projection of B to A in C(Y) is a uniformly bounded set

uniformly close to πA(B).

The space C(Y) will be called a quasi-tree of metric spaces, for reasons explained be-
low. Its construction will depend on the choice of a sufficiently large parameter K, and
it would be more precise to denote the space by CK(Y). If K < K′ there is a natural
Lipschitz map

CK(Y) → CK′(Y)

which is in general not a quasi-isometry, and in fact unbounded sets may map to bounded
sets (see Section 2.5 for an example).

In addition, many properties that hold uniformly for the spaces in Y carry over to
C(Y). To state these results we first recall some definitions.

A quasi-tree is a geodesic metric space quasi-isometric to a tree. There is a charac-
terization of quasi-trees due to Manning [Man05]. A geodesic metric space X satisfies
the bottleneck criterion if there exists � ≥ 0 such that for any two points x, y ∈ X the mid-
point z of a geodesic between x and y satisfies the property such that any path from x to y

intersects the �-ball centered at z. Manning showed that this is equivalent to X being a
quasi-tree. The constant � is called the bottleneck constant.

The notion of asymptotic dimension was introduced by Gromov [Gro93] as a large-
scale analog of the covering dimension. A metric space X has asymptotic dimension
asdim(X) ≤ n if for every R > 0 there is a covering of X by uniformly bounded sets such
that every metric R-ball intersects at most n + 1 of the sets in the cover. More generally,
a collection of metric spaces has asdim at most n uniformly if for every R there are covers
of each space as above whose elements are uniformly bounded over the whole collection.

Theorem B. — Let C(Y) be the quasi-tree of metric spaces Y constructed in Theorem A.

(i) The construction is equivariant with respect to any group, G, that acts isometrically on the

disjoint union of the spaces in Y preserving projections, i.e., dπ
g(A)(g(B), g(C)) = dπ

A (B,C)

for any A,B,C ∈ Y and g ∈ G.
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(ii) If each X ∈ Y is isometric to R then C(Y) is a quasi-tree; more generally, if all X ∈ Y
are quasi-trees with a uniform bottleneck constant then C(Y) is a quasi-tree.

(iii) If each X ∈ Y is δ-hyperbolic with the same δ, then C(Y) is hyperbolic.

(iv) If the collection Y has asdim ≤ n uniformly, then asdim(C(Y)) ≤ n + 1.

(v) The quotient C(Y)/Y obtained by collapsing the embedded copies of each X ∈ Y to a point

is a quasi-tree.

Note that (ii) in particular says that the space C(Y) obtained from an orbit of axes
in Hn as in the beginning of the introduction is a quasi-tree and not (quasi-isometric
to) Hn. The space C(Y)/Y is the projection complex P(Y) = PK(Y), which depends on K.
The main technical theorem in this paper is the fact that P(Y) is a quasi-tree. We think of
the quasi-tree of metric spaces C(Y) as being obtained from P(Y) by blowing up vertices
to metric spaces, and thus the terminology.

Theorems A and B are collections of theorems proved mostly in Section 4.

Guide to the reader. — Background, motivating examples, the main results and applications
are contained in Sections 1 and 2. In particular the tree example in Section 2.5 will help
the reader follow the axiomatic approach in Sections 3 and 4. These latter two sections
are more technical. However, they start from a few simple axioms and do not require any
hyperbolic geometry or facts about mapping class groups. In fact, Sections 3, 4.1 and 4.2
are entirely self-contained with the exception of the use of Manning’s bottleneck property.
The remaining subsections of Section 4 use some basic facts about δ-hyperbolic spaces
and asymptotic dimension. The theorems about the mapping class group are proved in
Section 5. If one prefers to skip Sections 3 and 4 one can read Section 5 using the results
of the earlier sections as a black box.

2. Applications of the construction

In this section we present applications of our construction. The main one we had
in mind when we started this work is presented first. Some of the other applications were
worked out by others after the first version of this paper was circulated.

Recall that a function f :X → Y between metric spaces is a coarse embedding if there
are constants A,B and a function 	 : [0,∞) → [0,∞) with 	(t) → ∞ as t → ∞ such
that

	
(
dX

(
x, x′)) ≤ dY

(
f (x), f

(
x′)) ≤ A dX

(
x, x′) + B

If we can take 	(t) = A−1t − B, f is a quasi-isometric embedding, in other words, f gives a
quasi-isometry between X and its image by f in Y .
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2.1. Mapping class groups

Our main application in this paper is to the study of mapping class groups. To
apply our methods here we will use the notion of subsurface projections of Masur-Minsky
[MM00] which has been a driving force behind much of the recent development in the
geometry of mapping class groups.

Let 
 be a closed orientable surface, possibly with finitely many punctures. The
mapping class group MCG(
) of 
 is the group of components of the orientation preserv-
ing diffeomorphism group preserving the punctures. For simplicity we will additionally
assume that 
 has a complete hyperbolic structure of finite area in which the punctures
correspond to cusps. The standard reference in the subject is [FM12].

To every isotopy class of π1-injective non-peripheral subsurfaces Y ⊂ 
 we assign
the curve complex C(Y). To two such subsurfaces Y,Z with ∂Y ∩ ∂Z �= ∅ (this means that
the intersection is nonempty even after any isotopy) there is the Masur-Minsky subsurface

projection πY(Z) ⊂ C(Y). We refer the reader to Section 5.1, where these notions are re-
viewed. More generally, when β is a simple closed curve that cannot be isotoped to be
disjoint from Y, we have a projection πY(β) ⊂ C(Y). The mapping class group MCG(
)

acts on the product
∏

Y C(Y) and we have an orbit map


 : MCG(
) →
∏

Y

C(Y)

which is, as a coarse map (i.e. a point is mapped to a bounded set), more explicitly given by


(g) = (
πY

(
g(α)

))
Y

where α is a finite binding collection of simple closed curves (see Section 5.3).
The remarkable Masur-Minsky distance formula (Theorem 6.12 in [MM00]) says

that the word norm |g| of g ∈ MCG(
) is coarsely equal (i.e., up to a multiplicative and
additive error) to

∑

Y

{{
dC(Y)

(
πY(α),πY

(
g(α)

))}}
M

where M is sufficiently large, and {{x}}M is defined as x if x > M and as 0 if x ≤ M. In
[MM00] the distance formula is stated for the “marking graph", which is quasi-isometric
to the mapping class group, see [MM00, Section 7].

Morally, this formula says that 
 is a quasi-isometric embedding. However, the
product space is not a metric space (the “cut-off ” distance is not a metric). More prob-
lematic, although we now have much information about the individual curve complexes,
this embedding is in an infinite product which is difficult to work with.

In this paper, we use Theorem A to embed the mapping class group in a finite

product of quasi-trees of curve complexes. To do so we show that essential subsurfaces can
be grouped in finitely many subcollections Y1,Y2, . . . ,Yk so that the curve complexes
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of subsurfaces in each Yi satisfy (P0)–(P2) with respect to subsurface projections, thus
yielding the quasi-tree of curve complexes C(Yi). Everything can be done equivariantly,
so that we have an orbit map

MCG(
) → C
(
Y1

) × C
(
Y2

) × · · · × C
(
Yk

)
.

In each C(Yi) the distance is approximated by the Masur-Minsky formula restricted to
the summands in C(Yi). Then the Masur-Minsky formula can be interpreted as saying
that the map of MCG(
) into the product of quasi-trees of curve complexes is a quasi-
isometric embedding. The choice of an orbit for the map is not important. As each factor
is hyperbolic we have the following theorem in Section 5:

Theorem C. — MCG(
) equivariantly quasi-isometrically embeds in a finite product of hyper-

bolic spaces.

The following result follows easily from the definition of asymptotic cones (see
[BDS11b, BDS11a]).

Theorem (Behrstock-Drutu-Sapir). — Every asymptotic cone of MCG(
) embeds by a bi-

Lipschitz map in a finite product of R-trees.

In fact they prove more including some information on the geometry of the image
of the embedding, but their theorem does not imply Theorem C. They use the notion of
tree-graded space introduced in [DrS].

We now make a few comments on verifying the axioms (P0)–(P2) in this setting,
as this is the situation that crystallized the correct axiomatic approach. Axiom (P0) was
established by Masur-Minsky as part of the subsurface projection setup and it follows
easily from definitions. Axiom (P1) was established by Behrstock [Beh06] and we refer to
it, and to Axiom (P1) in general, as Behrstock’s inequality. Axiom (P2) is a consequence of
Theorem 4.6 and Lemma 4.2 in [MM00].

A central idea in [MM00] is the notion of a hierarchy and this is used in the veri-
fication of the axioms by Masur-Minsky and Behrstock. This is a powerful tool but it is
complicated to define and difficult to use. Leininger gave a very simple, hierarchy free
proof of (P1) (see [Mang10, Mang13]) and here we will show that (P2) also has a direct,
hierarchy free proof (see Lemma 5.3). Using this we can show that our map of the map-
ping class group into the product of quasi-trees of curve complexes is a coarse embedding

without any of the results of [MM00]. In particular, we obtain a hierarchy free proof of
the lower bound in the Masur-Minsky formula. In fact, the proof of Theorem D below
does not depend on the results [MM00] although the ideas of that paper are certainly
central to our proof.

In [EMR] Eskin-Masur-Rafi give a unified approach, using Theorem C, to study-
ing the large scale geometry of Teichmüller space with either the Teichmüller metric or
the Weil-Petersson metric, or of the mapping class group with the word metric.
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It is a theorem of Bell-Fujiwara [BelF08] that each curve complex has finite asymp-
totic dimension. More recently, Richard Webb [Web] found explicit bounds on the
asymptotic dimension of curve complexes. His bound was improved to a linear bound
by Bestvina-Bromberg [BB] by a different method. Thus from Theorems B and C we
obtain the following theorem, which motivated this work (see Section 5):

Theorem D. — Let 
 be a closed orientable surface, possibly with punctures. Then

asdim(MCG(
)) < ∞.

As a consequence of the bounds on the asymptotic dimension of curve complexes
mentioned above, it follows that asdim(MCG(
)) is bounded by an exponential function
in the complexity of the surface.

The Coarse Baum-Connes conjecture (for torsion free subgroups of finite index) and
therefore the Novikov conjecture follows [Yu98], cf. [Roe03]. Various other statements that
imply the Novikov conjecture were known earlier (see [Kid08, Ham09, BM08]). We note
that Hume [Hum] improved this result and showed that MCG(
) has finite Assouad-

Nagata dimension (meaning that in the definition of asymptotic dimension the diameter of
each set in the cover is bounded by a linear function of R) and quasi-isometrically embeds
in a finite product of trees.

Theorem E (Theorems 5.13, 5.14). — The Teichmüller space of 
, with either the Teichmüller

metric or the Weil-Petersson metric, has finite asymptotic dimension.

Recall that the translation length τ(g) of an isometry g : X → X is

τ(g) := lim
k→∞

dX(x, gk(x))

k

The limit exists and is independent of x ∈ X. We say the isometry is hyperbolic if τ(g) > 0.
When X is a quasi-tree an isometry with unbounded orbits necessarily has positive trans-
lation length, [Man06]. The following theorem uses the observation that the MCG(
)-
orbit of a curve in a surface of even genus that separates into subsurfaces of equal genus
consists of pairwise intersecting curves.

Theorem F. — The mapping class groups in even genus can act on quasi-trees with a Dehn twist

having unbounded orbits.

See Theorem 5.9. In the case of odd genus one has to pass to a subgroup of finite
index. It follows that each Dehn twist has linear growth in the word length in MCG(
)

(known by [FLM01]). Theorem F provides a sharp contrast to a result of Bridson [Bri10],
who showed that in semi-simple actions of mapping class groups (of genus > 2) on com-
plete CAT (0) spaces Dehn twists are always elliptic. A group action is semi-simple if each
element has either a bounded orbit or positive translation length. In the CAT (0) case
one gets a homomorphism from the centralizer of a Dehn twist to R by looking at the
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action on the purported axis (identifying all parallel axes to one); in our quasi-tree setting
a similar construction produces only a quasi-morphism on the centralizer. We say that
two (quasi-)geodesics are parallel if their Hausdorff distance is finite. In genus > 2 the cen-
tralizer of a Dehn twist has no nontrivial homomorphisms to R, but does admit many
quasi-morphisms.

By a thickening of a metric space X we mean a quasi-isometric embedding X → Y.
When X is a graph with edges of length 1 and d ≥ 1, there is a particular thickening
X → Pd(X) called the Rips complex of X. The space Pd(X) is a simplicial complex with
the same vertex set as X and with simplices consisting of finite collections of vertices with
pairwise distance at most d .

Theorem G (Corollary 5.10). — There is an isometric action of a group on a graph X which is

a quasi-tree such that no equivariant thickening admits an equivariant CAT (0) metric. In particular, for

no d ≥ 1 does the Rips complex Pd(X) admit an equivariant CAT (0) metric.

It is a long-standing open question whether every δ-hyperbolic group acts cocom-
pactly and properly by isometries on a CAT (0) space. One approach is to consider the
Rips complex Pd(X) for the Cayley graph X of the group and large d . Theorem G is not
a counterexample to this approach since our X is not locally finite, but it does point out
difficulties. Note that in light of [MSW03] the quasi-trees that arise in our construction
are necessarily locally infinite, since otherwise we would be able to promote our group
actions on quasi-trees to group actions on simplicial trees without fixed points, which is
not possible for certain groups.

2.2. Hyperbolic-like groups

At the beginning of the introduction we indicated how a discrete group of isome-
tries of Hn that contains an element with an axis gives rise to data satisfying our axioms,
and thus the same group acts on the quasi-tree of lines, which itself is a quasi-tree by
Theorem B(ii).

The essential feature of this example is that the axis � is B-contracting for some
B ≥ 0. This means that the nearest point projection to � of any metric ball disjoint from
� has diameter bounded by B. See [BF09]. More generally, one can define the notion of
B-contracting for any subset of a metric space using the nearest point projection to the
subset.

To state the theorem, assume that a group G acts by isometries on a geodesic
metric space X, that γ ∈ G acts hyperbolically (i.e. any orbit map is a quasi-isometric em-
bedding, or equivalently the translation length of γ is positive) and that γ is a WPD
element [BF02], that is, for all D > 0 and x ∈ X there exists M > 0 such that

{
g ∈ G

∣∣ d
(
x, g(x)

) ≤ D, d
(
f M(x), gf M(x)

) ≤ D
}

is finite. We also say that two orbits are parallel if their Hausdorff distance is finite.
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Theorem H. — Let G act on a geodesic metric space X such that γ ∈ G is a hyperbolic WPD

element with a B-contracting orbit. Then the collection of parallel classes of G-translates of a fixed γ -

orbit (of a point) with nearest point projections satisfies (P0)–(P2) and thus G acts on a quasi-tree. In

addition, in this action γ is a hyperbolic WPD element.

In this form the theorem is proved in [BBFb]. We do not assume that X is hy-
perbolic nor CAT (0). The main part of the proof consists of verifying (P0)–(P2) and ap-
plying Theorem A in this situation. The rest is included as Proposition 4.20. Dahmani-
Guirardel-Osin [DGO, Section 4.5] prove a variation of Theorem H where X is assumed
to be hyperbolic and use it to construct many examples of hyperbolically embedded subgroups

(see [DGO] for the definition).

Example 2.1. — The following examples all satisfy Theorem H. One considers
the translates of an axis, or more generally the orbit of a point, of a hyperbolic WPD
element.

(1) G is a discrete group of isometries of Hn that contains an element γ with an
axis. γ is WPD since the action of G is properly discontinuous, and the axis is
B-contracting since Hn is δ-hyperbolic.

(2) G is a group of isometries of a connected δ-hyperbolic graph X that contains
a hyperbolic, therefore its (quasi-)axis is B-contracting, WPD element. In par-
ticular, this construction applies to the curve complex and the mapping class
group of a compact surface, where pseudo-Anosov elements are hyperbolic
and WPD [BF02]. This class of groups contains many groups with Kazhdan’s
property (T) and therefore every isometric action on a simplicial tree has a fixed
point (cf. [dlHV89]).

(3) G is a discrete group of isometries (i.e. the group action is metrically properly
discontinuous) of a CAT (0)-space that contains a rank 1 element γ in the sense
of Ballmann. That is, γ has an axis which is B-contracting for some B ≥ 0. For
example, pseudo-Anosov mapping classes are rank 1 elements in the action on
the Weil-Petersson completion of Teichmüller space. In the cocompact setting
this is equivalent to the more familiar condition that the axis does not bound
a half-flat. Those elements are WPD although the action of the mapping class
group is not properly discontinuous. See [BF09]. There are classifications of
rank 1 elements in Coxeter groups [CF10], right angled Artin groups [BC12]
and cube complexes [CS11].

(4) G is the mapping class group, acting on Teichmüller space with Teichmüller
metric, and γ is a pseudo-Anosov mapping class. By [Min96b] the axis of γ is
B-contracting. It is WPD since the action is properly discontinuous.

(5) G = Out(Fn) acting on Culler-Vogtmann’s Outer space CV [CV86], equipped
with the Lipschitz metric (which fails to be symmetric, see [AKB12]). The ac-
tion is properly discontinuous. See [Vog02, BV06, Vog06] for more informa-
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tion on Out(Fn) and Outer space. An element f of Out(Fn) is fully irreducible if
there are no conjugacy classes of proper free factors of Fn which are f -periodic.
Such elements have axes in CV, see [Bes11]. In [AK11] Yael Algom-Kfir shows
that there is ν > 0 such that the projection of any translate γ (Xi) to any non-
parallel Xj is bounded by ν, and she also shows that the axes are B-contracting
for some B. Even though the metric is not symmetric, axioms hold. Axioms
(P0)–(P1) are explicitly verified in [AK11] and Axiom (P2) follows quickly from
the arguments in [AK11], for details see [BBFb].

Remark 2.2. — Suppose a group G acts on a geodesic space X with a hyperbolic
element g ∈ G with a g-orbit α. The elementary closure, EC(g), of g is the subgroup of
elements h ∈ G such that h(α) is parallel to α. When X is δ-hyperbolic, g ∈ G is a WPD
element if and only if EC(g) is virtually cyclic and for some (any) x ∈ X there is B > 0
such that any φ ∈ G − EC(g) maps the orbit 〈g〉x to a set whose projection to 〈g〉x has
diameter ≤ B. In this setting the orbit is a quasi-geodesic and the projection is the nearest
point projection, coarsely defined (see the comment before Corollary 4.10). Thus WPD
is equivalent to saying that the set of translates of a g-orbit is “discrete” in the sense that
any two are either parallel or have bounded “overlap”, with parallel orbits coming from
translating by elements in EC(g).

