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ABSTRACT

We study the Fourier-Mukai transform for holonomic D-modules on complex abelian varieties. Among other
things, we show that the cohomology support loci of a holonomic D-module are finite unions of linear subvarieties, which
go through points of finite order for objects of geometric origin; that the standard t-structure on the derived category
of holonomic complexes corresponds, under the Fourier-Mukai transform, to a certain perverse coherent t-structure in
the sense of Kashiwara and Arinkin-Bezrukavnikov; and that Fourier-Mukai transforms of simple holonomic D-modules
are intersection complexes in this t-structure. This supports the conjecture that Fourier-Mukai transforms of holonomic
D-modules are “hyperkähler perverse sheaves”.

A. Introduction

1. Agenda. — In this paper, we begin a systematic study of holonomic D-modules
on complex abelian varieties; recall that a D-module is said to be holonomic if its char-
acteristic variety is a Lagrangian subset of the cotangent bundle. Regular holonomic D-
modules, which correspond to perverse sheaves under the Riemann-Hilbert correspon-
dence, are familiar objects in complex algebraic geometry. Due to recent breakthroughs
by Kedlaya, Mochizuki, and Sabbah (summarized in [Sab13]), we now have an almost
equally good understanding of irregular holonomic D-modules, and many important re-
sults from the regular case (such as the decomposition theorem or the hard Lefschetz
theorem) have been extended to the irregular case. A careful study of an important spe-
cial case, namely that of complex abelian varieties, may therefore be of some interest.

The original motivation for this project comes from a sequence of papers by Green
and Lazarsfeld [GL87, GL91], Arapura [Ara92], and Simpson [Sim93]. In their work
on the generic vanishing theorem, these authors analyzed the loci

Sp,q
m (X) = {

L ∈ Pic0(X) | dim Hq
(
X,�

p

X ⊗ L
) ≥ m

} ⊆ Pic0(X),

for X a projective (or compact Kähler) complex manifold. Among other things, they
showed that each irreducible component of Sp,q

m (X) is a translate of a subtorus by a point
of finite order; and they obtained bounds on the codimension in the most interesting
cases (p = 0 and p = dim X). These bounds imply for example that when the Albanese
mapping of X is generically finite over its image, all higher cohomology groups of ωX ⊗L
vanish for a generic line bundle L ∈ Pic0(X).

Hacon pointed out that the codimension bounds can be interpreted as proper-
ties of certain coherent sheaves on abelian varieties, and then reproved them using the
Fourier-Mukai transform [Hac08]. His method applies particularly well to those coher-
ent sheaves that occur in the Hodge filtration of a mixed Hodge module; based on this
observation, Popa and I generalized all of the results connected with the generic van-
ishing theorem (in the projective case) to Hodge modules of geometric origin on abelian
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varieties [PS13]. As a by-product, we also obtained results about certain regular holo-
nomic D-modules on abelian varieties, namely those that can be realized as direct im-
ages of structure sheaves of smooth projective varieties with nontrivial first Betti number.
A pretty application of the D-module theory to the geometry of varieties of general type
can be found in [PS14].

As we shall see below, all of the results about D-modules in [PS13] remain true
for arbitrary holonomic D-modules on abelian varieties. In most cases, the proof in the
general case turns out to be simpler; we shall also discover that certain statements—such
as the codimension bounds—only reveal their true meaning in this broader context.

The principal results about holonomic D-modules are summarized in Section 2 to
Section 5; for the convenience of the reader, we also translate everything into the language
of perverse sheaves in Section 7. Our main technical tool will be the Fourier-Mukai trans-
form for algebraic D-modules, introduced by Laumon [Lau96] and Rothstein [Rot96],
and our results suggest a conjecture about the structure of Fourier-Mukai transforms of
(regular or irregular) holonomic D-modules. This conjecture, together with some evi-
dence for it, is described in Section 6.

2. The structure theorem. — Let A be a complex abelian variety, and let DA be the
sheaf of linear differential operators of finite order. The simplest examples of left DA-
modules are line bundles L with integrable connection ∇ : L → �1

A ⊗ L. Because A is an
abelian variety, the moduli space A� of such pairs (L,∇) is a quasi-projective algebraic
variety of dimension 2 dim A. The basic idea in the study of DA-modules is to exploit the
fact that A� is so big.

One approach is to consider, for a left DA-module M, the cohomology groups (in
the sense of D-modules) of the various twists M⊗OA (L,∇); we use this symbol to denote
the natural DA-module structure on the tensor product M ⊗OA L. That information is
contained in the cohomology support loci of M, which are the sets

(2.1) Sk
m(A,M) = {

(L,∇) ∈ A�
∣∣ dim Hk

(
A,DRA

(
M⊗OA (L,∇)

)) ≥ m
}
.

The definition works more generally for complexes of D-modules; we are especially in-
terested in the case of a holonomic complex M ∈ Db

h(DA), that is to say, a cohomologically
bounded complex of DA-modules with holonomic cohomology sheaves. Our first result
is the following structure theorem.

Theorem 2.2. — Let M ∈ Db
h(DA) be a holonomic complex.

(a) Each Sk
m(A,M) is a finite union of linear subvarieties of A�.

(b) If M is a semisimple regular holonomic DA-module of geometric origin, in the sense of

[BBD82, 6.2.4], then these linear subvarieties are arithmetic.

Here we are using the new term (arithmetic) linear subvarieties for what Simpson called
(torsion) translates of triple tori in [Sim93, p. 365]; the definition is as follows.
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Definition 2.3. — A linear subvariety of A� is any subset of the form

(2.4) (L,∇) ⊗ im
(
f � : B� → A�

)
,

for a surjective morphism of abelian varieties f : A → B with connected fibers, and a line bundle with

integrable connection (L,∇) ∈ A�. We say that a linear subvariety is arithmetic if (L,∇) can be

taken to be a torsion point.1

To prove Theorem 2.2, we use the Riemann-Hilbert correspondence. If M is
a holonomic DA-module, then according to a fundamental theorem by Kashiwara
[HTT08, Theorem 4.6.6], its de Rham complex

DRA(M) = [
M→ �1

A ⊗M→ ·· · → �dim A
A ⊗M

][dim A],
placed in degrees −dim A, . . . ,0, is a perverse sheaf on A. More generally, DRA(M)

is a constructible complex for any M ∈ Db
h(DA) [HTT08, Theorem 4.6.3], and the

Riemann-Hilbert correspondence [HTT08, Theorem 7.2.1] asserts that the functor

DRA : Db
rh(DA) → Db

c(CA)

from regular holonomic complexes to constructible complexes is an equivalence of cate-
gories.

Now let Char(A) be the space of characters of the fundamental group of A; any
character ρ : π1(A,0) → C∗ determines a local system Cρ of rank one on A. We define
the cohomology support loci of a constructible complex K ∈ Db

c(CA) as

Sk
m(A,K) = {

ρ ∈ Char(A)
∣∣ dim Hk(A,K ⊗C Cρ) ≥ m

}
.

The well-known correspondence between vector bundles with integrable connection and
representations of the fundamental group gives a biholomorphic mapping

(2.5) � : A� → Char(A), (L,∇) 	→ Hol(L,∇),

and it is very easy to show—see Theorem 14.1 below—that the cohomology support loci
for M and DRA(M) are related by the formula

(2.6) �
(
A,Sk

m(A,M)
) = Sk

m

(
A,DRA(M)

)
.

The proof of Theorem 2.2 is based on the fact that Char(A) and A�, while isomor-
phic as complex manifolds, are not isomorphic as complex algebraic varieties. According

1 We use the word linear because the linear subvarieties of A� are precisely those whose preimage in the universal
cover are linear subspaces. The reason for the term arithmetic is as follows. Let Char(A) be the space of characters of
the fundamental group of A; it is also a complex algebraic variety, biholomorphic to A�, but with a different algebraic
structure. When A is defined over a number field, the torsion points are precisely those points on the algebraic varieties A�

and Char(A) that are simultaneously defined over a number field in both [Sim93, Proposition 3.4].



4 CHRISTIAN SCHNELL

to a nontrivial theorem by Simpson, a closed algebraic subset Z ⊆ A� is a finite union of
linear subvarieties if and only if its image �(Z) ⊆ Char(A) remains algebraic [Sim93,
Theorem 3.1]. We show (in Theorem 13.6 and Proposition 15.2) that cohomology sup-
port loci are algebraic subsets of A� and Char(A); this is enough to prove the first half
of Theorem 2.2. To prove the second half, we show (in Section 16) that the cohomology
support loci of an object of geometric origin are stable under the action of Aut(C/Q);
we can then apply another result by Simpson, namely that every “absolute closed” sub-
set of A� is a finite union of arithmetic linear subvarieties. Another proof is explained in
[Sch13].

3. The Fourier-Mukai transform. — A second way to present the information about
the cohomology of twists of M is through the Fourier-Mukai transform for algebraic DA-
modules, introduced and studied by Laumon [Lau96] and Rothstein [Rot96]. It is an
exact functor

(3.1) FMA : Db
coh(DA) → Db

coh(OA�),

defined as the integral transform with kernel (P�,∇�), the tautological line bundle with
relative integrable connection on A×A�. As shown by Laumon and Rothstein, FMA is an
equivalence between the bounded derived category of coherent algebraic DA-modules,
and that of coherent algebraic sheaves on A�. In essence, this means that an algebraic
D-module on an abelian variety can be recovered from the cohomology of its twists by
line bundles with integrable connection.

The support of the complex of coherent sheaves FMA(M) is related to the coho-
mology support loci of M: by the base change theorem, one has

Supp FMA(M) =
⋃

k∈Z

Sk
1(A,M).

In particular, the support is a finite union of linear subvarieties. But the Fourier-Mukai
transform of a holonomic complex actually satisfies a much stronger version of Theo-
rem 2.2. We shall say that a subset of A� is definable in terms of FMA(M) if can be obtained
by applying various sheaf-theoretic operations—such as RHom(−,OA�), truncation, or
restriction to a linear subvariety—to FMA(M), and then taking the support of the result-
ing complex of coherent sheaves.

Theorem 3.2. — Let M ∈ Db
h(DA) be a holonomic complex on an abelian variety. If a subset

of A� is definable in terms of FMA(M), then it is a finite union of linear subvarieties. These linear

subvarieties are arithmetic whenever M is a semisimple regular holonomic DA-module of geometric

origin.