The work of Epstein-Fujiwara [EF97] implies that non-elementary (i.e. not virtu-
ally cyclic) hyperbolic groups have many unbounded actions on quasi-lines, i.e., geodesic
spaces quasi-isometric to a line. Manning [Man05] gave a construction of an action of
a group G on a quasi-tree starting with a quasi-morphism G → R (equivalently, an ac-
tion of G on a quasi-line) but it is not clear when such actions are non-elementary (i.e.
have unbounded orbits and do not fix an end nor a pair of ends). A map f : G → R is a
quasi-morphism if there exists a constant C such that for all g, h ∈ G

∣∣f (gh) − f (g) − f (h)
∣∣ ≤ C.

Recently, it has been verified that the actions by Manning are not elementary for certain
cases using our work [MP12]. We will also verify that the non-elementary groups in
Example 2.1 have non-elementary actions on quasi-trees (Corollary 3.25).

Recall that an isometric group action is acylindrical if for every D > 0 there exist
R,N > 0 such that d(x, y) ≥ R implies that the set

{
g ∈ G

∣∣ d
(
x, g(x)

) ≤ D, d
(
y, g(y)

) ≤ D
}

has cardinality at most N. Osin develops a theory of acylindrically hyperbolic groups: these are
groups that admit a non-elementary acylindrical isometric action on a hyperbolic space.

Theorem I (Osin [Osi]). — Let a group G, which is not virtually cyclic, act on a δ-hyperbolic

metric space X such that γ ∈ G is a hyperbolic WPD element. Then G is an acylindrically hyperbolic

group. Thus all groups in Example 2.1 are acylindrically hyperbolic.



CONSTRUCTING GROUP ACTIONS ON QUASI-TREES 11

From the point of view of this paper, Osin considers a slightly different projection
distance dY(x, z) (within uniformly bounded distance of ours) which is better behaved, so
that the action on the resulting quasi-tree of metric spaces C(Y) constructed in exactly
the same way, but with each copy Y ∈ Y electrified (i.e., any two points in Y is joined by an
edge of length 1), is acylindrical.

Caprace and Delzant pointed out the following curious corollary. Recall that
Burger-Mozes [BuM00] constructed an example of a simple group, which acts freely
and cocompactly on the product of two trees. Thus the quotient is a finite non-positively
curved square complex with finitely-presented, infinite simple fundamental group.

Corollary 2.3 (Caprace-Delzant). — Suppose Z is a finite non-positively curved square complex

with no free edges whose fundamental group is simple. Then the universal cover Z̃ is isometric to the

product of two trees.

Proof. — By the Ballmann-Brin Rank Rigidity Theorem [BaBr, Theorem C] (see
also [CS11]) the universal cover Z̃ is either the product of two trees or the deck group
contains a rank 1 element (there is a third possibility in general that Z̃ is a Euclidean
building, which we can exclude since Z is a square complex). In the latter case, using
Theorem H, we see that π1(Z) acts on a quasi-tree and contains a hyperbolic WPD
element γ . π1(Z) is non-elementary since it is simple and torsion-free. Then by the work
of Dahmani-Guirardel-Osin [DGO] the normal closure of γ m is a free group when m > 0
is sufficiently large, so π1(Z) is not simple. (The result of [DGO, Section 5 and 6] applies
to a hyperbolic WPD element γ that acts on a hyperbolic space.) �

2.3. Bounded cohomology

As we said Manning [Man05] used bounded cohomology/quasi-morphisms to
show that many groups acted on quasi-trees. Conversely, the existence of actions of a
group on a quasi-tree (with a hyperbolic WPD element) has a consequence that the
second bounded cohomology (even with coefficients in certain representations) is “big”.
One can use such actions to give unified constructions of quasi-morphisms on various
groups G, and even quasi-cocycles with coefficients in unitary representations in uni-
formly convex Banach spaces. The case of the regular representation on �2(G) is of par-
ticular importance (see [Mon06]). We investigate this in [BBFa].

In fact, Theorem H can be regarded as a completion of Manning’s program
[Man05] showing that all (known) groups with big second bounded cohomology admit
(many) interesting actions on quasi-trees.

By contrast, there are many groups that do not admit nontrivial (namely, orbits
are unbounded) actions on a quasi-tree. Recall [Man06] that a group G satisfies QFA if
every action on a quasi-tree has bounded orbits. Equivalently (see e.g. [Man05]) every
quasi-action on a tree has bounded orbits. If G is an irreducible lattice in a higher rank
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semi-simple Lie group with finite center, it is expected that G has QFA. For SLn(Z), n ≥ 3,
this is a result of Manning [Man06].

Developing Theorem E further and using Theorem H, in [BBFc] we construct
bounded cohomology classes that are unbounded on powers of a Dehn twist. In fact,
expanding on this idea we give a precise characterization of mapping classes that have
nonzero stable commutator length.

2.4. Out(Fn)

There is a program to prove Theorem D and a version of Theorem C for the
outer automorphism group Out(Fn) of a free group Fn of rank n. There are (at least) two
analogs of the curve complex, namely the complex of free factors and the complex of free
splittings. Both have recently been shown to be hyperbolic, the former in [BFe14a] and
the latter in [HM13]. The analog of subsurface projections was defined in [BFe14b] and
the end result is

Theorem J [BFe14b]. — Out(Fn) acts isometrically on a finite product of hyperbolic spaces so

that every element of exponential growth acts with positive translation length.

See [MS13, FPS, Sis, Del] for further applications of the projection complex tech-
niques.

2.5. The tree example

Let F2 = 〈a, b〉 be the free group on two generators. Embed its Cayley graph (tree)
in R2 such that the a edges are horizontal and the b edges are vertical. The horizontal
lines are the axes of a and its conjugates and we let Y be the set of horizontal lines. Note
that if X and Y are in Y then πY(X), the nearest point projection of X to Y, is a single
point, and we have (P0). Then dπ

Y (X,Z) is the diameter of the union of πY(X) and πY(Z)

which is of course just the distance between the two points.
In this example it is quite easy to check that the axioms hold. We first note that to

calculate dπ
Y (X,Z) we take the unique shortest segment in the Cayley tree from X to Z.

If this segment intersects Y then the intersection will be a closed segment one endpoint
of which is πY(X) and the other is πY(Z). Then dπ

Y (X,Z) will be the length of the inter-
section. If the segment from X to Z doesn’t intersect Y then we will have πY(X) = πY(Z)

and dπ
Y (X,Z) = 0. Therefore if dπ

Y (X,Z) > 0 then dπ
X(Y,Z) = dπ

Z (X,Y) = 0 which is
exactly (P1) where θ = 0. See Figure 2. For (P2) we note that the elements of Y are all
disjoint in the Cayley graph and therefore if the segment from X to Z has length D then
there are at most D/K elements Y ∈ Y with dY(X,Z) > K for any K > 0. (Notice that in
the Cayley tree, dY(X,Z) ≥ 1 if dY(X,Z) > 0.)
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FIG. 2. — Axiom (P1) for the set of horizontal lines in the Cayley tree. The bold line is the shortest segment between X
and Z

We now define the projection complex PK(Y) in this special case. Fix a constant
K > 0. The vertex set is Y. Two distinct vertices X,Y are joined by an edge if and only if
for every Z ∈ Y with X �= Z �= Y we have dπ

Z (X,Y) ≤ K.
We leave to the reader to show that for every K > 0, PK(Y) is connected (see

Proposition 3.7).
To see that PK(Y) is a quasi-tree we use Manning’s bottleneck criterion, which

can be expressed in the following equivalent and more convenient form: for each pair of
vertices X and Y in PK(Y) there is a path γ joining X and Y in PK(Y) such that any
path from X to Y passes within uniform distance of any vertex on γ . The key to proving
this is Proposition 3.14 which can be paraphrased to say that if {X0, . . . ,Xk} is a path of
vertices in PK(Y) such that each element is distance 3 or more from a vertex Z then the
projection of the path to Z has uniformly bounded diameter.

In the special case that we are examining in this section it is actually quite easy
to prove an even stronger version of Proposition 3.14. In this special case, if the path
{X0, . . . ,Xk} is distance two or greater from Z then πZ(X0) = πZ(Xk). To prove this we
take the shortest segment from X0 to Z in the tree and let W ∈ Y be the line that contains
the last horizontal sub-segment of length > K of this segment before reaching Z. Such W
must exist since the distance between X0 and Z is at least 2. A simple inductive argument
shows that W will be the line that contains the last horizontal sub-segment of length > K
of the shortest segment from Xi to Z for all i = 0, . . . , k and therefore πZ(Xi) = πZ(W)

for all i = 0, . . . , k by (P1) with θ = 0. See Figure 3.
To finish the proof that PK(Y) is a quasi-tree we examine the sets, denoted by

YK(X,Y), of vertices Z ∈ PK(Y) with dZ(X,Y) > K. As mentioned above for each Z ∈
YK(X,Y) the shortest segment from X to Y intersects Z. We then order the set by how
these intersections appear on the segment. With this ordering it is easy to check that
this set is a path, γ , from X to Y in PK(Y). Proposition 3.14 we just discussed implies
that any path {X0 = X,X1, . . . ,Xk = Y} must go within distance one of every vertex
Z ∈ YK(X,Y) for if not πZ(X) = πZ(Y) and dZ(X,Y) = 0 ≯ K, a contradiction. Hence,
Manning’s bottleneck criterion holds for the path γ with the constant 2 and PK(Y) is a
quasi-tree.
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FIG. 3. — Proposition 3.14 for the tree

Notice that the element anbn is hyperbolic in PK(Y) when K < n (cf. Lemma 3.22)
and it has bounded orbits when K ≥ n. Thus for K < K′ the natural map PK(Y) →
PK′(Y) is Lipschitz but in general it is not a quasi-isometry.

Also note that PK(Y) is not locally finite; the infinite set of horizontal lines that
intersect a fixed vertical line are all connected to each other in pairs.

2.6. Plan of the paper

We now briefly indicate the highlights of each section of the paper.

Section 3. — We define the projection complex starting from the axioms. An impor-
tant technicality is that we have to perturb the initial pseudo-distance function dπ by a
bounded amount to a new function d in order to achieve a certain Monotonicity Prop-
erty. The main properties of this perturbed distance are listed in Theorem 3.3. Perhaps
the most important property is that the finite set in axiom (P2) has a natural total order;
this is motivated by the Masur-Minsky hierarchy machinery.

Next, we focus on proving that the projection complex is a quasi-tree (Theo-
rem 3.16). Roughly speaking, the proof follows the argument for the tree example in
Section 2.5. There is a significant technical point here. When the constant θ is positive,
there is no reason that the projections of the Xi to Z are all the same point, but instead
they might be slowly making progress along Z. In order to rule this possibility out we
introduce the notion of a guard and a closely related notion of a barrier. In order for the
sequence Xi to make progress in Z, it first has to do so in a suitable guard. When it looks
like the given guard has been cleared, another one appears that also must be cleared be-
fore any progress in Z is made, etc. See Lemma 3.12 and Proposition 3.14. In the Cayley
tree example, W is a barrier. We also record an upper and a lower bound on the distance
in the projection complex in the spirit of the Masur-Minsky distance formula. See Propo-
sition 3.7 and Lemma 3.18. We end the section with the study of the basic properties of
the group action on the projection complex, including WPD (see Remark 3.28).
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Section 4. — We define the quasi-tree of metric spaces C(Y), which depends on a con-
stant K > 0, essentially by blowing up each vertex of the projection complex to the as-
sociated metric space. In the Cayley tree example, we replace (blow up) the vertex for
each horizontal line by the horizontal line itself. To say it differently, we take the disjoint
union of the given collection of metric spaces and we attach edges from every point of
πY(Z) to every point of πZ(Y) provided that the projection distance dW(Y,Z) does not
exceed some threshold K for all W �= Y,Z. We then develop the basic geometry of C(Y).
We prove the distance formula, analogous to Masur-Minsky’s, in Theorem 4.13. We also
show that the nearest point projection of Z to Y in C(Y) coarsely agrees (i.e. in bounded
Hausdorff distance) with the given set πY(Z). This will prove Theorem A. Technically,
the proofs consist of lifting the notions of guards and barriers from the projection complex
to C(Y).

We then proceed by to prove that various properties that hold for each Y ∈ Y
uniformly continue to hold for C(Y) in Section 4.3. This includes hyperbolicity, being
a quasi-tree, having bounded asymptotic dimension, and quasi-convexity. In particular,
this will prove Theorem B. For example, in the Cayley tree example, C(Y) is a quasi-tree.
Lastly in Section 4.4, for the purposes of [BBFc] we also discuss a certain property of the
group action, called WWPD, which is weaker than WPD.

Section 5. — This section is focused on the mapping class group and here we prove all
the other theorems stated in the introduction. Subsurface projections are defined only for
subsurfaces whose boundaries intersect. The main technical issue we have to address is
how to divide the collection of all subsurfaces into finitely many families so that within
each family subsurface projections are well defined. This problem is quickly reduced to
showing that the curve graph (i.e. the 1-skeleton of the curve complex) has finite coloring.
We in fact show that there exist such a coloring so that the mapping class group acts by
permuting the colors. The finite index subgroup that preserves all colors has the property
that for each of its elements g and every curve a, either g(a) = a or g(a) and a intersect.
See Lemmas 5.6 and 5.7.

3. The projection complex

We start by introducing the projection complex. To define it we don’t really need
the projections πA(B) as in axioms (P0)–(P2); we only need the pseudo-distance dπ

C(A,B).
Accordingly the axioms are weakened.

3.1. Projection complex axioms

Let Y be a set, θ ≥ 0 a constant and assume that for each Y ∈ Y we have a function

dπ
Y : (Y \ {Y}) × (

Y \ {Y}) −→ [0,∞).
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The projection complex axioms are the following:

(PC 1) dπ
Y (X,Z) = dπ

Y (Z,X);
(PC 2) dπ

Y (X,Z) + dπ
Y (Z,W) ≥ dπ

Y (X,W) (triangle inequality);
(PC 3) min{dπ

Y (X,Z), dπ
Z (X,Y)} ≤ θ ;

(PC 4) for all X,Z ∈ Y, #{Y|dπ
Y (X,Z) > θ} is finite.

As an analog of uniform boundedness of the projections πY(Z) we could require
that dπ

Y (Z,Z) ≤ θ , but this will not be used in the sequel.

3.2. Monotonicity

Given distance functions that satisfy the above axioms it is useful to modify them
by a bounded amount in order to achieve the Monotonicity property (F) of Theorem 3.3.
See Remark 3.4 for an example where (F) fails. The price we will have to pay is that
triangle inequality will hold only up to a bounded error.

The following definition is motivated by the Masur-Minsky hierarchy theory.

Definition 3.1. — For X,Z ∈ Y with X �= Z let H(X,Z) to be the set of pairs (X′,Z′) ∈
Y × Y with X′ �= Z′ such that one of the following four holds:

• both dπ
X(X′,Z′), dπ

Z (X′,Z′) > 2θ ;

• X = X′ and dπ
Z (X,Z′) > 2θ ;

• Z = Z′ and dπ
X(X′,Z) > 2θ ;

• (X′,Z′) = (X,Z).

We can now define the modified distance functions

dY : (Y\{Y}) × (
Y\{Y}) → [0,∞)

by

dY(X,Z) = 0

if Y is contained in a pair in H(X,Z) and

dY(X,Z) = inf
(X′,Z′)∈H(X,Z)

dπ
Y

(
X′,Z′)

otherwise. For example, if dπ
Y (W,Z) > 2θ , then (W,Z) ∈H(Y,Z) and dW(Y,Z) = 0.

Note that it is clear from the definition that dY(X,Z) ≤ dπ
Y (X,Z) and therefore

(PC 3) still holds for dY with the same constant. However we need to modify (PC 2) to a
coarse triangle inequality.
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Proposition 3.2. — If (X′,Z′) ∈ H(X,Z) then for every Y ∈ Y, Y /∈ {X,Z,X′,Z′} we

have

dπ
Y (X,Z) − dπ

Y

(
X′,Z′) ≤ 2θ.

Proof. — If dπ
Y (X,Z) ≤ 2θ we are done since the distances are always nonnegative.

We note that if Y is contained in a pair in H(X,Z) then dπ
Y (X,Z) ≤ 2θ by an application

of (PC 2) and (PC 3). For the rest of the proof we now assume that dπ
Y (X,Z) > 2θ and in

particular that Y is not contained in a pair in H(X,Z).
We first assume that X and Z are distinct form X′ and Z′. By the triangle inequality

dπ
X

(
X′,Y

) + dπ
X

(
Y,Z′) ≥ dπ

X

(
X′,Z′) > 2θ

and therefore

max
{
dπ

X

(
X′,Y

)
, dπ

X

(
Y,Z′)} > θ.

Without loss of generality we assume that dπ
X(X′,Y) > θ .

By (PC 3) we have dπ
Y (X,X′) ≤ θ and again applying the triangle inequality we

have

dπ
Y

(
X,X′) + dπ

Y

(
X′,Z

) ≥ dπ
Y (X,Z) > 2θ

and therefore

dπ
Y

(
X′,Z

)
> 2θ − θ = θ.

Another application of (PC 3) gives us that dπ
Z (X′,Y) ≤ θ .

We now apply the triangle inequality exactly as we did at the start of the proof but
replacing X with Z. Again we get that

max
{
dπ

Z

(
X′,Y

)
, dπ

Z

(
Z′,Y

)}
> θ

and since we have just seen that dπ
Z (X′,Y) ≤ θ we must have dπ

Z (Z′,Y) > θ . Then by
(PC 3), dπ

Y (Z,Z′) ≤ θ .
To finish the proof in this case we make one final application of the triangle in-

equality to see that

dπ
Y

(
X,X′) + dπ

Y

(
X′,Z′) + dπ

Y

(
Z′,Z

) ≥ dπ
Y (X,Z)

and therefore

dπ
Y (X,Z) − dπ

Y

(
X′,Z′) ≤ 2θ.

For pairs of the form (X′,Z) with X′ �= X the proof is easier. As before we have the
inequality

dπ
X

(
X′,Y

) + dπ
X(Y,Z) ≥ dπ

X

(
X′,Z

)
> 2θ.
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Since dπ
Y (X,Z) > 2θ we must have dπ

X(Y,Z) ≤ θ and therefore dπ
X(X′,Y) > θ and

dπ
Y (X,X′) ≤ θ . We once again apply the triangle inequality to see that

dπ
Y

(
X,X′) + dπ

Y

(
X′,Z

) ≥ dπ
Y (X,Z)

and therefore

dY(X,Z) − dY

(
X′,Z

) ≤ θ ≤ 2θ.

The statement is trivial if (X′,Z′) = (X,Z) so the proof is finished. �

This result has number of important consequences. Before stating them we set
notation that helps prevent a proliferation of constants. Given a constant θ ≥ 0, we say
that x � y or y ≺ x if y − x is bounded above by a constant depending only on θ . We also
define x ∼ y if x � y and y � x. For example (PC 3) implies

min
{
dY(X,Z), dZ(X,Y)

} ∼ 0.

Thus, for the purposes of this notation, we regard θ as a variable that depends on the
particular setting. Note that transitivity holds, i.e. if x � y and y � z then x � z, but the
constant bounding z− x is worse. Thus it is important to ensure that transitivity is applied
only to chains of bounded length.