The proof of Theorem 3.2 is based on an analogue of the Fourier-Mukai trans-
form for constructible complexes K ∈ Db

c(CA) (explained in Section 13). The main point
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is that the group ring R = C[π1(A,0)] is a representation of the fundamental group, and
therefore determines a local system of R-modules LR on the abelian variety. Because K
is constructible and p : A → pt is proper, the direct image Rp∗(K ⊗C LR) therefore be-
longs to Db

coh(R) and gives rise to a complex of coherent algebraic sheaves on the affine
algebraic variety Char(A) = Spec R. When K = DRA(M), we show that the resulting
complex of coherent analytic sheaves, pulled back along � : A� → Char(A), is canoni-
cally isomorphic to FMA(M). Both assertions in Theorem 3.2 then follow as before from
Simpson’s theorems.

4. Codimension bounds and perverse coherent sheaves. — Inequalities for the codimension
of cohomology support loci first appeared in the work of Green and Lazarsfeld on the
generic vanishing theorem [GL87]. For example, when X is a projective complex man-
ifold whose Albanese mapping is generically finite over its image, Green and Lazarsfeld
proved that

codimPic0(X)

{
L ∈ Pic0(X)

∣∣ Hk(X,ωX ⊗ L) 
= 0
} ≥ k

for every k ≥ 0. More recently, Popa [Pop12] noticed that such codimension bounds
can be expressed in terms of a certain nonstandard t-structure on the derived category,
introduced by Kashiwara [Kas04] and Arinkin and Bezrukavnikov [AB10] in their work
on “perverse coherent sheaves”.

In the context of D-modules on abelian varieties, the relationship between codi-
mension bounds and t-structures is even closer. The first result is that the position of a
holonomic complex with respect to the standard t-structure on the category Db

h(DA) is
detected by the codimension of its cohomology support loci.

Theorem 4.1. — Let M ∈ Db
h(DA) be a holonomic complex. Then one has

M ∈ D≤0
h (DA) ⇐⇒ codim Sk

1(A,M) ≥ 2k for every k ∈ Z,

M ∈ D≥0
h (DA) ⇐⇒ codim Sk

1(A,M) ≥ −2k for every k ∈ Z.

In particular, M is a single holonomic DA-module if and only if its cohomology support loci satisfy

codim Sk
1(A,M) ≥ |2k| for every k ∈ Z.

The natural setting for this result is the theory of perverse coherent sheaves, developed
by Kashiwara and by Arinkin and Bezrukavnikov. As a matter of fact, there is a perverse
t-structure on Db

coh(OA�) with the property that

mD≤0
coh (OA�) = {

F ∈ Db
coh(OA�) | codim SuppHkF ≥ 2k for every k ∈ Z

};
it corresponds to the supporting function m = � 1

2 codim� on the topological space of the
scheme A�, in Kashiwara’s terminology. Its heart mCoh(OA�) is the abelian category of
m-perverse coherent sheaves (see Section 17).
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Now Theorem 4.1 is a consequence of the following better result, which says that
the Fourier-Mukai transform interchanges the standard t-structure on Db

h(DA) and the
m-perverse t-structure on Db

coh(OA�).2

Theorem 4.2. — Let M ∈ Db
h(DA) be a holonomic complex on A. Then one has

M ∈ D≤k
h (DA) ⇐⇒ FMA(M) ∈ mD≤k

coh(OA�),

M ∈ D≥k
h (DA) ⇐⇒ FMA(M) ∈ mD≥k

coh(OA�).

In particular, M is a single holonomic DA-module if and only if its Fourier-Mukai transform

FMA(M) is an m-perverse coherent sheaf on A�.

The proofs of both theorems can be found in Section 18. The first part of the
argument is to show that when M is a holonomic DA-module, the cohomology sheaves
Hi FMA(M) are torsion sheaves for i > 0. Here the crucial point is that the characteristic
variety Ch(M) inside T∗A = A × H0(A,�1

A) has the same dimension as A itself; this
makes the second projection

Ch(M) → H0
(
A,�1

A

)

finite over a general point of H0(A,�1
A). To deduce results about FMA(M), we use an

extension of the Fourier-Mukai transform to RA-modules, where RA = RFDA is the Rees
algebra. Choose a good filtration F•M, and consider the coherent sheaf grFM on T∗A
determined by the graded SymTA-module grF

•M; its support is precisely Ch(M). The
extended Fourier-Mukai transform of the Rees module RFM then interpolates between
FMA(M) and the complex

R(p23)∗
(
p∗

12P ⊗ p∗
13(id×ι)∗ grFM

)
,

and because the higher cohomology sheaves of the latter are torsion, we obtain the result
for FMA(M). This “generic vanishing theorem” implies also that the cohomology sup-
port loci Sk

1(A,M) are proper subvarieties for k 
= 0; in the regular case, this result is due
to Krämer and Weissauer [KW11, Theorem 1.1].

Once the generic vanishing theorem has been established, Theorem 3.2 implies
that Hi FMA(M) is supported in a finite union of linear subvarieties of lower dimension;
because of the functoriality of the Fourier-Mukai transform, Theorem 4.2 can then be
deduced very easily by induction on the dimension.