Next for a constant K > 0 we define YK(X,Z) to be the set of Y ∈ Y such that
dY(X,Z) > K.

Here are the properties of the functions dY, gathered together in one theorem. One
can think of them as axioms.

Theorem 3.3. — There exists a � > 0, depending only on θ , such that the following properties

hold:

(A) Symmetry

dY(X,Z) = dY(Z,X)

(B) Coarse equality For all distinct X, Y and Z

dπ
Y (X,Z) ≺ dY(X,Z) ≤ dπ

Y (X,Z).

(C) Coarse triangle inequality

dY(X,Z) + dY(Z,W) � dY(X,W).

(D) Inequality on triples

min
{
dY(X,Z), dZ(X,Y)

} ∼ 0
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(E) Finiteness #{Y|dY(X,Z) ≥ �} is finite for all X,Z ∈ Y.

(F) Monotonicity If dY(X,Z) ≥ � then both dW(X,Y), dW(Z,Y) ≤ dW(X,Z).

(G) Order The set Y�(X,Z) ∪ {X,Z} is totally ordered with least element X and greatest

element Z such that given Y0,Y1,Y2 ∈ Y�(X,Z) ∪ {X,Z}, if Y0 < Y1 < Y2 then

dY1(X,Z) ≺ dY1(Y0,Y2) ≤ dY1(X,Z),

and

dY0(Y1,Y2) ∼ 0 and dY2(Y0,Y1) ∼ 0.

(H) Barrier property If Y ∈ Y�(X0,Z) and Y ∈ Y�(X1,Z) then

dZ(X0,X1) < �.

Proof. — For each property we will see that there is some constant � so that the
property holds for any larger choice of constant. Therefore, in the proof of each property,
we will use the properties we have already showed. Throughout the proof one should
think of θ as being fixed but � as a variable that won’t be fixed until the end of the
proof.

(A)–(E). The symmetry property follows from the symmetry property for dπ
Y and

the definition of dY. The coarse equality property is just a restatement of Proposition 3.2
with our new notation. The coarse triangle inequality, the inequality on triples and the
finiteness property all follow from the corresponding properties for dπ

Y plus coarse equal-
ity. Note that the inequality on triples and the finiteness property hold for any � ≥ θ .
This will be important in the proof of the order property.

(F). The monotonicity property requires a bit of work. We show that for any � > 4θ

if Y ∈ Y�(X,Z) then

H(X,Z) ⊆H(X,Y) ∩H(Z,Y).

If (X′,Z′) ∈H(X,Z) then by Proposition 3.2 we have

dπ
Y (X,Z) − dπ

Y

(
X′,Z′) ≤ 2θ

and since dπ
Y (X,Z) ≥ dY(X,Z) ≥ � > 4θ we have dπ

Y (X′,Z′) > 2θ . In particular (X′,Z′)
is in both H(X,Y) and H(Z,Y) and the inequalities follow. We have showed that the
monotonicity holds for any constant > 4θ .

(G). The proof of the order property is more involved. Let W,Y ∈ Y�(X,Z). Us-
ing the inequality on triples we choose θ ′ with 4θ < θ ′ ∼ 0 such that (for any X,Y,Z)
min{dY(X,Z), dZ(X,Y)} ≤ θ ′.

To define the order we first establish that if � is sufficiently large then the following
are equivalent.
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(a) dW(X,Y) > θ ′;
(b) dY(X,W) ≤ θ ′;
(c) dY(W,Z) > θ ′;
(d) dW(Y,Z) ≤ θ ′.

Both (a) ⇒ (b) and (c) ⇒ (d) follow from the inequality on triples. For (b) ⇒ (c) we apply
the coarse triangle inequality to see that

dY(X,W) + dY(W,Z) � dY(X,Z) > �,

so if dY(X,W) ≤ θ ′ then dY(W,Z) � �. In particular if � is sufficiently large then
dY(W,Z) > θ ′ > 4θ . By swapping W and Y this also shows that (d) ⇒ (a).

We now define W < Y if any, and hence all, of (a)–(d) hold. Since either
dW(X,Y) > θ ′ or dW(X,Y) ≤ θ ′ (but not both) we must have either W < Y or Y < W
(but not both). To finish the definition of the order we define X to be the least element
and Z the greatest element. We have just shown that any two elements can be compared
and that if Y < W then W ≮ Y.

To argue transitivity, assume that Y0 < Y1 < Y2. We assume Y0 �= X and Y2 �= Z
since if either is held then the rest of the proof is easier and we omit it. As noted at the
end of its proof, the monotonicity holds for any constant > 4θ , instead of �, in particular
for θ ′. Since Y1 < Y2 we have dY1(X,Y2) > θ ′ > 4θ and therefore monotonicity (with
respect to θ ′) implies that

θ ′ < dY0(X,Y1) ≤ dY0(X,Y2),

so Y0 < Y2 and transitivity holds.
We now prove the two inequalities (≺ and ≤). Since Y0 < Y2 and therefore

dY0(X,Y2) > 4θ monotonicity (for θ ′) also implies that

dY1(Y0,Y2) ≤ dY1(X,Y2).

Since Y2 ∈ Y�(X,Z) we also have that dY2(X,Z) > 4θ (if � ≥ 4θ ). Therefore, again,
monotonicity implies that

dY1(X,Y2) ≤ dY1(X,Z)

and together these two inequalities give

dY1(Y0,Y2) ≤ dY1(X,Z).

By the coarse triangle inequality we have

dY1(X,Y0) + dY1(Y0,Y2) + dY1(Y2,Z) � dY1(X,Z).

Since Y0 < Y1 and Y1 < Y2, we have dY1(X,Y0) ≤ θ ′ and dY1(Y2,Z) ≤ θ ′. It follows that

dY1(Y0,Y2) � dY1(X,Z).
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Finally, to see the two claims with ∼, we note that if � is sufficiently large than the
last coarse inequality implies that dY1(Y0,Y2) > θ so the inequality on triples implies that

dY0(Y1,Y2) ≤ θ and dY2(Y0,Y1) ≤ θ

which implies both are ∼ 0.
(H). Finally we prove the barrier property. If the conclusion fails, i.e. if

dZ(X0,X1) ≥ � then Z ∈ Y�(X0,X1) and also, by monotonicity, Y ∈ Y�(X0,X1). If
Y < Z in Y�(X0,X1) then dY(X1,Z) ≤ θ and if Z < Y then dY(X0,Z) ≤ θ . Either way,
we have a contradiction. �

Remark 3.4. — The monotonicity property fails for the original distance dπ . Below
is an example in the setting of geodesics in H2 (see Example 2.1(1)).

In the figure, dπ
Y (X,Z) can be made arbitrarily large, while dπ

W(Y,Z) is slightly
larger than dπ

W(X,Z). But if dπ
Y (X,Z) > 2θ , then (X,Z) ∈H(Y,Z), therefore dW(Y,Z) ≤

dπ
W(X,Z).

One could define in the same way an order on YK(X,Z) ∪ {X,Z} for any K ≥ �,
but this order coincides with the induced order from the larger set Y�(X,Z) ∪ {X,Z}.
The order on YK(Z,X) ∪ {Z,X} is the reverse of the order on (the same set) YK(X,Z) ∪
{X,Z}.

The following lemma is a consequence of the monotonicity property.

Lemma 3.5. — There exists a K > 0 with K ≺ � such that the following holds. Let

{Y0, . . . ,Yn} be vertices in Y such that dYi
(Yi−1,Yi+1) > K for i = 1, . . . , n − 1. Then for each i,

dYi
(Yi−1,Yi+1) ≤ dYi

(Y0,Yn).

Proof. — We will show that dYi
(Yi−1,Yi+1) ≤ dYi

(Yi−1,Yi+2). The lemma will
then follow via an inductive argument. By the inequality on triples dYi+1(Yi−1,Yi) ∼ 0.
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The coarse triangle inequality implies dYi+1(Yi−1,Yi+2) � K so if K is sufficiently large
we have that dYi+1(Yi−1,Yi+2) > �. The monotonicity implies that dYi

(Yi−1,Yi+1) ≤
dYi

(Yi−1,Yi+2). �

3.3. The projection complex

Unless otherwise said � is the constant from Theorem 3.3. For K ≥ � we now
define the projection complex PK(Y). We always assume K ≥ �.

Definition 3.6. — The projection complex PK(Y) is the following graph. The vertex set of

PK(Y) is Y. Two distinct vertices X and Z are connected with an edge if YK(X,Z) is empty. Denote

the distance function for this graph by d(, ).

In particular d(X,Z) = 1 if YK(X,Z) = ∅. Note that for different values of K the
spaces PK(Y) are not necessarily quasi-isometric to each other (the vertex sets are the
same, but for larger K there are more edges, see Section 2.5 for an explicit example).
Our goal is to show that PK(Y) is quasi-isometric to a tree. We begin by showing that
PK(Y) is connected and obtain an upper bound on the distance function.

Proposition 3.7. — If X and Z are vertices in Y then d(X,Z) ≤ |YK(X,Z)| + 1. In

particular, PK(Y) is connected.

Proof. — Label the elements of YK(X,Z) ∪ {X,Z} by Y0,Y1, . . . ,Yk+1 where the
indices respect the order and k = |YK(X,Z)|. We claim that X = Y0,Y1, . . . ,Yk+1 = Z
is a path from X to Z. To see this we note that the monotonicity property implies that if
Y ∈ YK(Yi,Yi+1) then Y ∈ YK(X,Z) and Y = Yj . However, since Yj cannot be between
Yi and Yi+1 we have dYj

(Yi,Yi+1) < �, a contradiction. Therefore YK(Yi,Yi+1) = ∅,
d(Yi,Yi+1) = 1 and we have our path from X to Z. �

3.4. Guards

By contrast to Proposition 3.7, the cardinality of YK(X,Z) gives no lower bound
on d(X,Z). For example, it is possible that YK(Y1,Z) = ∅ and therefore the distance from
X to Z is two (even though k is large). This highlights a key difficulty in the paper. From
the viewpoint of X, there appear to be many projections larger than the K-threshold
between Y1 and Z. However, from the viewpoint of Y1 there are no large projections
between Y1 and Z.

A key concept in the paper is the notion of a guard and this notion is defined to
deal with this problem. The notion depends on the constant K. Roughly speaking, W is
a guard for Y if from every viewpoint there are no large projections between W and Y.
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Definition 3.8. — W ∈ Y is a guard for Y if for every vertex X ∈ Y with W ∈ Y�(X,Y)

and every Z ∈ YK(X,Y) ⊂ Y�(X,Y) then Z ≤ W.

Note that if W is a guard for Y then d(W,Y) = 1.

Lemma 3.9. — For K sufficiently large and vertices X,Y,Z and W, if W ∈ Y�(X,Y),

Z ∈ YK(X,Y) and W < Z in Y�(X,Y), then Z ∈ YK/2(W,Y).

In particular, if YK/2(W,Y) = ∅ then W is a guard for Y.

Proof. — Given X,Y,Z and W as above, by the order property we have

dZ(W,Y) � dZ(X,Y) > K

and therefore if K is sufficiently large then

dZ(W,Y) > K/2. �

Note that it follows from this lemma and the order property that the least element
of YK/2(X,Z) (if nonempty) is a guard for X and the greatest element is a guard for Z.

By definition, if X0,X1 are vertices adjacent in PK(Y) then the projection,
dW(X0,X1), to another vertex W will be bounded above by K. However, if W is distance
two or more from one of X0,X1, we get a stronger bound.

Lemma 3.10. — Let X0 and X1 be adjacent vertices in PK(Y) and assume W is a vertex in

Y with d(X0,W) ≥ 2. Then

dW(X0,X1) ∼ 0

and

dW(X0,Z) ∼ dW(X1,Z)

for all Z ∈ Y.

By our convention, the constants for the notation “∼” in the statement do not
depend on X0,X1,W,Z, but only on θ (and �).

Proof. — Since d(X0,W) ≥ 2 there exists Y ∈ YK(X0,W). If dW(X0,X1) > � then
by monotonicity we have

dY(X0,X1) ≥ dY(X0,W) > K

which contradicts d(X0,X1) = 1 and therefore dW(X0,X1) ≤ �.
Applying the coarse triangle inequality we have

dW(Z,X0) + dW(X0,X1) � dW(Z,X1)



24 MLADEN BESTVINA, KEN BROMBERG, AND KOJI FUJIWARA

which implies half of the second inequality. The other half is proved by swapping X0

and X1. �

Remark 3.11. — The estimate dW(X0,X1) ∼ 0 in Lemma 3.10 is the key place
where we use monotonicity. In particular dW(X0,X1) is bounded by a constant that
doesn’t depend on K. Without monotonicity we would only have dW(X0,X1) ≤ K which
is by definition true for any adjacent vertices X0 and X1 in PK(Y). The other places
where monotonicity is used, it is only for convenience to simplify the argument. The esti-
mate in Lemma 3.10 is essential for what follows. Remark 3.17 gives an example of what
can go wrong.

Lemma 3.12. — If K is sufficiently large the following holds. Let X0 and X1 be adjacent ver-

tices with d(Xi,Z) ≥ 3. Let W be a guard for Z such that W ∈ YK/2(X0,Z). If W /∈ YK/2(X1,Z)

then there exists a guard W′ for Z such that W′ ∈ YK/2(X1,Z) and W ∈ Y�(W′,Z).

Proof. — We assume that W /∈ YK/2(X1,Z). Note that d(W,Z) = 1 and since
d(X0,Z) ≥ 3 we have d(X0,W) ≥ 2 and we can apply Lemma 3.10. From Lemma 3.10
we see that

dW(X1,Z) � dW(X0,Z) > K/2

and if K is sufficiently large W ∈ Y�(X1,Z).
Since d(X1,Z) ≥ 3 we also have d(X1,W) ≥ 2 so there must be elements in

YK/2(X1,Z) that are less than W in Y�(X1,Z). We let W′ be the greatest such element.
By the order property

dW

(
W′,Z

) � dW(X1,Z) � K/2

and again, if K is sufficient large then W ∈ Y�(W′,Z). See Figure 4.
We now show that W′ is a guard for Z. Note that for any X with dW′(X,Z) > �

we also have dW(X,Z) > � by monotonicity. If V ∈ YK(X,Z) then V ≤ W in Y�(X,Z)

since W is a guard. If W′ < V then V ∈ YK/2(W′,Z) ⊆ YK/2(X1,Z) by Lemma 3.9 and
monotonicity and therefore V �= W since W /∈ YK/2(X1,Z). However, this contradicts our
choice of W′ as the greatest element of YK/2(X1,Z) that is less than W. So, V ≤ W′. �

3.5. Barriers

Definition 3.13. — A barrier between a path {X0, . . . ,Xk} and a vertex Z is a vertex Y
such that Y ∈ Y�(Xi,Z) for all i = 0, . . . , k.

By Theorem 3.3 if there is a barrier between {X0, . . . ,Xk} and Z then
dZ(Xi,Xj) < � for all i, j.
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FIG. 4. — Lemma 3.12

Proposition 3.14. — If K is sufficiently large the following holds. Assume that {X0,X1,

. . . ,Xk} is a path in PK(Y) and Z a vertex of PK(Y) such that d(Z,Xi) ≥ 3 for all i. Then there

is a barrier W between the path and Z. In particular, dZ(X0,Xi) ∼ 0 for all i.

Proof. — We will inductively choose a family of guards Wi for Z such that Wi ∈
YK/2(Xi,Z) and if i > j then either Wi = Wj or Wj ∈ Y�(Wi,Z).

We choose W0 to be the greatest element of YK/2(X0,Z), so in particular
YK/2(W0,Z) = ∅ by the order and monotonicity properties. By Lemma 3.9, W0 is a guard
for Z. Now assume that W0 through Wi have been chosen. If Wi ∈ YK/2(Xi+1,Z) then
we let Wi+1 = Wi . If not, by Lemma 3.12, there exists a guard Wi+1 in YK/2(Xi+1,Z)

with Wi ∈ Y�(Wi+1,Z). For any j < i, by the induction hypothesis, we have that Wj ∈
Y�(Wi,Z) and by monotonicity therefore Wj ∈ Y�(Wi+1,Z).

Let W = W0. Again applying monotonicity we have that Y�(Xi,Z) ⊇ Y�(Wi,Z),
therefore W ∈ Y�(Xi,Z), so that W is a barrier between the path and Z and that
dZ(X0,Xi) < �. �

For geodesic paths we have the following corollary, analogous to Masur-Minsky’s
Bounded Geodesic Image Theorem.

Corollary 3.15. — If K is sufficiently large the following holds. Assume that {X0,X1, . . . ,

Xk,Z} is a geodesic path in PK(Y). Then dZ(X0,Xi) ∼ 0 for all i.

Proof. — If i ≤ k − 2 then this follows directly from Proposition 3.14. By
Lemma 3.10, dZ(Xk−2,Xk−1) ∼ 0 and dZ(Xk−1,Xk) ∼ 0 so the general statement then
follows from the coarse triangle inequality. �
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3.6. PK(Y) is a quasi-tree

Recall [Man05] that a geodesic metric space X satisfies the bottleneck property if there
is a constant � ≥ 0 such that for any two points x, z ∈ X there is a midpoint y (i.e.
d(x, y) = d(y, z) = 1

2d(x, z)) such that any path from x to z intersects the �-neighborhood
of y. Manning proved in [Man05] that X is quasi-isometric to a simplicial tree (i.e. it is a
quasi-tree) if and only if it satisfies the bottleneck property.

There is a slight reformulation of the bottleneck property that is easier to deal with:
X has the bottleneck property if and only if there is a constant �′ such that for any two points x, y ∈X
there is a path p from x to y such that the �′-neighborhood of any other path from x to y contains p.

We prove this property implies the original property. Let g be a geodesic from x to y,
and m be the mid point. We claim that there is a point m′ in p which is in the (2�′ + 1)-
neighborhood of m. To see this, let p(i) be points on p from x to y with d(p(i), p(i+1)) ≤ 1.
By the property, for each i, there is a point g(ji) on g with d(p(i), g((ji)) ≤ �′. By triangle
inequality, d(g(ji), g(ji+1)) ≤ 2�′ + 1. Since g is a geodesic, there must be i such that
d(m, g(ji)) ≤ 2�′ + 1. Set m′ = p(i). Then, d(m,m′) ≤ 3�′ + 1.

Now for any path q from x to y, there must be a point m′′ in q such that d(m′,m′′) is
at most �′. So, d(m,m′′) is at most 4�′ + 1.

If the space is a graph, we only need to consider vertices rather than all points in
the conditions and arguments.

We can now prove:

Theorem 3.16. — For K sufficiently large PK(Y) is a quasi-tree. Moreover, the quasi-isometry

constant to a tree is uniform.