From there, the basic properties of the m-perverse t-structure quickly lead to the
following result about the Fourier-Mukai transform.

2 This is very surprising at first glance, because one expects the Fourier-Mukai transform to interchange “local”
and “global” data. But both t-structures in this result are in fact defined by local conditions.
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Corollary 4.3. — Let M be a holonomic DA-module. The only potentially nonzero cohomology

sheaves of the Fourier-Mukai transform FMA(M) are

H0 FMA(M), H1 FMA(M), . . . , Hdim A FMA(M).

Their supports satisfy codim SuppHi FMA(M) ≥ 2i, and if r ≥ 0 is the least integer for which

Hr FMA(M) 
= 0, then codim SuppHr FMA(M) = 2r.

5. Results about simple holonomic D-modules. — According to Theorem 3.2, the
Fourier-Mukai transform of a holonomic DA-module is supported in a finite union of
linear subvarieties. For simple holonomic DA-modules, one can say more: the support of
the Fourier-Mukai transform is always irreducible, and if it is not equal to A�, then the
DA-module is—up to tensoring by a line bundle with integrable connection—pulled back
from an abelian variety of lower dimension.

Theorem 5.1. — Let M be a simple holonomic DA-module. Then

Supp FMA(M) = (L,∇) ⊗ im
(
f � : B� → A�

)

is a linear subvariety of A� (in the sense of Definition 2.3), and we have

M⊗OA (L,∇) � f ∗N
for a simple holonomic DB-module N with Supp FMB(N ) = B�.

The idea of the proof is that for some r ≥ 0, the support of Hr FMA(M) has to
contain a linear subvariety (L,∇)⊗ im f � of codimension 2r. Because of the functoriality
of the Fourier-Mukai transform, restricting FMA(M) to this subvariety corresponds to
taking the direct image f+(M⊗ (L,∇)). We then use adjointness and the fact that M is
simple to conclude that M⊗ (L,∇) is pulled back from B.

One application of Theorem 5.1 is to classify simple holonomic DA-modules with
Euler characteristic zero. Recall that the Euler characteristic of a coherent algebraic DA-
module M is the integer

χ(A,M) =
∑

k∈Z

(−1)k dim Hk
(
A,DRA(M)

)
.

When M is holonomic, we have χ(A,M) ≥ 0 as a consequence of Theorem 4.2 and
the deformation invariance of the Euler characteristic. In the regular case, the following
result has been proved in a different way by Weissauer [Wei12, Theorem 2].

Corollary 5.2. — Let M be a simple holonomic DA-module. If χ(A,M) = 0, then there

exists an abelian variety B, a surjective morphism f : A → B with connected fibers, and a simple

holonomic DB-module N with χ(B,N ) > 0, such that

M⊗OA (L,∇) � f ∗N
for a suitable point (L,∇) ∈ A�.
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Now suppose that M is a simple holonomic D-module with H0 FMA(M) 
= 0. In
that case, the proof of Theorem 5.1 actually gives the stronger inequalities

codim SuppHi FMA(M) ≥ 2i + 2 for every i ≥ 1.

We deduce from this that H0 FMA(M) is a reflexive sheaf, locally free on the comple-
ment of a finite union of linear subvarieties of codimension ≥ 4. This fact allows us to
reconstruct (in Corollary 21.3) the entire complex FMA(M) from the locally free sheaf
j∗H0 FMA(M) by applying the functor

τ≤�(A)−1 ◦RHom(−,O)◦· · ·◦τ≤2 ◦RHom(−,O)◦τ≤1 ◦RHom(−,O)◦ j∗.

Here �(A) is the smallest odd integer ≥ dim A, and j is the inclusion of the open set where
H0 FMA(M) is locally free.

This formula looks a bit like Deligne’s formula for the intersection complex of
a local system [BBD82, Proposition 2.1.11]. We investigate this analogy in Section 22,
where we show that the same formula can be used to define an intersection complex

ICX(E ) ∈ mCoh(OX),

where j : U ↪→ X is an open subset of a smooth complex algebraic variety X with
codim(X \ U) ≥ 2, and E is a locally free coherent sheaf on U. This complex has some
of the same properties as its cousin in [BBD82]. In that sense,

FMA(M) � ICA�

(
j∗H0 FMA(M)

)

is indeed the intersection complex of a locally free sheaf. When H0 FMA(M) = 0, The-
orem 5.1 shows that FMA(M) is still the intersection complex of a locally free sheaf, but
now on a linear subvariety of A� of lower dimension.

6. A conjecture. — By now, it will have become clear that Fourier-Mukai transforms
of holonomic DA-modules are very special complexes of coherent sheaves on the moduli
space A�. Because the Fourier-Mukai transform

FMA : Db
coh(DA) → Db

coh(OA�)

is an equivalence of categories, this suggests the following general question.

Question. — Let Db
h(DA) denote the full subcategory of Db

coh(DA), consisting of complexes with

holonomic cohomology sheaves. What is the image of Db
h(DA) under the Fourier-Mukai transform? In

particular, which complexes of coherent sheaves on A� are Fourier-Mukai transforms of holonomic DA-

modules?
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In this section, I would like to propose a conjectural answer to this question.
Roughly speaking, the answer seems to be the following:

FMA

(
Db

h(DA)
) = derived category of hyperkähler constructible complexes,

FMA

(
Modh(DA)

) = abelian category of hyperkähler perverse sheaves.