Proof. — We will verify the modified bottleneck property with �′ = 2. This also
implies a uniform bound on the quasi-isometry constant [Man05, Section 4]. Let X,Z
be two vertices of PK(Y). The ordered set YK(X,Z) is a path from X to Z (see the proof
of Proposition 3.7). We now check that any path X = X0,X1, . . . ,Xk = Z from X to Z
passes within 2 of any vertex Y in YK(X,Z). If not, then by Proposition 3.14 we have
dY(X,Z) < � contradicting the fact that Y ∈ YK(X,Z). �

We could also use the original distance dπ to define a projection complex Pπ
K(Y).

However it is not a quasi-tree in general. We sketch the construction below.

Example 3.17. — (1) For any large integer K > 0, Pπ
K(Y) can be an arbitrarily

large loop and is hence not a quasi-tree with a quasi-isometry constant bounded or even
a δ-hyperbolic space with δ bounded.

Suppose Y = {Y0, . . . ,Yn} is finite and each Yi is a copy of R. Fix K > 10. For
0 < i < j < n we define πYj

(Yi) = {−1} and πYi
(Yj) = {K + 2}. For i > 0 we define

πYi
(Y0) = {1} and πY0(Yi) = {K}. For i < n we define πYi

(Yn) = {K} and πYn
(Yi) = {1}.

See Figure 5. We then define dπ
Yj
(Yi,Yk) in the usual way. It is then straightforward to
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FIG. 5. — Arrows indicate projections πYi
(Yj)

FIG. 6. — Pπ
K(Y) has two loops. PK(Y) is a complete graph with the same vertex set. PL(Y) and Pπ

L (Y) are the lines of
length n + m without the two upper edges if L < K − 1

check that the axioms hold with θ = 3. Furthermore, dYj
(Yi,Yi+1) ≤ 2 < K for all j and

we also have dYj
(Y0,Yn) = K − 1 < K for all j. Therefore, there are edges between Yi

and Yi+1 and between Y0 and Yn in Pπ
K(Y).

On the other hand, if i < j < k and i �= 0 or k �= n then dπ
Yj
(Yi,Yk) ≥ K + 1 so

there can be no other edges and Pπ
K(Y) is a loop of length n + 1. We leave it as an

exercise to show that PK(Y) is a complete graph on n + 1 vertices ((Y0,Yn) ∈ H(Yi,Yj)

if 0 < i < j < n, so dYk
(Yi,Yj) ≤ dπ

Yk
(Y0,Yn) = K − 1 if 0 < i < k < j < n, hence there is

an edge between Yi,Yj in PK(Y)).
(2) Now we want to produce for a given K > 10 an example with θ = 3 such that

Pπ
K(Y) contains arbitrarily large isometrically embedded loops, so it is not a quasi-tree

or even a hyperbolic space. For simplicity, we only give an example such that Pπ
K(Y)

contains a loop of length n and a loop of length m. The idea is to use the examples from
(1) for n and m and arrange the projections such that Pπ

K(Y) is a bouquet of loops of
length n and m.

Suppose Y = {Y0, . . . ,Yn, . . . ,Yn+m} and each Yi is R. Define

• For i < j such that {i, j}∩{0, n, n+m} = ∅ let πYi
(Yj) = {K+2},πYj

(Yi) = {−1}.
• πY0(Yi) = {K} and πYi

(Y0) = {1} for all 0 < i.
• πYn

(Yi) = {1} for all i < n and πYn
(Yi) = {K} for all n < i.

• πYi
(Yn) = {K} for all i < n and πYn

(Yi) = {1} for all n < i.
• πYn+m

(Yi) = {1} and πYi
(Yn+m) = {K} for all 0 < i.

Again, the axioms holds for θ = 3. As in (1), the vertices Y0, . . . ,Yn form a loop of
length n and the vertices Yn, . . . ,Yn+m form a loop of length m in Pπ

K(Y), which consists
of the two loops. On the other hand, PK(Y) is a complete graph. Note that PL(Y) is a
line of length n + m if 10 < L < K − 1. See Figure 6.
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Similarly, we can produce an example such that Pπ
K(Y) contains an isometrically

embedded loop of length n for all n > 0, which is not a quasi-tree, while PK(Y) is a
complete graph. Moreover, PL(Y) is an infinite line if 10 < L < K − 1.

(3) Building on the examples in (2), we can produce an example such that Pπ
K(Y)

is not a quasi-tree for any K. The idea is that for each large positive integer K we first
produce YK and projections as we did in (2) such that Pπ

K(YK) contains arbitrarily long
loops. Next we put YK together for all K and obtain Y, then define projections between
elements in YK with different K’s as we did for n and m in (2). Then for each large
positive integer L, the resulting graph Pπ

L (Y) contains the graph Pπ
L (YL) as a subgraph,

therefore has arbitrarily large embedded loops. On the other hand the quasi-tree PL(Y)

is unbounded since it contains PL(YK) for all K but each of them is a geodesic line for
L < K − 1. We leave the details to the reader.

Lemma 3.18. — There exists a K′ > 0 such that if Y ∈ YK′(X,Z) then every geodesic from

X to Z in PK(Y) contains Y. In particular

d(X,Z) ≥ ∣∣YK′(X,Z)
∣∣ + 1.

Proof. — Let X = X0,X1, . . . ,Xk = Z be a geodesic from X to Z that doesn’t
contain Y. We will show that dY(X,Z) ≺ 5K.

If d(Xi,Y) ≥ 3 for all i then by Proposition 3.14 we have dY(X,Z) ∼ 0. Now as-
sume that d(Xi,Y) < 3 for some i. Let i− be the first time that d(Xi−,Y) < 3 and i+ the
last time that d(Xi+,Y) < 3. Then i+ − i− ≤ 4 since d(Xi−,Xi+) ≤ 4. For convenience
we will assume i− > 0 and i+ < k; an obvious modification of the argument works when
this is not the case. Again applying Proposition 3.14 we have that dY(X,Xi−−1) ∼ 0 and
dY(Xi++1,Z) ∼ 0.

Since the path doesn’t contain Y then for all Xi we have dY(Xi,Xi+1) ≤ K. Using
this estimate and the coarse triangle inequality six times we have

dY(Xi−−1,Xi++1) ≺ 5K.

Combining with our bounds on dY(X,Xi−−1) and dY(X,Xi++1) and applying the coarse
triangle inequality two more times we have dY(X,Z) ≺ 5K. Therefore there exists a K′

with K′ ∼ 5K such that if Y ∈ YK′(X,Z) then every geodesic from X to Z contains Y.
This implies the lemma. �

The next corollary is in preparation for studying axes of isometries on the projec-
tion complex.

Let α be a biinfinite geodesic in PK(Y) and define for a constant L > 0

YL(α) = {
Y ∈ Y

∣
∣∃X,Z ∈ α such that dY(X,Z) > L

}
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and the stable part of α by

Y(α) = {Y ∈ Y| if a biinfinite geodesic β is parallel to α then Y ∈ β} ⊂ α.

In other words, Y(α) is the intersection of all biinfinite geodesics parallel to α (includ-
ing α). Clearly, if α is parallel to β then Y(α) = Y(β).

Corollary 3.19. — Let K′ be the constant from Lemma 3.18.

(i) YK′(α) ⊂ α.

(ii) There exists a K′′ ≥ K′ > 0 such that the following holds. Let D > 0 be a constant,

and X0,X1 vertices in PK(Y) and Y0,Y1 vertices in α such that d(Xi,Yi) < D. If

Z ∈ YK′′(α) lies between Y0 and Y1 on α and d(Xi,Z) > 2D + 2 then Z ∈ β for any

geodesic β between X0 and X1.

(iii) YK′′(β) ⊂ Y(α) for any geodesic β that is parallel to α.

Proof. — (i) follows directly from Lemma 3.18.
For (ii) we note that there is a (geodesic) path from Yi to Xi such that every ver-

tex in the path has distance at least 3 from Z so by Proposition 3.14, dZ(Xi,Yi) ∼ 0.
Since Z ∈ YK′′(α) there exists Y′

0,Y′
1 ∈ α with dZ(Y′

0,Y′
1) > K′′. Since Z lies between Y0

and Y1 we can assume that Y0 and Y′
0 are on the same side of Z (and similarly for Y1

and Y′
1). Therefore there is a geodesic path from Yi to Y′

i that is disjoint from Z and so
by Corollary 3.15, dZ(Yi,Y′

i) ∼ 0. Applying the coarse triangle inequality we have that
dZ(Xi,Y′

i) ∼ 0 and dZ(X0,X1) � K′′. Therefore if K′′ is sufficiently large dZ(X0,X1) > K′

and by Lemma 3.18 we have that Z lies in every geodesic between X0 and X1.
Assume that Z ∈ YK′′(β) and let γ be parallel to α (and hence β ). The geodesic γ is

contained in the D-Hausdorff neighborhood of β for some D > 0. Therefore we can find
vertices X0,X1 ∈ γ and vertices Y0,Y1 ∈ β such that d(Xi,Yi) ≤ D, d(Xi,Z) > 2D + 2
and Z lies between Y0 and Y1. Then by (ii), Z ∈ γ and (iii) follows. �

Finally, we establish that the projection complex has infinite diameter under mild
conditions.

Proposition 3.20 (PK(Y) is unbounded). — Suppose that for every R > 0 and A ∈ Y there

exist B,C ∈ Y such that dπ
A (B,C) > R. Then the diameter of PK(Y) is infinite.

Proof. — Let K′ be the constant from Lemma 3.18. Choose A0,A1,A2 ∈ Y such
that dA1(A0,A2) > K′. Applying the assumption to A2, find B,C so that dA2(B,C) �
3K′. It follows from the coarse triangle inequality that for either A3 = B or A3 = C we
have dA2(A1,A3) > K′. Continuing in the same fashion (by induction), we can extend the
sequence Ai forever with dAi

(Ai−1,Ai+1) > K′. By Lemma 3.5, for each 0 < j < i we have
dAj

(A0,Ai) > K′. Thus by Lemma 3.18 dPK(Y)(A0,Ai) ≥ i. �
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3.7. Group action on the projection complex

Now assume that G is a group that acts on the set Y in such a way that projec-
tion distances are G-equivariant, i.e. dπ

g(A)(g(B), g(C)) = dπ
A (B,C) for all A,B,C ∈ Y and

g ∈ G. Then G acts naturally on the projection complex PK(Y) by automorphisms.
The following proposition is clear since PK(Y) is connected.

Proposition 3.21. — Suppose the action of G on Y has finitely many orbits. Then the action of

G on PK(Y) is cobounded (i.e. a Hausdorff neighborhood of an orbit is the whole space).

Next, we construct axes of (powers of) elements with unbounded orbits. Note that
axes are geodesics by definition.

Let K′ be the constant from Lemma 3.18 and K′′ the constant from Corollary 3.19.

Lemma 3.22 (Axial isometry). — Suppose g ∈ G and Y ∈ Y such that

dY

(
g−N(Y), gN(Y)

)
> K′

for some N > 0. Then gN has an axis α that contains gkN(Y) for all k ∈ Z. In particular, g acts on

PK(Y) with positive translation length. Furthermore if

dY

(
g−N(Y), gN(Y)

)
> K′′

then g has an axis that contains all g-translates of Y.

Proof. — By the G-equivariance of the projection distance, Lemma 3.5 applies to
{Y, gN(Y), . . . , gkN(Y)}, so that dgiN(Y)(Y, gkN(Y)) > K′ for 0 < i < k. Now, Lemma 3.18
gives

d
(
Y, gkN(Y)

) = kd
(
Y, gN(Y)

)

which implies that the translation length

τ(g) = lim
k→∞

d(Y, gkN(Y))

kN
= kd(Y, gN(Y))

kN
≥ 1

N
> 0.

To construct α take a geodesic segment between Y and gN(Y) and translate it by the
action of gN to get a bi-infinite path.

Now assume dY(g−N(Y), gN(Y)) > K′′. For all k ∈ Z, gk(α) will be parallel to α and
gk(Y) ∈ YK′′(gk(α)). By (iii) of Corollary 3.19, gk(Y) ∈ Y(α). In particular, gk(Y) ∈ α. By
replacing the geodesic segment in α from gk(α) to gk+1(α) with the gk-translate of the
geodesic segment in α from Y to g(Y) we obtain a g-invariant geodesic. �

Using the same idea but a bit more work we can find a copy of F2 in G that acts
on an embedded tree in PK(Y) such that any non-trivial element in F2 has an axis in the
tree.
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Proposition 3.23 (Free subgroup of axial elements). — Fix Z1,Z2 ∈ Y and g1, g2 ∈ G and

then define Zk
j = gk

j (Zj) with k = ±1. Assume that for a constant L and all permutations of i, j ∈
{1,2} with i �= j and k ∈ {−1,1} we have

• dZj
(Z−1

j ,Z1
j ) > L ≥ K′;

• dZj
(Zk

j ,Zi) > L ≥ K′.

Then:

1. F = 〈g1, g2〉 is a non-abelian free group.

2. There exists a trivalent F-invariant tree S isometrically embedded in PK(Y) and the F-action

is proper and minimal.

3. For every non-trivial φ ∈ F there is vertex W ∈ S such that

dW

(
φ−1(W),φ(W)

)
> L.

Further, φ has an axis contained in S.

Proof. — Let F̃ = 〈a, b〉 be the free group of words in a and b. Then F̃ is the fun-
damental group of the barbell graph and therefore acts on its universal cover, a trivalent
tree S̃. We can assume that the axes α and β of a and b in S̃ are disjoint but connected
by a single edge whose endpoints are vertices Z̃1 ∈ α and Z̃2 ∈ β . If each edge of S̃ has
length one we can also assume that the translations of a and b are both one. Define a
homomorphism from F̃ to F = 〈g1, g2〉 ⊂ G by a �→ g1 and b �→ g2. We then choose a
map ψ : S̃ → PK(Y) that is equivariant with respect to this homomorphism and with
ψ(Z̃i) = Zi . By scaling the length of the edges of S̃ we can make this map an isometry
on each edge. We will show that it is in fact a global isometry and the conclusions of the
proposition will follow.

Note that there are exactly two F̃-orbits of vertices in S̃ with one containing Z̃1

and the other containing Z̃2. Therefore if Ỹ0, Ỹ1 and Ỹ2 are consecutive vertices in S̃
then there exists a (unique) w ∈ F̃ such that w(Ỹ1) = Z̃1 or w(Ỹ1) = Z̃2. Assume it is the
former. Then w(Ỹ0) and w(Ỹ2) will be distinct elements in the set {a(Z̃1), a−1(Z̃1), Z̃2}.
The ψ -image of this set is {Z1

1,Z−1
1 ,Z2} so for all possibilities we have that

dY1(Y0,Y2) = dψ(w(Ỹ1))

(
ψ

(
w(Ỹ0)

)
,ψ

(
w(Ỹ2)

))
> L

where Yi = ψ(Ỹi) by our assumption. The latter case is similar.
By Lemma 3.5 it follows that for a chain of consecutive vertices Ỹ0, . . . , Ỹn in S̃

we have dYj
(Y0,Yn) > L for all j = 1, . . . , n − 1 again with Yi = ψ(Ỹi). By Lemma 3.18,

Yj is contained in every geodesic from Y0 to Yn and it follows that ψ is a global isometry.
This implies (1) and (2).

For (3) we note that every φ ∈ F is the image of some φ̃ in F̃. The ψ -image of the
axis of φ̃ in S̃ will be an axis for φ. If W̃ is contained in this axis then it is contained
in a consecutive chain of vertices from φ̃−1(W̃) to φ̃(W̃) and therefore, by the previous
argument, dW(φ−1(W),φ(W)) > L where W = ψ(W̃). �



32 MLADEN BESTVINA, KEN BROMBERG, AND KOJI FUJIWARA

Example 3.24 (Cayley tree). — In Section 2.5 we discussed the Cayley tree of a free
group. In that example, we can take the axis of a as Y, g = anb in Lemma 3.22 where
n � K; and in Proposition 3.23 take g1 = a2nb with Z1 the axis of a and again n � K.
We then conjugate g1 with anba−n to get g2 and let Z2 = anba−n(Z1). (For a more general
strategy for choosing g1 and g2 see the proof of Corollary 3.25.) As we will see any non-
trivial element in F is WPD by Proposition 3.27 since the common stabilizer of a pair of
distinct points in Y is trivial (see Remark 3.28).

We state a corollary (of Theorem 3.16 and Proposition 3.23). We have to verify the
axioms (P0), (P1) and (P2) and in this general setting it will be done in [BBFb] (i.e., when
we prove Theorem H). In particular, it will apply to all groups that are listed in Exam-
ple 2.1. In this paper we have verified the axioms for discrete subgroups of isometries of
Hn and it is straightforward to generalize this to hyperbolic groups. Even in these cases
the result is new.

Recall that an action on a quasi-tree is non-elementary if the orbits are unbounded,
and there is no fixed end, nor a pair of ends.

Corollary 3.25. — Let G be a group which acts on a geodesic metric space X with a WPD

element with respect to the action that has a B-contracting orbit.

If G is not virtually cyclic then it has a non-elementary cobounded action on a quasi-tree.

Proof. — Let a ∈ G be a (hyperbolic) element that is WPD with an axis α (if there
is no geodesic axis, take an invariant quasi-geodesic, or the orbit of an point). Let Y be
the collection of parallel classes of G-translates of α. As we said, under the assumption,
the axioms (P0)–(P2) are satisfied, [BBFb]. We apply our construction to Y and obtain a
G-quasi-tree PK(Y) by Theorem 3.16.

To see that the action is non-elementary we need to find g1, g2 ∈ G for which we can
apply Proposition 3.23. Let Y ∈ Y be the equivalence class of α. Y contains an element
Z �= Y (since otherwise, every G-translate of α is parallel to α, but then G is virtually
cyclic by WPD) such that h(Y) = Z for some h ∈ G. Set Z1 = Y and Z2 = Z. For an n

to be determined shortly we also set Z±1
1 = a±nh∓1(Z1) and Z±1

2 = h(Z±1
1 ). Note that for

any X0,X1 �= Y both dY(X0, a±n(X1)) and dY(a−n(X0), an(X1)) grow linearly in n and it
follows that given L > 0, for n sufficiently large Z1,Z2 and Z±1

1 ,Z±1
2 satisfy the assumption

of Proposition 3.23. For example dZ1(Z2,Z1
1) = dZ1(Z2, an(h−1Z1)) is > L for large n. We

next set g1 = anh−1an and g2 = hg1h−1 and check that g
j

i(Zi) = Zj

i for i = 1,2 and j =
±1 so that g1 and g2 also satisfy the assumption of Proposition 3.23. By (1) and (2) of
Proposition 3.23 we then have that 〈g1, g2〉 is free and acts isometrically on a isometrically
embedded tree in PK(Y) so the action of G is non-elementary. �

In the rest of this section we study the WPD property (as defined in Section 2.2)
of the action on the projection complex. We start by constructing a total order on the
combinatorial axis of an element.
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If g ∈ G is hyperbolic and has an axis α define the combinatorial axis as Y(g) = Y(α).
This does not depend on the choice of α. Y(g) is possibly empty. We recall the elementary

closure, EC(g), of g is the subgroup of elements h ∈ G such that h(α) is parallel to α.

Proposition 3.26 (Combinatorial axis and elementary closure). — Assume Y(g) is not empty.

Then there is a total order on Y(g) such that

(i) Y(g) is EC(g)-invariant and the EC(g)-action preserves the order up to sign.

(ii) The order is unique if we require g(Y) > Y for some (every) Y ∈ Y(g).

(iii) Y(g) is order-isomorphic to Z and EC(g) acts as isometries of Z under this isomorphism.

(iv) Assume that Y0,Y1,Y2,Y′
0,Y′

2 ∈ Y(g) with Y1 between both the pair Y0 and Y2 and

the pair Y′
0 and Y′

2. Then dY1(Y0,Y2) ∼ dY1(Y
′
0,Y′

2).

Proof. — Let α be an oriented axis for g so that g is a positive translation with
respect to the orientation. The vertices of α have an order which induces a total order on
Y(α).

Let β be parallel to α and h ∈ EC(g). If h(Y) /∈ β then Y /∈ h−1(β). Since h−1(β)

will also be parallel to α we have that if Y ∈ Y(g) then g(Y) ∈ Y(g), proving (i).
For (ii) we note that by our choice of orientation for Y ∈ α, g(Y) appears after Y.
The vertices in Y(g) are a discrete set in α so the order coming from α will be

order isomorphic to Z and we can accordingly label them Yn. In particular if k < n < m

then Yn is between Yk and Ym on α. If h ∈ EC(g) then the same must be true on h(α) for
otherwise we could build a geodesic parallel to α that did not contain Yn by replacing the
geodesic segment from Yk to Ym on α with the segment with the same endpoints on h(α).
If h∗ is the induced map on Z then this implies that |h∗(n)− h∗(m)| = |n − m| proving (iii).

For (iv) we can assume that both Y0 and Y′
0 are less than Y1 in the total order. Then

dY1(Y0,Y′
0) ∼ 0 by Corollary 3.15 and similarly dY1(Y2,Y′

2) ∼ 0. The coarse triangle
inequality then implies (v). �

The following provides a sufficient condition for an element to be hyperbolic and
WPD.

Proposition 3.27 (Axial and WPD). — Assume that g ∈ G satisfies

(i) there exists a vertex Y and an N > 0 such that dY(g−N(Y), gN(Y)) > K′′;
(ii) there exists an m > 0 such that the subgroup of G that fixes

Y, g(Y), . . . , gm(Y)

is finite.

Then g has an axis and the action of g on PK(Y) is WPD.

Proof. — By Lemma 3.22 g is hyperbolic and has an axis. Fix a D > 0 which for
simplicity we’ll assume is an integer and let M = 7D + 7 + m. We need two claims:
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(a) If d(Y, φ(Y)) ≤ D and d(gM(Y),φ(gM(Y))) ≤ D then the commutator [φ, g]
lies in a finite set of elements.

(b) There are only finitely many ψ ∈ G with

d
(
Y,ψ(Y)

) ≤ D and d
(
gM(Y),ψ

(
gM(Y)

)) ≤ D

and with [φ, g] = [ψ, g].
These two claims imply that the set

{
φ ∈ G

∣∣d
(
Y, φ(Y)

) ≤ D and d(gM(Y),φ
(
gM(Y)

) ≤ D
}

is finite and g is WPD.
We now prove (a). By (ii) of Corollary 3.19, g3D+3(Y), . . . , g4D+4+m(Y) will be in

every geodesic from φ(Y) to φ(gM(Y)). We also note that

Y
(
φgφ−1

) = φ
(
Y(g)

)

so φ(Y),φ(gM(Y)) ∈ Y(φgφ−1) and therefore gi(Y) ∈ Y(φgφ−1) for i = 3D+3, . . . ,4D+
4 + m. Furthermore the order (up to sign) that the gi(Y) appear in Y(g) must be
the same as their order in Y(φgφ−1) and in particular φgφ−1(gi(Y)) = gi±1(Y) for
i = 3D + 4, . . . ,4D + 3 + m since g and φgφ−1 have the same translation length. We
first need to show that φgφ−1(gi(Y)) = gi+1(Y) instead of gi−1(Y).

Assume not and that φgφ−1(gi(Y)) = gi−1(Y). Then φ reverses the order of
the gi(Y) in Y(φgφ−1) and in particular, g4D+3+m(Y) occurs before g3D+4(Y). Since
d(φ(Y),φ(gM(Y))) = Mτ(g) and d(g4D+4+m(Y), g3D+3(Y)) = (D + m + 1)τ (g) one
of d(φ(Y), g4D+3+m(Y)) or d(g3D+4(Y),φ(gM(Y))) must be no greater than (M −
(D + m + 1))τ (g)/2 = (3D + 3)τ (g). Assume it is the former. The proof is simi-
lar in the latter case. Since τ(g) ≥ 1 and d(Y, φ(Y)) ≤ D the triangle inequality im-
plies that d(Y, g4D+4+m(Y)) ≤ D + (3D + 3)τ (g) ≤ (4D + 3)τ (g). On the other hand
d(Y, g4D+4+m(Y)) = (4D + 4 + m)τ (g) > (4D + 3)τ (g), contradiction.

Therefore φgφ−1(gi(Y)) = gi+1(Y) and [φ, g](gi+1(Y)) = φgφ−1(gi(Y)) = gi+1(Y)

for i = 3D + 4, . . . ,4D + 2 + m. Now notice that the subgroup that fixes Y, g(Y),

. . . , gm(Y) will be isomorphic to the subgroup that fixes g3D+3(Y), . . . , g3D+3+m(Y). Hence
the finiteness of the former implies the finiteness of the latter. Therefore there are finitely
many possibilities for [φ, g].

For claim (b) we note that if [φ, g] = [ψ, g] then ψ−1φ conjugates g to itself and
therefore ψ−1φ ∈ EC(g). By Proposition 3.26, Y(g) is order isomorphic to Z and the
induced map (ψ−1φ)∗ on Z is an isometry. If (ψ−1φ)∗ was a reflection then it would
conjugate g to g−1 so we must have that (ψ−1φ)∗ is a translation. Since the translation
distance of (ψ−1φ)∗ on Z will be at most the translation distance of ψ−1φ on PK(Y) and
φ and ψ translate Y at most D we have that the translation length (ψ−1φ)∗ is at most 2D.
There is a bijection from the subgroup that fixes Y(g) point-wisely to the set of elements
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that translate Y(g) any fixed length. Since the former is finite by (ii) so is the latter. This
implies that there are finitely many possible elements that translate Y(g) with translation
length ≤ 2D and hence finitely many possibilities for ψ−1φ and ψ proving (b) and the
proposition. �

Remark 3.28. — In Corollary 3.25 we produced a non-elementary cobounded ac-
tion on a quasi-tree if G is non-elementary by finding a free subgroup F < G using Propo-
sition 3.23. Furthermore, each non-trivial element in F will be WPD on the quasi-tree if
the stabilizer of two vertices in PK(Y) is finite (for example, in many examples in Exam-
ple 2.1), where Y is the set of translates of an axis. This is because we only need to verify
(i) of Proposition 3.27 since (ii) is a trivial consequence of (i) under the extra assumption.
But when we apply Proposition 3.23 in the proof of Corollary 3.25, putting L = K′′, for
all non-trivial elements φ ∈ F we have dW(φ−1(W),φ(W)) > L, which verifies the condi-
tion (i) for N = 1, therefore φ is WPD.

4. A quasi-tree of metric spaces

4.1. Axioms and construction

In all examples in Example 2.1 the set Y and the functions dπ
Y all arose from ge-

ometric settings. We now formalize this. For each Y ∈ Y let C(Y) be a geodesic metric
space. In the introduction our notation was such that Y itself was a metric space and
C(Y) = Y. But now we will make a distinction, motivated by the example where ele-
ments Y ∈ Y represent incompressible subsurfaces of a surface 
 and C(Y) is the curve
complex of Y. Let πY be a function, called projection, from Y\{Y} to subsets of C(Y). We
then define πY on x ∈ C(X) for X �= Y by πY(x) = πY(X). On C(Y) itself we define πY

to be the identity map. (Strictly speaking πY takes points in C(Y) to singleton subsets of
C(Y).) We now assume there is a constant θ ≥ 0 such that

(P0) for all X �= Y, diam(πY(X)) ≤ θ ;

We then define

dπ
Y (X,Z) = diam

{
πY(X) ∪ πY(Z)

}
.

We assume that axioms (P1) and (P2) hold for θ (see the introduction). Then, as we said,
the projection complex axioms (PC 1)–(PC 4) in Section 3 immediately follow for dπ

Y
and θ .

Note that the examples (Example 2.1) that were discussed at the start of the paper
all arise in this way. We also define dπ

Y (x, z) = diam{πY(x) ∪ πY(z)}, and similarly for
dπ

Y (x,Z). Note that dπ
Y (x, z) still makes sense if x ∈ C(Y) and/or z ∈ C(Y) as does dπ

Y (x,Z)

if x ∈ C(Y).



36 MLADEN BESTVINA, KEN BROMBERG, AND KOJI FUJIWARA

We define dY(X,Z) exactly as before. Moreover, (1) if neither x ∈ C(Y) nor z ∈
C(Y) then we set dY(x, z) = dY(X,Z); (2) if either x ∈ C(Y) or z ∈ C(Y) then dY(x, z) =
dπ

Y (x, z); (3) if Y �= Z, then dY(x,Z) = dπ
Y (x,Z). In these last two cases we don’t have the

monotonicity lemma and in fact the lemma doesn’t even make sense. Finally we define
YK(x, z) to be the set of Y such that dY(x, z) > K. These sets are almost the same as
YK(X,Z) although they may possibly contain X or Z. We similarly define YK(x,Z).

The following definition depends not only on the choice of K but also on the choice
of a constant L.

Definition 4.1. — A quasi-tree of metric spaces is the path metric space C(Y) = CK(Y) ob-

tained by taking the disjoint union of the metric spaces C(Y) for Y ∈ Y and if d(X,Z) = 1 in PK(Y)

we attach an edge of length L from every point in πX(Z) to every point in πZ(X).

For any two choices of L the corresponding complexes will be quasi-isometric;
however, we will fix L as a function of K in Lemma 4.2 below, and we regard the con-
struction of C(Y) as depending on K only. In this way, we can assure that the metric
spaces C(Y) will be totally geodesically embedded in C(Y) but that L will still be compa-
rable to K. This will streamline some of our proofs. Note that |L − K| is bounded above
by a constant depending only on θ , and that in particular, L(K) < 2K and K < 2L(K) if
K is sufficiently large (we could assume K ≤ L then K < 2L is trivial).

Lemma 4.2. — There exists an L = L(K) with L ∼ K such that

dC(Y)(x, z) ≥ dπ
Y (x, z)

for all Y ∈ C(Y) with equality if and only if both x and z are in Y. In particular each C(Y) is totally

geodesically embedded in C(Y).

Note that in this lemma we use the unmodified projection functions, dπ
Y as we

will need to apply the triangle inequality an indeterminate number of times. To simplify
notation we will restrict the discussion to the case when each C(Y) is a connected graph
endowed with length metric with each edge of length 1 and the projections πY(X) ⊂ C(Y)

are sets of vertices. The general case is an easy modification, or indeed, one may replace
C(Y) by the Vietoris-Rips complex whose vertices are the points of C(Y), and edges
correspond to pairs of points at distance ≤ 1. Also in Lemmas 4.5 and 4.6 we view all
points as vertices.

Proof. — Let C ′(Y) be the space obtained by collapsing C(Z) for every Z ∈ Y\{Y}.
Let x0, x1, . . . , xk be a shortest path of adjacent vertices between the images of x and z in
C ′(Y). Thus each xi is either a vertex in C(Y) or it is some Z ∈ Y \ {Y}.

We’ll show that dπ
Y (xi, xi+1) ≤ dC′(Y)(xi, xi+1) with equality if and only if both xi and

xi+1 are in C(Y). There are three cases. If neither xi or xi+1 are in C(Y) then by the coarse
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equality

dπ
Y (xi, xi+1) ≺ dY(xi, xi+1) < K

and

dC′(Y)(xi, xi+1) = L.

Since dπ
Y (xi, xi+1) is bounded above by K plus a constant depending only on θ ,

dπ
Y (xi, xi+1) < dC′(Y)(xi, xi+1)

if L is sufficiently large, but also we may assume L ∼ K. If xi and xi+1 are both in
C(Y) then dC′(Y)(xi, xi+1) = dπ

Y (xi, xi+1) = 1. If exactly one of the two is in C(Y) we
have dπ

Y (xi, xi+1) ∼ 0 and dC′(Y)(xi, xi+1) = L so dπ
Y (xi, xi+1) < dC′(Y)(xi, xi+1) for sufficiently

large L. Again L can be chosen such that L ∼ K.
The triangle inequality then shows that

dC′(Y)(x0, xk) ≥ dπ
Y (x0, xk) = dπ

Y (x, z)

with equality if and only if all of the xi are in C(Y). Since the projection to C ′(Y) is
1-Lipschitz we have

dC(Y)(x, z) ≥ dπ
Y (x, z)

with equality if and only if x and z are in C(Y).
To see that C(Y) is totally geodesically embedded in C(Y) we observe that dπ

Y is
the metric on C(Y) and we have just shown that if x and z are in C(Y), any path in C(Y)

that leaves C(Y) has length strictly longer than dπ
Y (x, z). Therefore every geodesic from x

to z is contained in C(Y). �

4.2. Distance estimate in C(Y)

The main result of this section is Theorem 4.13, which is a distance estimate in
the style of Masur-Minsky. We start by writing down a straightforward estimate for an
upper bound for the distance in C(Y). This is obtained by constructing a “standard path”
joining two points and computing its length.

Definition 4.3. — A standard path from x ∈ C(X) to z ∈ C(Z) is any path that passes through

C(W) if and only if W ∈ YK(X,Z) ∪ {X,Z}, it passes through them in the natural order, and within

each C(W) the path is a geodesic.
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Lemma 4.4. — For K sufficiently large

dC(Y)(x, z) ≤ 6K + 4
∑

Y∈YK(x,z)

dY(x, z)

for all x, z ∈ C(Y), and moreover the length of any standard path from x to z is bounded above by the

same expression.

Proof. — Let X and Z be the vertices in Y with x ∈ C(X) and z ∈ C(Z). Let
YK(X,Z) ∪ {X,Z} = {X = Y0,Y1, . . . ,Yk = Z} with labeling respecting the order
(cf. Proposition 3.7 and its proof). Let x+

i be a point in πYi
(Yi+1) and x−

i a point in
πYi

(Yi−1), where defined. At the endpoints let x−
0 = x and x+

k = z. Since the distance
between x+

i and x−
i+1 is L we have

dC(Y)(x, z) ≤ kL +
∑

dC(Y)

(
x−

i , x+
i

)
.

Now we estimate dC(Y)(x
−
i , x+

i ). For i ∈ {1, . . . , k − 1} we have

dC(Y)

(
x−

i , x+
i

) ≤ dπ
Yi

(Yi−1,Yi+1)

≺ dYi
(Yi−1,Yi+1)

≺ dYi
(x, z)

where the second line follows from the coarse equality property and the third follows
from the order property. Since dYi

(x, z) > K this implies that

dC(Y)

(
x−

i , x+
i

)
< 2dYi

(x, z)

for K sufficiently large.
Since L = L(K) ∼ K we also have that L < 2K if K is sufficiently large and since

dYi
(x, z) > K we have L < 2dYi

(x, z) and

L + dC(Y)

(
x−

i , x+
i

) ≤ 4dYi
(x, z).

We similarly have that dC(Y)(x
−
i , x+

i ) ≺ dYi
(x, z) when i = 0, k.

If dYi
(x, z) > K we have dC(Y)(x

−
i , x+

i ) < 2dYi
(x, z) while if dYi

(x, z) ≤ K then
dC(Y)(x

−
i , x+

i ) < 2K. We can write this as a single inequality

dC(Y)

(
x−

i , x+
i

)
< 2 max

{
K, dYi

(x, z)
}

that applies to both cases. Now

dC(Y)(x, z) ≤ kL +
∑

dC(Y)

(
x−

i , x+
i

)
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≤ L + 4
k−1∑

i=1

dYi
(x, z) + 2

∑

i=0,k

max
{
K, dYi

(x, z)
}

≤ 6K + 4
∑

Y∈YK(x,z)

dY(x, z).
�

We aim to find a lower bound in the spirit of Lemma 3.18 for the projection com-
plex PK(Y). See Theorem 4.13. We will need a version of Proposition 3.14 for C(Y). The
proof will be a word for word repeat of Proposition 3.14 but first we need a new version
of Lemma 3.10.

Lemma 4.5. — Let X0 and X1 be vertices in PK(Y) with d(X0,X1) = 1 and let x0 and x1

be vertices in C(X0) and C(X1) such that x0 ∈ πX0(X1) and x1 ∈ πX1(X0). Let W be a vertex in Y
and w a vertex in C(W) with dC(Y)(xi,w) ≥ 2L. Then either

dW(x0, x1) ∼ 0

or

dW(xi,w) � L for i = 0,1.

Proof. — First assume X0 = W. Since x0 ∈ πW(x1) = πX0(x1) we have dπ
W(x0, x1) ≤

diam(πW(X1)) ∼ 0. Of course, we get the same bound if X1 = W.
If either d(X0,W) ≥ 2 or d(X1,W) ≥ 2 then dπ

W(x0, x1) = dπ
W(X0,X1) ∼ 0 by

Lemma 3.10.
This leaves us with the case where d(X0,W) = d(X1,W) = 1. We first observe

that if dX0(X1,W) > � then dW(x0, x1) = dW(X0,X1) ∼ 0. The same estimate holds if
dX1(X0,W) > �.