Recall that the space of line bundles with connection is a hyperkähler manifold: as com-
plex manifolds, one has A� � H1(A,C)/H1(A,Z(1)), and any polarization of the Hodge
structure on H1(A,C) gives rise to a flat hyperkähler metric on A�. Here is some evidence
for this point of view:

(1) Finite unions of linear subvarieties of A� are precisely those algebraic subvari-
eties that are also hyperkähler subvarieties.

(2) Given a holonomic complex M ∈ Db
h(DA), there is a finite stratification of

A� by hyperkähler subvarieties such that the restriction of FMA(M) to each
stratum has locally free cohomology sheaves.

(3) We prove in Section 19 that a complex of coherent sheaves lies in the subcate-
gory FMA(Db

h(DA)) if and only if all of its cohomology sheaves do. This gives
some justification for using the term “constructible complex”.

(4) If we use quaternionic dimension, Theorem 4.2 becomes

dimH SuppHi FMA(M) ≤ dimH A� − i = dim A − i

for a holonomic DA-module M; this says that the complex FMA(M)[dim A]
is perverse for the usual middle perversity [BBD82, Chapter 2] over H.

(5) For a simple holonomic D-module M, the Fourier-Mukai transform FMA(M)

is the intersection complex of a locally free sheaf.

Unfortunately, nobody has yet defined a category of hyperkähler perverse sheaves,
even in the case of compact hyperkähler manifolds; and our situation presents the addi-
tional difficulty that A� is not compact. Nevertheless, I believe that, based on the work of
Mochizuki on twistor D-modules [Moc11], it is possible to make an educated guess, at
least in the case of semisimple holonomic D-modules.

Conjecture 6.1. — Let F be a reflexive coherent algebraic sheaf on A�. Then there exists a

semisimple holonomic DA-module M with the property that F � H0 FMA(M) if and only if the

following conditions are satisfied:

(a) F is locally free on the complement of a finite union of linear subvarieties of codimension at

least 4.

(b) The resulting locally free sheaf admits a hermitian metric h whose curvature tensor 
h is

SU(2)-invariant and locally square-integrable on A�.

(c) The pointwise norm of 
h, taken with respect to h, is in O(d−(1+ε)), where d is the distance

to the origin in A�.

Moreover, M is regular if and only if the pointwise norm of 
h is in O(d−2).
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There is a certain amount of redundancy in the conditions. In fact, we could start
from a holomorphic vector bundle E on the complement of a finite union of linear sub-
varieties of codimension ≥ 2, and assume that it admits a hermitian metric h for which
(b) and (c) are true. Then h is admissible in the sense of Bando and Siu [BS94], and E
therefore extends uniquely to a reflexive coherent analytic sheaf on A�; by virtue of (c),
the extension is acceptable in the sense of [Moc11, Chapter 21], and therefore algebraic.3

In particular, E itself is algebraic, and the discussion at the end of Section 5 shows that
the simple holonomic DA-module must be

FM−1
A

(
ICA�(E )

)
,

the inverse Fourier-Mukai transform of the intersection complex of E . The problem is,
of course, to show that this is indeed a simple holonomic DA-module.

The paper [Moc13] establishes a result equivalent to Conjecture 6.1 in the case of
elliptic curves. The reason for believing that regularity should correspond to quadratic
decay in the curvature is the work of Jardim [Jar02]. In general, the existence of the
metric, and the SU(2)-invariance of its curvature, should be consequences of the fact
that every simple holonomic D-module lifts to a polarized wild pure twistor D-module.
The remaining points will probably require additional methods from analysis. Note that
the conjecture is consistent with the result (in Corollary 24.3) that all Chern classes of
FMA(M) are zero in cohomology.

Another interesting question is whether the existence of the metric in (b) is equiv-
alent to an algebraic condition such as stability. If that was the case, then I would guess
that the semistable objects are what corresponds to Fourier-Mukai transforms of not nec-
essarily simple holonomic DA-modules.

7. Results about perverse sheaves. — For the convenience of those readers who are
more familiar with constructible complexes and perverse sheaves, we shall now translate
our main results into that language. In the sequel, a constructible complex on the abelian
variety A means a complex K of sheaves of C-vector spaces, whose cohomology sheaves
HiK are constructible with respect to an algebraic stratification of A, and vanish for i

outside some bounded interval. We denote by Db
c(CA) the bounded derived category of

constructible complexes. It is a basic fact [HTT08, Section 4.5] that the hypercohomol-
ogy groups Hi(A,K) are finite-dimensional complex vector spaces for any K ∈ Db

c(CA).
Now let Char(A) be the space of characters of the fundamental group; it is also

the moduli space for local systems of rank one. For any character ρ : π1(A,0) → C∗,
we denote the corresponding local system on A by the symbol Cρ . It is easy to see that
K ⊗C Cρ is again constructible for any K ∈ Db

c(CA); we may therefore define the cohomol-

ogy support loci of K ∈ Db
c(CA) to be the subsets

(7.1) Sk
m(A,K) = {

ρ ∈ Char(A)
∣∣ dim Hk(A,K ⊗C Cρ) ≥ m

}
,

3 This is just to give an idea; in reality, the extension is typically not locally free, and so it is more difficult to prove
that it is algebraic.
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for any pair of integers k,m ∈ Z. Since the space of characters is very large—its dimension
is equal to 2 dim A—these loci should contain a lot of information about the original
constructible complex K, and indeed they do.