The final sub-case is when both dX0(X1,W) ≤ � and dπ
X1

(X0,W) ≤ �. It is here
that we use the lower bound dC(Y)(xi,w) ≥ 2L. To do so we need the upper bound

dC(Y)(x0,w) ≤ dX0(x0,w) + L + dW(x0,w)

which is obtained by taking the path made up of a path in C(X0) connecting x0 to πX0(w),
an edge from πX0(W) to πW(X0) and a path in C(W) from πW(X0) to w. Since x0 ∈
πX0(X1) we have dX0(x0,w) ≺ dX0(X1,W). Combining the bounds gives dW(x0,w) � L
and the same bound holds for dW(x1,w). �

Lemma 4.6. — For K sufficiently large the following holds. Let x0 and x1 be adjacent vertices

in C(Y) and let Y be a vertex in PK(Y) such that dC(Y)(xi,C(Y)) ≥ 3L. If W is a guard for Y with

W ∈ YK/2(x0,Y) and W /∈ YK/2(x1,Y) then there exists a guard W′ for Y with W′ ∈ YK/2(x1,Y)

and W ∈ Y�(W′,Y).
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Proof. — Let X0 and X1 be the vertices of PK(Y) such that xi ∈ C(Xi). If X0 =
X1 �= W then W ∈ YK/2(x1,Y) and the lemma is vacuous. If X0 = X1 = W then

3L ≤ dC(Y)

(
xi,C(Y)

)

≤ dC(Y)

(
xi,πY(W)

)

≤ dW(xi,Y) + L

and therefore dπ
W(xi,πW(Y)) ≥ 2L. Since L ∼ K if K is sufficiently large then 2L > K and

W ∈ YK/2(x1,Y), therefore the lemma is vacuous as well.
We now assume that X0 �= X1. We can now apply Lemma 4.5 with w a point in

πW(Y). Note that dC(Y)(w,C(Y)) = L so dC(Y)(xi,w) ≥ 2L.
Lemma 4.5 gives us two possibilities. First we may have dW(x1,w) � L � K in

which case W ∈ YK/2(x1,Y) for K sufficiently large.
Therefore if W /∈ YK/2(x1,Y) then Lemma 4.5 gives dW(x0, x1) ∼ 0. For K suf-

ficiently large the coarse triangle inequality then implies that W ∈ Y�(x1,Y) as W ∈
YK/2(x0,Y). Since W is a guard for Y every vertex in YK(x1,Y) must be less than
W in Y�(x1,Y). Furthermore YK(x1,Y) can’t be empty for if it was then, as above,
d(x1,C(Y)) ≤ dX1(x1,Y) + L ≤ K + L < 3L if K is sufficiently large. Therefore there
must be elements ( �=W, could be = X1) of YK(x1,Y) that are less than W in Y�(x1,Y).
The rest of the proof now is a repeat of the proof of Lemma 3.12. Namely, we take W′

to be the greatest element of YK/2(x1,Y) that is less than W in Y�(x1,Y). The proof that
W ∈ Y�(W′,Y) and that W′ is a guard is exactly as in the proof of Lemma 3.12. �

We define the notion of a barrier for a path in C(Y) just as we did for paths in
PK(Y). Namely, if {x0, x1, . . . , xk} is a path in C(Y) and Z a vertex in PK(Y) then Y ∈ Y
is a barrier between them if Y ∈ Y�(xi,Z) for i = 0, . . . , k. Note that it is possible that
xi ∈ C(Y). If neither xi nor xj are in C(Y) then Theorem 3.3 implies that dZ(xi, xj) < �. If
exactly one of the two is in C(Y) then dZ(xi, xj) < � from the inequality on triples. If they
are both in C(Y) then dZ(xi, xj) = πZ(Y) < � by (P0).

Proposition 4.7. — Let {x0, x1, . . . , xk} be a path in C(Y) and Z ∈ Y such that

dC(Y)(xi,C(Z)) ≥ 3L for all i. Then there is a barrier C in Y between the path and Z. In par-

ticular, dZ(x0, xi) < �.

Proof. — The proof is a word for word repeat of the proof of Proposition 3.14 with
Lemma 3.12 replaced with Lemma 4.6 and the upper case Xi replaced with the lower
case xi. �

Remark 4.8. — It is not hard to derive Proposition 3.14 from Proposition 4.7. In
particular a path in PK(Y) that is 3 or more away from a vertex Z can be lifted to path
in C(Y) that is 3L away from C(Z).
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The next lemma establishes that the nearest point projection to C(Z) agrees, to
within a bounded error, with the prescribed projections.

Lemma 4.9. — Let x be a vertex in C(Y), Z a vertex in PK(Y) and z a nearest point in C(Z)

to x in C(Y). Then

dZ(x, z) ≺ 2K.

Proof. — Let y be the last point in a geodesic from x to z such that dC(Y)(z, y) =
dC(Y)(y,C(Z)) ≥ 3L. Then by Proposition 4.7, dZ(x, y) ∼ 0. The case that such y does not
exist, i.e., dC(Y)(z, x) < 3L, will be discussed at the end.

If a path in C(Y) of length at most kL − 1 maps to a path in PK(Y) then the
image path will have length at most k − 1. By the way we chose y, dC(Y)(z, y) ≤ 4L − 1.
Therefore the geodesic from y to z will map to a path of length at most 3 (and at least 1)
in PK(Y). Let Y and Z′ be the vertices of PK(Y) such that y ∈ C(Y) and Z′ is the last
vertex in the path before Z. Since d(Y,Z′) ≤ 2, the coarse triangle inequality implies that
dZ(Y,Z′) ≺ 2K. (We are assuming Z �= Z′ here, but the case Z = Z′ is similar and left to
the reader.) Since Z′ is the last vertex before Z we also have that z ∈ πZ(Z′) and therefore
dZ(z, y) ≺ 2K. Since dZ(x, y) ∼ 0, another application of the coarse triangle inequality
then gives dZ(x, z) ≺ 2K as claimed.

Now we are left with the case dC(Y)(z, x) < 3L. If x ∈ C(Z), then z = x and
there is nothing to prove. Otherwise, letting y = x in the above discussion, we have
dZ(z, x) ≺ 2K. �

The nearest point projection C(Y) → C(Z) is not really a function since the image
of a point is not always a single point. However, it is a coarse map, i.e. the diameter of the
image set is uniformly bounded by Lemma 4.9. Recall that a coarse map F between two
metric spaces is coarsely Lipschitz if there exist constants a, b > 0 such that diam F(A) ≤
a diam(A) + b.

Corollary 4.10. — For every Z ∈ Y the nearest point projection C(Y) → C(Z) is coarsely

Lipschitz and the image of C(Y) for Y �= Z is in a uniform neighborhood of the bounded set πZ(Y).

Proof. — Let x1, x2 be two vertices of C(Y) that are joined by an edge and say
xi ∈ C(Xi) for i = 1,2. We need to argue that the images of xi are uniformly close. There
are several cases.

Case 1. x1, x2 are joined by an edge of length 1. Then X1 = X2 and the images of
x1, x2 are uniformly close, by Lemma 4.9, to πZ(X1) = πZ(X2).

Case 2. x1, x2 are joined by an edge of length L; thus d(X1,X2) = 1. If X1 �= Z �= X2

then dZ(X1,X2) ≤ K and we again see from Lemma 4.9 that the images of x1 and x2 are
uniformly close. Finally, if X1 = Z �= X2, then x1 ∈ C(Z) is its own image, while the image
of x2 is at most 2L away. �
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Proof of Theorem A. — This now follows from Lemma 4.2 and Corollary 4.10. �

The next two statements say that C(Y) is a quasi-tree-like union of spaces C(Y).

Proposition 4.11. — Let X,Z ∈ Y, x ∈ C(X), z ∈ C(Z). If Y ∈ Y�(x, z) then any path

from x to z in C(Y) contains a vertex w such that

• dC(Y)(w,C(Y)) < 3L,

• dY(x,w) ≺ K.

It follows that dC(Y)(w,πY(x)) ≺ 3L + 3K. (A similar statement holds with z in place of x.)

Proof. — By Proposition 4.7 every path from x to z must intersect the 3L-
neighborhood of C(Y) if Y �= X,Z. This is trivially true if Y = X or Y = Z. Let w be the
first vertex in the path with dC(Y)(w,C(Y)) < 3L and let w′ be the vertex that precedes it.
(If w = x then the lemma holds trivially.) By Proposition 4.7, dY(x,w′) ∼ 0. Since w and
w′ are adjacent in C(Y) they will map to either adjacent vertices in P(Y) or the same
vertex. In either case dY(w,w′) ≺ K and by the coarse triangle inequality dY(x,w) ≺ K.

Now let w̃ ∈ C(Y) be a nearest point from w to C(Y). We have dC(Y)(w, w̃) < 3L.
By Lemma 4.9, dY(w̃,w) ≺ 2K. Therefore by the coarse triangle inequality
dC(Y)(w,πY(x)) ≺ 3L + 2K + K. �

Lemma 4.12. — There exists K′ > 0 so that the following holds. If x ∈ C(X), z ∈ C(Z),

and Y ∈ YK′(x, z), then every geodesic V in C(Y) from x to z intersects C(Y) in a geodesic segment

[v,w] and moreover dY(x, v) ≺ K′, dY(z,w) ≺ K′. Y is possibly X or Z.

Proof. — First note that by Lemma 4.2 the intersection, if nonempty, is a geodesic
segment (possibly a single point). From Proposition 4.11 it follows that there are points
v′,w′ along V so that d(v′,πY(x)) ≺ 3L+3K and d(w′,πY(z)) ≺ 3L+3K. In particular,
d(v′,w′) ≺ 6L + 6K + dY(x, z).

Assuming the subsegment [v′,w′] ⊂ V is disjoint from C(Y), we estimate the num-
ber of C(W)’s [v′,w′] has to pass through as being at least dY(x,z)

K − 1 (the diameter of the
projections to Y of the union of two consecutive C(W)’s is at most K). Thus the number
of edges of length L the segment passes through is at least dY(x,z)

K , and we have

LdY(x, z)

K
≺ 6L + 6K + dY(x, z)

Since L/K > 1 we get a contradiction when dY(x, z) is large enough. We have shown that
if K′ is large enough then [v′,w′] ∩ C(Y) �= ∅.

Thus [v′,w′] ∩ C(Y) is a geodesic segment [v,w]. We will argue that v is uni-
formly close to πY(x); the argument that w is uniformly close to πY(z) is symmetric. Let
v′′ be the vertex on the segment [x, v] ⊂ V immediately preceding v (if x = v there is
nothing to prove). If d(πY(x),πY(v′′)) > K′ we may apply the argument of the preceding
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paragraph to the geodesic [x, v′′] to deduce [x, v′′] ∩ C(Y) �= ∅, a contradiction. Thus
d(πY(x),πY(v′′)) ≤ K′ and so dY(x, v) ≺ K′. �

The following is the distance estimate analogous to the Masur-Minsky formula.

Theorem 4.13. — There is K′ > K such that for x ∈ C(X), z ∈ C(Z)

1
2

∑

W∈YK′ (x,z)
dW(x, z) ≤ dC(Y)(x, z) ≤ 6K + 4

∑

W∈YK(x,z)

dY(x, z)

Proof. — The upper bound is Lemma 4.4. Let K′ be the constant from Lemma 4.12
and assume that dY(x, z) > 6K′. Then any geodesic from x to z intersects C(Y) in a seg-
ment of length � 4K′, which is > 3K′. The estimate follows after renaming 6K′ to K′. �

4.3. Hyperbolicity of C(Y)

In this section we prove that if all C(Y) uniformly satisfy the bottleneck property,
or hyperbolicity, or quasi-convexity, then C(Y) satisfies the same property.

Theorem 4.14. — Suppose that all C(Y) for Y ∈ Y are quasi-trees in a uniform way, so that

there is � such that all C(Y) for Y ∈ Y satisfy the bottleneck property with this �. Then C(Y) satisfies

the bottleneck property so it is a quasi-tree.

Proof. — Let x ∈ C(X) and z ∈ C(Z) be given and let Y1,Y2, . . . ,Ys be the elements
of YK(X,Z) with indexing reflecting the order. There is a standard path (see the proof
of Lemma 4.4) V in C(Y) from x to z that projects to {X,Y1,Y2, . . . ,Ys,Z} and within
each C(Yi) (we let Y0 = X,Ys+1 = Z) it is a geodesic. We will argue that any path U from
x to z comes within a bounded distance from any point on V. This verifies the modified
bottleneck property discussed just before Theorem D.

Fix a point v ∈ C(Yi) on V and let {x = x0, x1, . . . , xk = z} be the vertices of
an arbitrary path U between x and z. We project the xj to Yi and let yj be points
in πYi

(xj). Note that dC(Yi)(yj, yj+1) ≺ K so the yj form a coarse path in C(Yi) from
y0 = πYi

(x) to yk = πYi
(z). Since C(Yi) satisfies the bottleneck property with constant �,

d(y0,πYi
(Yi−1)) ∼ 0 and d(yk,πYi

(Yi+1)) ∼ 0 by the order property, there will be some y�

with dC(Yi)(y�, v) ≺ �+ K. Note that if K is sufficiently large then at least one of dYi
(x, x�)

and dYi
(z, x�) must be large enough to apply Proposition 4.11. Assume it is the former.

Applying Proposition 4.11 there exists a vertex x�′ on the path between x and x� such that

dC(Y)

(
x�′,C(Yi)

)
< 3L

and

dYi
(y�, x�′) ≺ K
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since y� ∈ πYi
(x�). Let w ∈ C(Yi) be the closest point in C(Y) to x�′ . Then by Lemma 4.9

and the coarse triangle inequality we have

dYi
(w,v) ≺ dYi

(w, x�′) + dYi
(x�′, y�) + dYi

(y�, v) ≺ � + 4K

and, since dC(Y)(w, x�′) < 3L,

dC(Y)(x�′, v) ≺ � + 4K + 3L.

This proves that the bottleneck property holds since x�′ ∈ U. �

A geodesic metric space is quasi-convex if there is N > 0 such that for any
two geodesic segments [u, v] and [u′, v′], if d(u, u′) ≤ 1 and d(v, v′) ≤ 1 then [u′, v′]
is contained in the Hausdorff N-neighborhood of [u, v]. Note that this implies that
if d(u, u′) ≤ C, d(v, v′) ≤ C then [u′, v′] is contained in the Hausdorff (C + 1)N-
neighborhood of [u, v].

Also note that if each C(Y) is quasi-convex with the same constant (then we say
uniformly quasi-convex), then there is a uniform bound on the Hausdorff distance of any
two standard paths between any two points in C(Y).

Lemma 4.15. — Suppose that each C(Y) is quasi-convex with the same constant N. There

is M > 0 so that for any x and z, the Hausdorff distance between any geodesic from x to z and any

standard path (see Definition 4.3) from x to z is at most M.

Proof. — If [v,w] is a segment in a standard path U obtained by intersecting with
some C(W), then the endpoints are within uniform distance of any geodesic V from x

to z by Proposition 4.11 since W ∈ Y�(x, z) (the only case the lemma does not apply is
when W = X,Z and W /∈ Y�(x, z), but then the claim is true with the bound �). We
claim that [v,w] is within uniform distance from V. If dW(x, z) ≤ K′, then the length of
the geodesic [v,w] is bounded by a constant ≺ 3K′, therefore [v,w] is within uniform
distance from V. If dW(x, z) > K′, then by Lemma 4.12 V intersects C(Y) in a geodesic
segment [v′,w′] whose endpoints are uniform distance from the endpoints of [v,w]. By
the uniform quasi-convexity of C(Y), the claim follows. Thus the standard path U is
contained in a uniform neighborhood of the geodesic V.

Now we show that the geodesic V is contained in a uniform neighborhood of the
standard path U. Let YK(x, z) = {Y1,Y2, . . . ,Yk} and let i1 < i2 < · · · < is be the indices
of those Yi with dYi

(x, z) > K′, where K′ is large (at least as large as in Lemma 4.12,
but in fact a bit larger, see below). Then V ∩ C(Yij ) is an interval Iij and the inter-
vals Ii1, Ii2, . . . , Iis occur along V in order of their indices (if Iij occurs after IIj+1 apply
Lemma 4.12 to the subsegment of V that starts with Iij to get a contradiction—this is
where we need K′ to be larger by � than in Lemma 4.12). Let I′

ij
be the geodesic seg-

ment C(Yij ) ∩ U. Since U is a standard path, the endpoints of I′
ij

are within distance ≺ �
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FIG. 7. — Lemma 4.15. J is the dashed line

from πYij
(x),πYij

(z), respectively. Also, by Lemma 4.12, the endpoints of Iij are within
distance ≺ K′ from πYij

(x),πYij
(z), respectively. Therefore, Iij and I′

ij
are contained in a

uniform neighborhood of each other by the uniform quasi-convexity of C(Y). It suffices
to argue that each complementary interval in V and the corresponding (with respect to
the order) complementary interval in U are contained in a uniform neighborhood of each
other.

Let J be one such complementary interval, say between Iij and Iij+1 . The corre-
sponding interval J′ in U is between I′

ij
and I′

ij+1
. We already know the endpoints of J and

J′ are uniformly close. Note that Yi ∈ Y�(Yij ,Yij+1) for ij < i < ij+1, so applying Proposi-
tion 4.11 again to J we find that each endpoint rm of each segment of J′ in the standard
path within some C(Yi) is within uniform distance of some point Rm on J. (The bound is
perhaps worse than 3L + 3K since the endpoints of J and J′ do not exactly coincide, but
they are uniformly close, which is enough.) Index the points rm in order in which they oc-
cur along the standard path, and note that we do not know that the corresponding points
Rm appear in linear order along J. However, since d(rm, rm+1) is uniformly bounded (by
L + K′), it follows that d(Rm,Rm+1) is uniformly bounded. Moreover, the first point R1

and the last point Rn are within a uniform distance of the corresponding endpoints of J.
It follows that the Rm’s cut J into segments of bounded length and also rm’s cut J′ into
segments of bounded length, therefore J and J′ are contained in a uniform neighborhood
of each other, and the lemma follows. See Figure 7.

The extremal cases, when J contains an endpoint of V, differs only in notation and
is left to the reader. �

Remark 4.16. — A similar argument shows that C(Y) is quasi-convex.
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Recall that a geodesic metric space is δ-hyperbolic if for any three points x, y, z any
geodesic [x, z] is contained in the δ-neighborhood of the union [x, y] ∪ [y, z] of any two
geodesics joining x to y and y to z. A space is hyperbolic if it is δ-hyperbolic for some δ.

Theorem 4.17. — Assume that each C(Y) is δ-hyperbolic with the same δ. Then C(Y) is

hyperbolic.

Proof. — Let x, y, z be three vertices of C(Y). Recall that δ-hyperbolic spaces are
quasi-convex, with the constant depending only on δ. Thus Lemma 4.15 applies and it
suffices to show that a standard path U from x to z is contained in a uniform neighbor-
hood of the union of two geodesics [x, y] and [y, z].

Let W ∈ YK(x, z). We claim that [πW(x),πW(z)] is contained in a uniform neigh-
borhood of [x, y] ∪ [y, z]. First consider the case when dW(x, y) > �, dW(y, z) > �.
Then a geodesic [πW(x),πW(y)] ⊂ C(W) is contained in a uniform neighborhood of
[x, y] by Proposition 4.11 and Lemma 4.12 (see the first paragraph of the proof of
Lemma 4.15). Likewise, a geodesic [πW(y),πW(z)] is contained in a uniform neigh-
borhood of [y, z]. Since C(W) is δ-hyperbolic, [πW(x),πW(z)] is contained in the δ-
neighborhood of [πW(x),πW(y)] ∪ [πW(y),πW(z)] and consequently in a uniform neigh-
borhood of [x, y] ∪ [y, z].

Now suppose that dW(x, y) ≤ �. Since W ∈ YK(x, z), it follows dW(y, z) > �.
Again by Proposition 4.11 and Lemma 4.12 we have that [πW(y),πW(z)] is in a uni-
form neighborhood of [y, z]. By quasi-convexity, it follows from dC(Y)(πW(x),πW(y)) ≤ �

that [πW(x),πW(z)] is contained in a uniform neighborhood of [πW(y),πW(z)] and hence
of [y, z]. The case when dW(y, z) ≤ � is handled symmetrically.