Our first result is a structure theorem for cohomology support loci.

Definition 7.2. — A linear subvariety of Char(A) is any subset of the form

ρ · im
(
Char(f ) : Char(B) → Char(A)

)
,

for a surjective morphism of abelian varieties f : A → B with connected fibers, and a character ρ ∈
Char(A). We say that a linear subvariety is arithmetic if ρ can be taken to be torsion point of

Char(A).

Theorem 7.3. — Let K ∈ Db
c(CA) be a constructible complex.

(a) Each Sk
m(A,K) is a finite union of linear subvarieties of Char(A).

(b) If K is a semisimple perverse sheaf of geometric origin [BBD82, 6.2.4], then these linear

subvarieties are arithmetic.

Proof. — For (a), we use the Riemann-Hilbert correspondence to find a regular
holonomic complex M ∈ Db

rh(DA) with DRA(M) � K. Since Sk
m(A,K) = �(Sk

m(A,M))

by Theorem 14.1, the assertion follows from Theorem 2.2. The statement in (b) can be
deduced from Theorem 16.2 by a similar argument. �

The next result has to do with the codimension of the cohomology support loci.
Recall that the category Db

c(CA) has a nonstandard t-structure
(
πD≤0

c (CA), πD≥0
c (CA)

)
,

called the perverse t-structure, whose heart is the abelian category of perverse sheaves
[BBD82]. We show that the position of a constructible complex with respect to this t-
structure can be read off from its cohomology support loci.

Theorem 7.4. — Let K ∈ Db
c(CA) be a constructible complex. Then one has

K ∈ πD≤0
c (CA) ⇐⇒ codim Sk

1(A,K) ≥ 2k for every k ∈ Z,

K ∈ πD≥0
c (CA) ⇐⇒ codim Sk

1(A,K) ≥ −2k for every k ∈ Z.

Thus K is a perverse sheaf if and only if codim Sk
1(A,K) ≥ |2k| for every k ∈ Z.

Proof. — Let M ∈ Db
rh(DA) be a regular holonomic complex such that K �

DRA(M). Since Sk
m(A,K) = �(Sk

m(A,M)), the first assertion is a consequence of The-
orem 18.1. Now let DA : Db

c(CA) → Db
c(CA) be the Verdier duality functor; then

Sk
m(A,K) = 〈−1Char(A)〉S−k

m (A,DAK)
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by Verdier duality. Since K ∈ πD≥0
c (CA) if and only if DAK ∈ πD≤0

c (CA), the second
assertion follows. The final assertion is clear from the definition of perverse sheaves as the
heart of the perverse t-structure on Db

c(CA). �

A consequence is the following “generic vanishing theorem” for perverse sheaves;
a similar—but less precise—statement has been proved some time ago by Krämer and
Weissauer [KW11, Theorem 1.1].

Corollary 7.5. — Let K ∈ Db
c(CA) be a perverse sheaf on a complex abelian variety. Then the

cohomology support loci Sk
m(A,K) are finite unions of linear subvarieties of Char(A) of codimension at

least |2k|. In particular, one has

Hk(A,K ⊗C Cρ) = 0

for general ρ ∈ Char(A) and k 
= 0.

The generic vanishing theorem implies that the Euler characteristic

χ(A,K) =
∑

k∈Z

(−1)k dim Hk(A,K)

of a perverse sheaf on an abelian variety is always nonnegative, a result originally due to
Franecki and Kapranov [FK00, Corollary 1.4]. Indeed, from the deformation invariance
of the Euler characteristic, we get

χ(A,K) = χ(A,K ⊗C Cρ) = dim H0(A,K ⊗C Cρ) ≥ 0

for a general character ρ ∈ Char(A). For simple perverse sheaves with χ(A,K) = 0, we
have the following structure theorem [Wei12, Theorem 2].

Theorem 7.6. — Let K ∈ Db
c(CA) be a simple perverse sheaf. If χ(A,K) = 0, then there

exists an abelian variety B, a surjective morphism f : A → B with connected fibers, and a simple perverse

sheaf K′ ∈ Db
c(CB) with χ(B,K′) > 0, such that

K � f ∗K′ ⊗C Cρ

for some character ρ ∈ Char(A).

Proof. — This again follows from the Riemann-Hilbert correspondence and the
analogous result for simple holonomic DA-modules in Corollary 5.2. �

B. The Fourier-Mukai transform

In this chapter, we recall Laumon’s construction of the Fourier-Mukai transform
for algebraic D-modules on a complex abelian variety [Lau96]. Using a different ap-
proach, Rothstein obtained the same results in [Rot96].



HOLONOMIC D-MODULES ON ABELIAN VARIETIES 13

8. Operations on D-modules. — Let A be a complex abelian variety; we usually put
g = dim A. Before introducing the Fourier-Mukai transform, it may be helpful to say a
few words about DA, the sheaf of linear differential operators of finite order. Recall that
the tangent bundle of A is trivial; DA is therefore generated, as an OA-algebra, by any
basis ∂1, . . . , ∂g ∈ H0(A,TA), subject to the relations

[∂i, ∂j] = 0 and [∂i, f ] = ∂i f , for 1 ≤ i, j ≤ g and f ∈ �(U,OA).

By an algebraic DA-module, we mean a sheaf of left DA-modules that is quasi-coherent as
a sheaf of OA-modules; a DA-module is holonomic if its characteristic variety, as a subset
of the cotangent bundle T∗A, has dimension equal to dim A (and is therefore a finite
union of conical Lagrangian subvarieties). Finally, a holonomic complex is a complex of DA-
modules M, whose cohomology sheaves HiM are holonomic, and vanish for i outside
some bounded interval. We denote by Db

coh(DA) the derived category of cohomologically
bounded and coherent DA-modules, and by Db

h(DA) the full subcategory of all holonomic
complexes. We refer the reader to [HTT08, Chapter 3] for additional details.

Note. — Because A is projective, a coherent analytic DA-module is algebraic if and only if it

contains a lattice, that is to say, a coherent OA-submodule that generates it as a DA-module. By a

theorem of Malgrange [Mal04, Theorem 3.1], this is always the case for holonomic DA-modules; thus

there is no difference between holonomic complexes of analytic and algebraic DA-modules.

Because it will play such an important role below, we briefly discuss the definition
of the de Rham complex, and especially the conventions about signs. For a single algebraic
DA-module M, we define

DRA(M) = [
M→ �1

A ⊗M→ ·· · → �
g

A ⊗M
][g],

which we view as a complex of sheaves of C-vector spaces in the analytic topology, placed
in degrees −g, . . . ,0. The differential is given by (−1)g∇M, where

∇M : �
p

A ⊗M→ �
p+1
A ⊗M, ω ⊗ m 	→ dω ⊗ m +

g∑

j=1

(dzj ∧ ω) ⊗ ∂jm;

here dz1, . . . , dzg ∈ H0(A,�1
A) is the basis dual to ∂1, . . . , ∂g ∈ H0(A,TA). Given a com-

plex of algebraic DA-modules (M•, d), we define

DRA

(
M•)

to be the single complex determined by the double complex (D•,•, d1, d2), whose term in
bidegree (i, j) is equal to

Di,j = �
g+i

A ⊗Mj,
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and whose differentials are given by the formulas

d1 = (−1)g∇Mj and d2 = id⊗ d.

Note that, according to the sign rules introduced by Deligne, the differential in the total
complex acts as d1 + (−1)id2 on the summand Di,j .

The fundamental operations on algebraic D-modules—such as direct and inverse
images or duality—are described in [HTT08, Part I]. Here we only recall the notation.
Let f : A → B be a morphism of abelian varieties. On the one hand, one has the direct

image functor

f+ : Db
coh(DA) → Db

coh(DB);

in case f is surjective (and hence smooth), f+ is given by the formula

f+M• = Rf∗ DRA/B

(
M•),

where DRA/B(M•) denotes the relative de Rham complex, defined in a similar way as
above, but with g = dim A replaced by the relative dimension r = dim A − dim B. For
holonomic complexes, we have an induced functor

f+ : Db
h(DA) → Db

h(DB)

since direct images by algebraic morphisms preserve holonomicity [HTT08, Theo-
rem 3.2.3]. We also use the shifted inverse image functor

f + = Lf ∗[dim A − dim B] : Db(DB) → Db(DA);

in general, it only preserves coherence when f is surjective (and hence smooth). Accord-
ing to [HTT08, Theorem 3.2.3], we get an induced functor

f + : Db
h(DB) → Db

h(DA).

Finally, a very important role will be played by the duality functor

DA : Db
coh(DA) → Db

coh(DA)opp,

DA

(
M•) = RHomDA

(
M•,DA

) ⊗ (
�

g

A

)−1[g].

Note that a DA-module M is holonomic exactly when its dual DA(M) is again a single
DA-module (viewed as a complex concentrated in degree zero).
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9. Definition and basic properties. — We now come to the definition of the Fourier-
Mukai transform. Following Mazur-Messing [MM74], we let A� denote the moduli space
of algebraic line bundles with integrable connection on the abelian variety A. It is natu-
rally a quasi-projective algebraic variety: on the dual abelian variety Â = Pic0(A), there
is a canonical extension of vector bundles

(9.1) 0 → Â × H0
(
A,�1

A

) → E(A) → Â × C → 0,

whose extension class in

Ext1
(
OÂ,OÂ × H0

(
A,�1

A

)) � H1(Â,OÂ) ⊗ H0
(
A,�1

A

)

� H0(A,TA) ⊗ H0
(
A,�1

A

)

is represented by
∑

j ∂j ⊗ dzj . Then A� is isomorphic to the preimage of Â × {1} inside of
E(A), and the projection