By the definition of a standard path and the uniform quasi-convexity of C(Y),
a standard path U from x to z is contained in a uniform neighborhood of the union of
[πW(x),πW(z)] for all W with W ∈ YK(x, z) (see the proof of Lemma 4.15). Therefore it
follows that U is contained in a uniform neighborhood of [x, y] ∪ [y, z]. �

4.4. Group action and WWPD

Now assume that G is a group that acts on the set Y, that for each Y ∈ Y we have a
geodesic metric space C(Y) and projections πY satisfying the axioms (P0), (P1), (P2), and
that G preserves this structure, i.e. there are isometries FY

g : C(Y) → C(g(Y)) so that

• Fg(Y)

g′ FY
g = FY

g′g for all g, g′ ∈ G, Y ∈ Y, and
• πY(X) = πg(Y)(g(X)) for all g ∈ G and X,Y ∈ Y.

Then projection distances are preserved, i.e. dπ
g(A)(g(B), g(C)) = dπ

A (B,C) for all
A,B,C ∈ Y and g ∈ G, and therefore G acts naturally on C(Y). To simplify notation,
we will denote the isometry FY

g simply by g : C(Y) → C(g(Y)).
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We defined WPD for group actions in Section 3.7. Here we define a weaker prop-
erty, WWPD, to allow for elements with large centralizers. We restrict ourselves to actions
on hyperbolic spaces. For a motivation, see Remark 2.2.

Let G act on a δ-hyperbolic metric space X. A hyperbolic element g ∈ G has a
quasi-axis, which is a g-invariant quasi-geodesic. As before the elementary closure of g (in G),
EC(g), is the subgroup in G of elements h such that h(γ ) is parallel to γ . (We can define
the elementary closure of g in a subgroup of G.) Equivalently, it is the stabilizer of the set
of γ (±∞), the points at infinity of γ . The elementary closure does not depend on the
choice of γ .

Definition 4.18. — Let G act on a δ-hyperbolic metric space X. We say g ∈ G is a WWPD

element if

(1) g acts as a hyperbolic isometry on X,

(2) there is x ∈ X, a subgroup N ⊂ G with g ∈ N and a constant B > 0 such that

• for h ∈ G − N the projection of h(〈g〉x) to 〈g〉x has diameter ≤ B,

• N is contained in EC(g), and there is a homomorphism N → Q to a virtually

cyclic group Q whose kernel fixes every gk(x), k ∈ Z.

Moreover, if each element of N fixes the points γ (±∞) pointwise, then we say g is a WWPD+ element.

Remark 4.19. — This definition is not independent of the choice of x. The set of
translates of the g-orbit of x is again “discrete” as in the definition of WPD, but this time
we allow a big group that fixes the whole orbit pointwise. Note that the image of 〈g〉 in Q
has finite index.

Proposition 4.20. — Suppose each C(Y) is δ-hyperbolic so that C(Y) is hyperbolic. Let g ∈ G
so that g(Y) = Y and denote by KC(Y) the kernel of the action of StabG(Y) on C(Y). Assume that

g : C(Y) → C(Y) is a hyperbolic WPD element for the action of StabG(Y)/KC(Y) on C(Y). Then g

is a WWPD element for the action of G on C(Y). If moreover StabG(Y) is virtually cyclic then g is a

WPD element for the action of G on C(Y).

Proof. — We take N to be EC(g). Then KC(Y) < N < StabG(Y). The first inclusion is
clear and the second one follows from Corollary 4.10 since a quasi-axis of g is contained
in C(Y).

Define Q := N/KC(Y) with the obvious quotient map N → Q, and we choose x ∈
C(Y). Note that N is also the elementary closure of g in StabG(Y) and since g is WPD
in StabG(Y)/KC(Y), Q is virtually cyclic. If h ∈ G − N then either h /∈ StabG(Y) and it
moves the orbit 〈g〉x to another C(Y′) and the projection to C(Y) is uniformly bounded
by Corollary 4.10, or h ∈ StabG(Y) and the projection to 〈g〉x is bounded by the WPD
assumption by Theorem H (as we said after Theorem H, WPD implies that since h /∈ N
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the projection of h(〈g〉x) to 〈g〉x satisfies (P0), namely, it is uniformly bounded). Therefore
g is WWPD.

For the moreover part, note that under the assumption on StabG(Y), 〈g〉 has finite
index in this group. On the other hand the set of elements in G in the definition of WPD
(elements that almost fix two points at a large distance on a quasi-axis of g) is contained
in StabG(Y) by Corollary 4.10, therefore the concerned set is finite, hence g is WPD. �

Example 4.21 (WPD and WWPD). — Let G be a discrete group of isometries of
Hn and Y the collection of translates of the axes of a hyperbolic element γ of G, as
in Example 2.1(1). Then γ is a WPD element of C(Y), where C(Y) ∼= R is the axis Y.
Similar conclusions hold in the other examples.

We will see examples of WWPD elements in Section 5.3. Elements g ∈ MCG that
are pseudo-Anosov when restricted to a subsurface Y (or Dehn twists when Y is an an-
nulus) will be WWPD elements, but not WPD in general, for the action of the mapping
class group on C(Yi), where Y ∈ Yi. To be precise we may only have the action on the
color preserving subgroup in Lemma 5.7, and assume g is contained in the subgroup
otherwise take a finite power to satisfy this. To verify that g is WWPD is immediate from
Proposition 4.20 since g is WPD for the action of MCG(Y) on the curve complex of Y. In
fact, g is WWPD+ (see [BBFc]).

4.5. Asymptotic dimension

In this section we will show that if the collection of spaces C(Y) has asymptotic
dimension ≤ n uniformly, then asdimC(Y) ≤ n + 1.

Asymptotic dimension is invariant under quasi-isometries (or even a coarse invariant).
In particular, asymptotic dimension of a finitely generated group is well-defined. A gen-
eral reference for asymptotic dimension is [BD08]; in connection to the coarse setting
see [Roe03]; for the original definition and an interesting discussion see Gromov’s article
[Gro93].

We now review some basic facts. We will need the following theorem.

Bell-Dranishnikov’s Hurewicz theorem [BD06]. — Let f : X → Y be a Lipschitz map with

X a geodesic space. Suppose that there exists n such that for every R the family {Fy = f −1(B(y,R)) |
y ∈ Y} has asdim(Fy) ≤ n uniformly. Then asdim(X ) ≤ asdim(Y) + n.

This should be thought of as a generalization of the Product Formula,

asdim(X ×Y) ≤ asdim(X ) + asdim(Y).

For example, if 1 → A → B → C → 1 is a short exact sequence of finitely generated
groups then asdim(B) ≤ asdim(A) + asdim(C). Likewise, asymptotic dimension of the
hyperbolic plane is ≤ 2 by considering the projection to a line whose fibers are horocycles
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tangent to a fixed point at infinity (e.g. the projection to the y-coordinate in the upper half-
space model). More generally one can apply this argument to a semi-simple Lie group
and its associated symmetric space (see [BD08] for precise statements).

We will also use the following theorem.

Union theorem. — Let n ≥ 0 be an integer, X = ⋃
Xα and assume that asdim(Xα) ≤ n

uniformly. Also assume that for every R > 0 there is a subset YR ⊂ X such that asdim(YR) ≤ n and

the sets Xα \ YR and Xβ \ YR are R-separated for α �= β (i.e. d(x, y) > R for any x ∈ Xα \ YR

and y ∈ Xβ \ YR). Then asdim(X ) ≤ n. Furthermore the uniformity constants for asdim(X ) only

depend on the uniformity constants for Xα and YR.

Remark 4.22. — The uniformity statement is not in [BD08] but is easily seen from
the proof.

We noted above that asymptotic dimension is not only a quasi-isometric invariant
but is also a coarse invariant, in particular asdim(X ) ≤ asdim(Y) if there exists a coarse
embedding f :X → Y [Roe03].

Using this fact will simplify our proof that the asymptotic dimension of the map-
ping class group is finite.

4.6. C(Y) has finite asymptotic dimension

We would like to show that C(Y) has finite asymptotic dimension under the as-
sumption that the asymptotic dimensions of the spaces C(Y) are uniformly bounded. To
do so we will apply the Bell-Dranishnikov Hurewicz Theorem to the map from C(Y) to
PK(Y). The theorem is most natural to apply when the pre-images of balls are Hausdorff
neighborhoods of pre-images of points. This is not the case in our situation and we need
the following technical lemma to deal with this issue.

Lemma 4.23. — Fix a vertex Y in PK(Y). Given R > 0 and distinct vertices X and Z with

d(X,Y) = d(Z,Y) = m and x ∈ C(X), z ∈ C(Z) with dC(Y)(x, z) < R, then there exist a vertex

X1 with d(X1,Y) = m − 1 and dC(Y)(x,X1) < R + 2mL + θ .

Proof. — By Lemma 4.2 we have dπ
Y (x, z) ≤ R. Since d(X,Y) = d(Z,Y) = m there

is a path X = X0,X1, . . . ,XN = Z in PK(Y) of length N ≤ 2m with d(X1,Y) = m −1. By
Lemma 4.2, for adjacent vertices in PK(Y) we have dπ

X(Xi,Xi+1) < dC(Y)(Xi,Xi+1) = L
so the triangle inequality implies that dπ

X(X1,Z) < (2m − 1)L and

dπ
X(x,X1) < dπ

X(x,Z) + dπ
X(Z,X1) ≤ dπ

X(x, z) + θ + dπ
X(Z,X1)

< R + (2m − 1)L + θ.

By the definition of dπ
X(x,X1) the distance in C(X) from x to any point πX(X1) is not

more than dπ
X(x,X1). Furthermore there is an edge in C(Y) from any point in πX(X1)
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to C(X1) of length L and therefore the distance from x to C(X1) in C(Y) is less than
R + 2mL + θ . The lemma is proved. �

Theorem 4.24. — If the metric spaces C(Y) for Y ∈ Y have asymptotic dimension uniformly

bounded by n then C(Y) has asymptotic dimension ≤ n + 1.

Proof. — Consider the projection map p : C(Y) →PK(Y). The target is a quasi-tree
so its asymptotic dimension is ≤ 1. We will verify the conditions of Bell-Dranishnikov’s
Hurewicz Theorem for p. Let Bm denote the ball of radius m in PK(Y) (centered at some
vertex). We will prove by induction on m that asdim(p−1(Bm)) ≤ n. Uniformity is not an
issue since all of our choices of constants will be independent of the vertex in PK(Y).
When m = 0 this is true by definition of n.

Now suppose asdim(p−1(Bm)) ≤ n and we will argue asdim(p−1(Bm+1)) ≤ n. To that
end, we write

p−1(Bm+1) =
⋃

Y∈Bm+1

p−1(Y)

and check that the hypotheses of the Union Theorem hold. Each p−1(Y) has asdim ≤ n

by definition of n.
Let R be given and set

YR = NR̃

(
p−1(Bm)

)

the Hausdorff R̃-neighborhood of p−1(Bm), where

R̃ = R + (2m + 2)L + θ.

By induction, p−1(Bm), and hence YR, have asdim ≤ n. If X and Z are distinct vertices at
distance m + 1 from the center of Bm+1 then by Lemma 4.23, p−1(X) −YR and p−1(Z) −
YR are R-separated. It now follows from Bell-Dranishnikov’s Hurewicz Theorem that

asdim
(
C(Y)

) ≤ n + 1. �

Question 4.25. — Is asdim(C(Y)) ≤ n?

5. Mapping class group

We now apply our tools to the study of the mapping class group. In this final section
we will prove Theorems C, D, E, F and G mentioned in the introduction.
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5.1. Curve complexes

We will apply our previous work to a collection of curve graphs of a subsurface of
a fixed surface 
, as in the work of Masur and Minsky [MM99, MM00]. We begin by
recalling the definition of the curve graph and projections. We follow an approach that is
not standard but is convenient.

Let 
 be a compact orientable surface with boundary such that χ(
) < 0, pos-
sibly with finitely many punctures (to be precise we mean compact after we fill in the
punctures). Let C0(
) be the set of homotopy classes of simple closed curves and prop-
erly embedded simple arcs that are not peripheral or boundary compressible. We then
define the curve graph, C(
), to be the 1-complex obtained by attaching an edge to disjoint
closed curves or arcs in C0(
). We could also attach higher dimensional simplices but the
resulting complex is quasi-isometric to its 1-skeleton so we stop at the curve graph.

Remark 5.1. — The graph we have constructed is often called the curve and arc

graph, [MM00]. The usual curve graph is quasi-isometric to the curve and arc graph
and so we will use the less cumbersome name of curve graph. We also note that in the
usual definition of the curve graph there are exceptional cases, the punctured torus and
the sphere with 3 or 4 punctures, where the graph needs to be defined differently. One
advantage of the curve-arc graph is that one definition works for all cases.

We also note that if 
 is a 3-punctured sphere then C(
) is bounded and we could
ignore such subsurfaces. However there is also no harm in including them.

We now define projections between curve graphs of essential (i.e. connected,
boundary components essential and nonperipheral) subsurfaces of 
. If Y and Z are
essential subsurfaces, we can only define the projection of C(Z) to C(Y) if ∂Z intersects Y
essentially. We then define the subsurface projection πY(Z) ⊂ C(Y) by taking the intersection
of ∂Z with Y and identifying homotopic curves and arcs. If z is vertex in C(Z) then we
define πY(z) = πY(Z).

We will also need the curve graph for a simple closed curve. The definition here
has a somewhat different flavor although once we make the definition we can use it just
as we do for the other curve complexes. The simplest way to define the curve graph is to
fix a complete hyperbolic metric on the interior of 
. If γ is an essential non-peripheral
simple closed curve let Xγ be the annular cover of 
 to which γ lifts. Let C0(γ ) be the
set of complete geodesics in Xγ that cross the core curve and we form C(γ ) by attaching
an edge to vertices that represent disjoint geodesics. It is easy to check that the distance
in C(γ ) is the intersection number plus one and that C(γ ) is quasi-isometric to Z.

We now define projections to and from C(γ ). If Y is an essential subsurface such
that ∂Y intersects γ let πγ (Y) be those components of the pre-image of the geodesic
representatives of ∂Y in Xγ that intersect the core curve. If β is a simple closed curve
that intersects γ we similarly define πγ (β) where we replace the ∂Y with β . Finally if γ

intersects Y essentially then define πY(γ ) by restricting γ to Y.
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With these definitions in hand we will not distinguish between essential subsurfaces
and simple closed curves.

Since by definition πX(Y) is a collection of disjoint curves and arcs we have
diamπX(Y) ≤ 1, which verifies Axiom (P0).

The following lemma (without the explicit bound) was proved by Behrstock
[Beh06] using the Masur-Minsky theory of hierarchies [MM00]. For a simple proof due
to Leininger that produces the explicit bound below see [Mang10, Mang13].

We say that subsurfaces X and Y overlap if ∂X ∩ ∂Y �= ∅ (this means that ∂X and
∂Y cannot be made disjoint by a homotopy). Note that in that case πX(Y) and πY(X) are
defined.

Lemma 5.2 (Axiom P1). — Let X, Y and Z be overlapping subsurfaces. If

dπ
X(Y,Z) > 10

then

dπ
Y (X,Z) < 10.

We also have a finiteness statement for the number of large projections between
two overlapping subsurfaces. The statement we require was proved in [MM00] using
their hierarchy technology. For completeness we give a more direct proof here. While not
necessary for our applications we note that the proof below, unlike in [MM00], gives an
explicit constant that is independent of the complexity of the surface.

Lemma 5.3 (Axiom P2). — Given subsurfaces X and Y there are only finitely many subsurfaces

Z with dπ
Z (X,Y) > 3.

Proof. — More generally, we will prove that if x, y are two arcs or curves then
there are only finitely many subsurfaces Z with dπ

Z (x, y) > 3. The proof is in the spirit
of Leininger’s proof of (P1).

First assume that x, y fill the surface. Suppose Z is a subsurface such that ∂Z, x, y

are all in minimal position and without triple intersections. Further assume that some arc
component of x ∪ y − (x ∩ y) intersects ∂Z in at least 3 points. Then, as in Leininger’s
argument, a component of x ∩ Z is disjoint from a component of y ∩ Z, so dπ

Z (x, y) ≤ 3. In
particular, the condition dπ

Z (x, y) > 3 forces the intersection numbers i(x, ∂Z) and i(y, ∂Z)

to be bounded by twice the number of components of x ∪ y − (x ∩ y), and there are only
finitely many such subsurfaces Z.

For the general case, consider the smallest subsurface 
′ that contains x ∪ y. Note
that if Z is a subsurface and Z �⊂ 
′, then there is a curve w in Z disjoint from x ∩ Z and
from y ∩ Z, and this implies dπ

Z (x, y) ≤ 2. If Z ⊂ 
′ the proof concludes as in the filling
case. �
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Let Y be a collection of subsurfaces in 
 that pairwise overlap. Since {C(Y)}Y∈Y

satisfies (P0)–(P2), we obtain C(Y) by Theorem A.
In view of Theorem 4.24, we recall the following theorem [BelF08].

Theorem 5.4. — Every curve graph has finite asymptotic dimension.

It now yields:

Theorem 5.5. — Let Y be a collection of subsurfaces that pairwise overlap. Then C(Y) has

finite asymptotic dimension.

This is because Y contains only finitely many subsurfaces up to homeomorphism, there-
fore there is a uniform upper bound on their asymptotic dimension.

We now say a word about the proof of Theorem 5.4 as this is the only place were
the dimension bound is not computable. Gromov proved that δ-hyperbolic groups have
finite asymptotic dimension. Here is a proof. Assume that R � δ is an integer. For every
vertex v in the Cayley graph of the group at distance 5kR from 1, k = 1,2,3, . . ., consider
the set

Uv = {
x ∈ G | d(1, x) ∈ [

5(k + 1)R,5(k + 2)R
]

and v lies on some geodesic [1, x]}.
An easy thin triangle argument shows that if v,w are two vertices at distance 5kR from 1
such that both Uv and Uw intersect the same R-ball, then d(v,w) ≤ 2δ. This gives a
bound on the number of Uv ’s that can intersect the same R-ball, and this bound is inde-
pendent of R; thus asdim(G) < ∞. We can also apply this argument to a tree T to show
that asdim(T) ≤ 1.

Bell-Fujiwara [BelF08] modified this argument to show that curve complexes have
finite asymptotic dimension. They are hyperbolic by the celebrated work of Masur-
Minsky [MM99], but not locally finite, resulting in an infinite bound. The trick is to
use tight geodesics in place of arbitrary geodesics. Finiteness properties of tight geodesics
proved by Bowditch [Bow08] imply that asymptotic dimension is finite. Note that
Bowditch’s finiteness statement is proved via a geometric limit argument with hyper-
bolic 3-manifolds and does not give a computable bound. It would be interesting to give
a new proof of Bowditch’s result that gives a computable bound. One could then obtain
a computable bound for the asymptotic dimension of the mapping class group.

5.2. Partitioning subsurfaces into finitely many collections

We would like to apply our construction of the projection complex to subsurfaces
and their associated curve complexes. To do so we need to partition the set of all sub-
surfaces into finitely many collections where any two subsurfaces in the same collection
overlap.
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Lemma 5.6. — There is a coloring φ : C(
)(0) → F of the set of simple closed curves on 


with a finite set F of colors so that if a, b span an edge then φ(a) �= φ(b).

Proof. — Let T be the set of all connected double covers of 
. If a is a simple closed
curve in 
 define a function fa on the set T as follows. For a double cover 
̃ → 
 define
fa(
̃) as 0 if a does not lift to 
̃, and otherwise as the set {α,β} of homology classes in
H1(
̃;Z2) determined by the two lifts of a.

The set F of colors is the set of all such functions—it is clearly finite.
We now show that if a, b are disjoint nonparallel simple closed curves, then fa �= fb.
We will use the following construction of double covers. Let C be a nonseparating

collection of disjoint simple closed curves and properly embedded arcs in 
. Then C
determines a double cover 
̃ → 
 by cutting along C and gluing cross-wise two copies
of the resulting surface (equivalently, the associated index two subgroup is given by curves
that intersect C in an even number of points). In particular for any a we can find a cover

̃ → 
 where a lifts by applying the above construction to a non-separating curve or
properly embedded arc that is disjoint from a. If a represents a non-trivial homology class
and b represents a differently class then fa(
̃) �= fb(
̃). Therefore we can assume that a

and b are homologous.
For each component S of 
\(a ∪ b) whose boundary is contained in a ∪ b choose

a simple curve c such that S\c is connected and let C be the union of such curves. There
is at least one and at most three such components so C contains between one and three
curves. Note that the curve c exists since S will have one or two boundary components
and can’t be a disk or annulus. Therefore S must have positive genus and hence contain
a simple curve that doesn’t separate S. Let 
̃ be the double cover associated to C by the
construction above. If fa(
̃) = fb(
̃) then there will be lifts ã and b̃ of a and b that bound
a surface S̃ ⊂ 
̃ such that S̃ doesn’t contain either of the other lifts of a and b. Then the
restriction of the covering map to S̃ will be a homeomorphism and its image will contain
a component of C. This is a contradiction so we must have fa(
̃) �= fb(
̃). �

Lemma 5.7 (Color preserving subgroup). — There is a finite index subgroup G of the mapping

class group MCG(
) (where 
 is closed) such that every element of G preserves the colors from the proof

of Lemma 5.6.

We call this subgroup the color preserving subgroup.

Proof. — The group Aut(π1(
)) lifts to an action (up to homotopy) on the union
of connected double covers of 
. Let G be the subgroup of Aut(π1(
)) that fixes the Z2-
homology of this union. This will be a finite index subgroup of Aut(π1(
)) so its image
G in Out(π1
) ∼= MCG(
) will have finite index in MCG(
) and will fix the colors form
Lemma 5.6. �
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Proposition 5.8. — Let 
 be a compact surface with (possibly empty) boundary. Let Y be the

collection of connected incompressible subsurfaces of 
 that are not the sphere with 3 boundary components.

Then Y can be written as a finite disjoint union

Y1 � Y2 � · · · � Yk

so that

• the boundaries of any two surfaces in any Yi intersect, and

• there is a subgroup G < MCG(
) of finite index that preserves each Yi : if W ∈ Yi and

g ∈ G then g(W) ∈ Yi .

Proof. — The mapping class group acts on Y and there are finitely many orbits
under the action. Let G be the subgroup given by Lemma 5.7. Since G has finite index
in MCG(
), the action of G on Y also has finitely many orbits. These orbits are our Yi

and by definition are invariant under the G-action.
We now show that if W0 �= W1 are in Yi then they have intersecting boundary.

There is a g ∈ G such that W0 = g(W1). Since g preserves the colors if the W0 and W1

don’t have intersecting boundary then g must fix ∂W0 = ∂W1 and W0 must be the com-
plement of W1. By assumption the Wi are not spheres with three boundary components.
They are also not annuli for if they were then we would have W0 = W1. In particular W0

must contain a non-peripheral simple closed curve γ . Since g(γ ) will be disjoint from γ

it will have a different color. As G fixes the colors this is a contradiction. �

Here is a perhaps unexpected application of our construction. This is an expansion
of Theorem F in the introduction.

Theorem 5.9.

(i) Let f be a Dehn twist in the curve γ on 
. There is a finite index subgroup G ⊂ MCG(
)

and an action of G on a quasi-tree such that any power f k of f , k �= 0, that belongs to G
is a hyperbolic isometry.

(ii) If 
 has even genus g and γ separates into two subsurfaces of genus g/2 then we may take

G = MCG(
).

(iii) In these actions, there is a bound to the diameter of the projection of a fixed quasi-axis of f k

to any non-parallel translate.

By contrast, semisimple actions of mapping class groups on CAT (0) spaces always
have the property that Dehn twists are elliptic (see [Bri10]). From (i) it follows that a
Dehn twist has linear growth in the word length of G, therefore in MCG(
) (known by
[FLM01]).

Proof. — If G is the subgroup of Proposition 5.8 or if γ is as in (ii) and G = MCG(
)

then the G-orbit of γ consists of pairwise intersecting curves. Let Y be this orbit and
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consider the action of G on the quasi-tree of curve complexes C(Y). Since each curve
complex C(gγ ) is quasi-isometric to a line (and they are all isometric to each other), it
follows from Theorem 4.14 that C(Y) is a quasi-tree. Since a nontrivial power of f acts as
a hyperbolic isometry on C(γ ) the claim follows. The quasi-axis of f k is the curve complex
C(γ ) and the non-parallel translates are C(gγ ) where g doesn’t fix γ . Since the projection
of C(gγ ) to C(γ ) has diameter 1, the last statement is a consequence of Theorem A. �

Here is another related application to the Rips complex, Pd(G), of a graph G. Rips
has shown that if G is δ-hyperbolic then for d sufficiently large, Pd(G) is contractible
[Gro87]. It has been hoped that with the same assumptions, for d sufficiently large Pd(G)

is CAT (0). The quasi-tree given by (ii) gives a counter-example to this conjecture, at least
for infinite valence graphs.

Corollary 5.10. — There exist infinite diameter, infinite valence graphs that are quasi-isometric

to trees but whose Rips complex is never CAT (0).

Proof. — Let G be the quasi-tree given by (ii) of Theorem 5.9. Then MCG(
) acts
on G with the Dehn twist about the curve γ acting hyperbolically. Then MCG(
) will
act on Pd(G) for all d and the Dehn twist will still act hyperbolically. Moreover, since the
action on G is always semi-simple, [Man06], so is the action on Pd(G). Therefore, by
Bridson’s theorem [Bri10], Pd(G) is not CAT (0). �

5.3. Embedding MCG into a finite product of C(Y)’s

Fix a set of finite generators for MCG(
) and for all g ∈ MCG(
) let |g| be the
word length norm. We need the following proposition. Recall that a finite collection of
simple closed curves is binding if every nonperipheral curve intersects at least one curve
in α. If W is any subsurface and g ∈ MCG(
), the restrictions πW(α) and πW(g(α)) are
nonempty and we denote by dπ

W(α, g(α)) the diameter of their union in the curve complex
of W.

Proposition 5.11. — Let α be a finite binding collection of simple closed curves on 
. Given

any B > 0 there exists a C > 0 such that if |g| > C then there is a subsurface W such that

dπ
W(α, g(α)) > B.

Proof. — Fix a hyperbolic metric on 
. When we discuss the Hausdorff limit of a
sequence of curves we assume that they have been realized by hyperbolic geodesics in this
metric.

Assume that the lemma is false. Then there exists a sequence of gi such that
|gi| → ∞ but dπ

W(α, gi(α)) ≤ B for all subsurfaces W. We pass to a subsequence (which we
don’t relabel) such that gi(c) has a Hausdorff limit for each curve c in α (see e.g. [CB88]
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for basic facts about Hausdorff convergence in the lamination space). There are then
three possibilities:

• If the Hausdorff limits are all simple closed curves then the sequences gi(c) must
become constant. However there are only finitely many elements of MCG(
)

that have the same image on a set of binding curves. This contradicts |gi| → ∞.
• Fix a c in α and let λ be the Hausdorff limit of gi(c). Also assume that there

is a minimal component λY of λ that fills a non-annular subsurface Y. Let c′

be a curve in α that intersects Y. We will modify an argument of F. Luo (see
[MM99, Section 4.3]) to show that dπ

Y (gi(c), c′) → ∞. If dC(Y)(πY(c′),πY(gi(c)))

is bounded we can pass to a subsequence where the distance is constant. For
each i let xi ∈ C(Y) be adjacent to πY(gi(c)) but closer to πY(c′). We can pass to
another subsequence such that xi converges in the Hausdorff topology to a lam-
ination λ′. As the xi and πY(gi(c)) are disjoint λ′ and λY can’t intersect and since
λY fills Y this implies that λ′ = λY, perhaps with some isolated leaves added. We
can repeat this until we have a sequence in C(Y) disjoint from πY(c′) that con-
verges to the filling lamination λY (plus isolated leaves). This is a contradiction
so we must have dY(gi(c), c′) → ∞.

• The final case is when the Hausdorff limit λ isn’t a collection of simple curves
but doesn’t have a component that fills a non-annular subsurface. In this case
there must be a leaf of λ that spirals around a simple closed curve β . Let c′ be a
curve in α that intersects β . Again fix a hyperbolic metric on 
. We also fix an
annular neighborhood X of β . Then dπ

X(gi(c), c′) = iX(gi(c), c′). Since λ spirals
around β we have iX(gi(c), c′) → ∞ and therefore dπ

X(gi(c), c′) → ∞. �

Let G be the subgroup of MCG(
) from Proposition 5.8 and let

Y1, . . . ,Yk

be the orbits of subsurfaces under G. Note that by construction one of the collections
consists of the single surface 
. Let

� = C
(
Y1

) × C
(
Y2

) × · · · × C
(
Yk

)

be the product of quasi-trees of curve complexes. Then MCG(
) acts on �. For elements
in G the coordinates are fixed while other elements will permute them.

Define 
 : MCG(
) → � by choosing a base vertex as the image of 1 and ex-
tending the map equivariantly. Note that one of the factors in the target is just the curve
complex C(
). We put the l1-metric on the product space �. By construction 
 is Lips-
chitz.

Proposition 5.12. — 
 is a coarse embedding.
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Proof. — We will show that the restriction of 
 to G is a coarse embedding. This
will imply the proposition since G has finite index in MCG. Note that if 
 is a coarse
embedding or not does not depend on the choice of the base point.

Say the basepoint has C(Yi)-coordinate equal to a curve γi in a surface Wi , and in
the special factor C(
) the coordinate is a curve γ . We may choose the binding set α to
contain γ , the γi and the boundary components of the Wi ’s.

Note that for all subsurfaces W the diameter of πW(α) in C(W) is bounded by
a fixed constant D > 0. For example we could choose D to be one plus the number of
intersection points.

Fix some B > 0 and let C be the constant given by Proposition 5.11 with respect
to α and B + 2D. We’ll show that if |g| > C then d�(
(id),
(g)) > B which implies that

 is a coarse embedding.

By Proposition 5.11 there exists a subsurface W such that dπ
W(α, g(α)) > B + 2D.

The subsurface W is in one of the collections Yi . Since πW(γi) and πW(g(γi)) are con-
tained in πW(α) and πW(g(α)) and the latter have diameter bounded by D we have
dπ

W(γi, g(γi)) ≥ dπ
W(α, g(α)) − 2D. By Proposition 4.2 we then have

d�

(

(id),
(g)

) ≥ dC(Yi)

(
γi, g(γi)

)

≥ dπ
W

(
γi, g(γi)

)

≥ dπ
W

(
α, g(α)

) − 2D

≥ B

and the proposition is proved. �

It is also true that 
 is a quasi-isometric embedding. We will not need this stronger
result to prove Theorem D, but we include the proof since it may be of independent
interest.

Theorem C. — MCG(
) equivariantly quasi-isometrically embeds in a finite product of hyper-

bolic spaces.

Proof. — The proof uses the remarkable Masur-Minsky formula [MM00], which
asserts that for a sufficiently large M

|g| �
∑

W

{{
dW

(
α, g(α)

)}}
M

where g ∈ MCG(
), |g| is the word-norm of g with respect to any fixed finite generat-
ing set for MCG(
), � is coarse equivalence, i.e. each side is bounded by a linear func-
tion with an additive error of the other, {{x}}M = x if x > M and otherwise it is 0, the
sum is taken over all subsurfaces of 
, α is a fixed finite binding set of curves in 
,
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and dW(α, g(α)) is the distance in the curve complex of W between the projections
of a curve in α and a curve in g(α) (we must choose a curve that has a projection;
choosing a different such curve changes the distance by a bounded amount), and M
is a sufficiently large constant. By enlarging M or K′ from Theorem 4.13 we may as-
sume that M = K′. The two estimates combine to give that |g| ≤ Ad(
(1),
(g)) + B
for universal constants A,B. The reverse bound follows from the fact that 
 is Lips-
chitz. �

Theorem D. — Let 
 be a compact orientable surface with (possibly empty) boundary. Then

asdim(MCG(
)) < ∞.

Proof. — If χ(
) > 0 then MCG(
) is finite and asdim(MCG(
)) = 0. If the 


is a torus, MCG(
) is virtually free and hence asdim(MCG(
)) = 1. Assume χ(
) < 0.
By the Product Formula and Theorem 4.24 it follows that asdim(�) < ∞. Note that
the Product formula applies to the �1-product. Proposition 5.12 then implies that
asdim(MCG(
)) < ∞. �

Let 
 be a possibly punctured closed surface and T (
) its Teichmüller space
equipped with the Teichmüller metric.

Theorem 5.13. — asdim(MCG(
)) ≤ asdim(T (
)) < ∞.

Since MCG(
) acts on T (
) properly discontinuously, an orbit map MCG(
) →
T (
) is a coarse embedding. Thus we have asdim(MCG(
)) ≤ asdim(T (
)). The proof
of the second inequality will use the following facts. When γ is a curve in 
 and ε > 0
denote by Thinε(
,γ ) the subset of T (
) where γ has hyperbolic length < ε.

(A) Minsky’s product theorem [Min96a]. — If ε is small enough, the subspace Thinε(
,γ )

is quasi-isometric to the product T (
/γ ) × Z where Z is a horoball in hyperbolic plane

and 
/γ denotes the surface obtained from 
 by cutting open along γ and crushing the

boundary components to punctures (if γ is separating this Teichmüller space is the product of

Teichmüller spaces of the components).

(B) For every R > 0 there is ε0 > 0 such that whenever γ and γ ′ intersect then
Thinε0(
,γ ) and Thinε0(
,γ ′) are R-separated.

Statement (B) follows easily from Kerckhoff ’s Theorem [Ker80], or indeed
from (A).

Proof of Theorem 5.13. — The proof is by induction on the complexity of the sur-
face, which is the dimension of T (
). Induction starts with the case of 2-dimensional
Teichmüller space (hyperbolic plane) when asymptotic dimension is 2.

For the inductive step, note that (A) and the Product Formula for asymptotic di-
mension immediately imply that thin parts have finite asymptotic dimension. Write the
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collection of all curves on 
 as a finite disjoint union C1 � C2 � · · · � Ck so that curves in
the same collection intersect. It was shown that this is possible for closed 
 in Lemma 5.6,
but the punctured case follows quickly from the closed case (e.g. blow up the punctures
to boundary components and double).

Consider the subsets

Thick = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk = T (
)

where Xi is the subset of T (
) consisting of hyperbolic surfaces with the property that if γ
is a curve with length < ε then γ ∈ C1 ∪· · ·∪Ci, and Thick consists of hyperbolic surfaces
with no essential curves of length < ε. Let N be chosen so that asdim(MCG(
)) ≤ N and
so that asdim(Thinε(
,γ )) ≤ N for every curve γ . We will argue by induction on i that
asdim(Xi) ≤ N.

When i = 0 this follows from the fact that X0 (the thick part) is quasi-isometric to
MCG(
). Suppose asdim(Xi) ≤ N.

Now write

Xi+1 = Xi ∪
⋃

γ∈Ci+1

Yi
γ

where Yi
γ is the set of hyperbolic structures in Thinε(
,γ ) where every curve shorter

than ε is either equal to γ or belongs to C1 ∪ · · · ∪ Ci. We will check the conditions of
the Union Theorem.

Let R > 0 be given, let ε0 be as in (B) (we may assume that ε0 < ε). Define

YR = Xi ∪
⋃

γ∈Ci+1

Zi
γ

where Zi
γ is the set of hyperbolic structures where γ has length in the interval [ε0, ε)

and any curve of length < ε is either γ or belongs to C1 ∪ · · · ∪ Ci. By (B) the sets
Yi

γ \ YR are R-separated and each set is contained in Thinε(
,γ ) and the latter sets
have asdim ≤ N uniformly, since there are only finitely many isometry types of such
sets. Therefore we only need to argue that asdim(YR) ≤ N. But YR is contained in a
Hausdorff neighborhood of Xi , as follows easily from Minsky’s Product Theorem. That
asdim(Xi) ≤ N is the inductive hypothesis. �

A variation of the argument also shows that Teichmüller space equipped with
Weil-Petersson metric has finite asymptotic dimension. Denote this space by TWP(
).
Let P(
) be the pants complex for 
, where a vertex is represented by a pants de-
composition of 
 and an edge corresponds to a pair of pants decompositions that
differ in only one curve in each, and the two curves intersect minimally (one or two
points, depending on whether their removal produces a complementary component
which is a punctured torus or a 4-punctured sphere). There is a natural coarse map
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ϒ : P(
) → TWP(
) that sends a pants decomposition to the (bounded) set consist-
ing of hyperbolic metrics where the curves in the decomposition have length bounded
by a Bers constant. Brock [Bro03, Bro02] proved that ϒ is an equivariant quasi-
isometry.

Theorem 5.14. — asdim(TWP(
)) = asdim(P(
)) < ∞.

Proof. — Consider an orbit map MCG(
) → P(
) and define a (pseudo) met-
ric on MCG(
) by restricting the one from P(
) (some pairs of points may have dis-
tance 0). Since the action of MCG(
) on the pants complex has finitely many orbits of
simplices, MCG(
) with this metric, d , is quasi-isometric to the pants complex. There is
a Masur-Minsky estimate for the distance between 1 and g ∈ MCG(
) (see the discussion
in [MM00, Section 8]):

d(1, g) �
∑

W

{{
dW

(
α, g(α)

)}}
M

where W runs over subsurfaces which are not annuli. We have an action of MCG(
) on

� = C
(
Y1

) × C
(
Y2

) × · · · × C
(
Yk

)

as before, where we delete all annuli from the Yi ’s. The orbit map is a quasi-isometric
embedding (with respect to the new metric on MCG(
)) by exactly the same argument
as before. The theorem follows. �
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