π : A� → Â, (L,∇) 	→ L,

is a torsor for the trivial bundle Â × H0(A,�1
A). This corresponds to the fact that ∇ + ω

is again an integrable connection for any ω ∈ H0(A,�1
A). Note that A� is a group under

tensor product, with unit element (OA, d).
The Fourier-Mukai transform takes bounded complexes of algebraic DA-modules

to bounded complexes of quasi-coherent sheaves on A�; we briefly describe it following
the presentation in [Lau96, §3]. Let P denote the normalized Poincaré bundle on the
product A × Â. Since A� is the moduli space of line bundles with integrable connection
on A, the pullback P� = (idA ×π)∗P of the Poincaré bundle to the product A × A� is
endowed with a universal integrable connection

∇� : P� → �1
A×A�/A� ⊗ P�

relative to A�. The construction of ∇� can be found in [MM74, Chapter I ]. An algebraic
left DA-module M may be interpreted as a quasi-coherent sheaf of OA-modules with
integrable connection ∇ : M→ �1

A ⊗M; then

p∗
1∇ ⊗ id+ id⊗∇�

defines a relative integrable connection on the tensor product p∗
1M ⊗OA×A�

P�, and we
denote the resulting algebraic DA×A�/A�-module by the symbol p∗

1M⊗ (P�,∇�). Given a
complex of algebraic DA-modules (M•, d), we define

DRA×A�/A�

(
p∗

1M• ⊗ (
P�,∇�

))

as the single complex determined by the double complex (D•,•, d1, d2), whose term in
bidegree (i, j) is equal to

Di,j = �
g+i

A×A�/A� ⊗ p∗
1Mj ⊗ P�,
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and whose differentials are given by the formulas

d1 = (−1)g
(
p∗

1∇Mj ⊗ id+ id⊗∇�
)

and d2 = id⊗p∗
1d ⊗ id .

We then define the Fourier-Mukai transform of the complex M• by the formula

(9.2) FMA

(
M•) = R(p2)∗ DRA×A�/A�

(
p∗

1M• ⊗ (
P�,∇�

))
.

Because every differential in the relative de Rham complex is OA�-linear, FMA(M•) is
naturally a complex of quasi-coherent algebraic sheaves on A�. The following fundamen-
tal theorem was proved by Laumon [Lau96, Théorème 3.2.1 and Corollaire 3.2.5], and,
using a different method, by Rothstein [Rot96, Theorem 6.2].

Theorem 9.3 (Laumon, Rothstein). — The Fourier-Mukai transform gives rise to an equivalence

of categories

(9.4) FMA : Db
coh(DA) → Db

coh(OA�)

between the bounded derived category of coherent algebraic DA-modules and the bounded derived category

of coherent algebraic sheaves on A�.

The Fourier-Mukai transform is compatible with various operations on D-
modules; here, taken from Laumon’s paper, is a list of the basic properties that we will
use.

Theorem 9.5 (Laumon). — The Fourier-Mukai transform for algebraic D-modules on abelian

varieties enjoys the following properties:

(a) For (L,∇) ∈ A�, denote by t(L,∇) : A� → A� the translation morphism. Then one has a

canonical and functorial isomorphism

FMA

(− ⊗OA (L,∇)
) = L(t(L,∇))

∗ ◦ FMA .

(b) One has a canonical and functorial isomorphism

FMA ◦DA = 〈−1A�〉∗ RHom
(
FMA(−),OA�

)
.

(c) For a morphism f : A → B of abelian varieties, denote by f � : B� → A� the induced mor-

phism. Then one has canonical and functorial isomorphisms

L
(
f �

)∗ ◦ FMA = FMB ◦f+,

Rf �
∗ ◦ FMB = FMA ◦f +.

(Note that f + only preserves coherence when f is smooth.)
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(d) One has a canonical and functorial isomorphism

FMA ◦(
DA ⊗OA (−)

) = Lπ∗ ◦ R�P,

where π : A� → Â denotes the projection, and R�P : Db
coh(OA) → Db

coh(OÂ) is the usual

Fourier-Mukai transform for coherent sheaves [Muk81].

Proof. — (a) is immediate from the properties of the normalized Poincaré bundle
on A × A�. (c) is proved in [Lau96, Proposition 3.3.2]; note that “g − 1 − g2” should read
“g1 − g2.” The compatibility of the Fourier-Mukai transform with duality in (b) can be
found in [Lau96, Proposition 3.3.4]. Lastly, (d) is proved in [Lau96, Proposition 3.1.2]. �

10. The space of generalized connections. — During the proof of Theorem 4.2 in Sec-
tion 18 below, it will be necessary to compare the Fourier-Mukai transform of a D-module
to that of the associated graded object grF

•M, for some choice of good filtration F•M.
Here it is convenient to introduce the Rees algebra

RA =
⊕

k≥0

FkDA ⊗ zk ⊆ DA[z],

and to pass from a filtered D-module to the associated graded R-module

RFM=
⊕

k∈Z

FkM⊗ zk ⊆M⊗OA OA

[
z, z−1

]
.

We shall extend the Fourier-Mukai transform to this setting; the role of A� is played by
E(A), the moduli space of line bundles with generalized connection. Recall that E(A) was
defined by the extension in (9.1); we begin by explaining another construction, whose idea
is originally due to Deligne and Simpson (see [Bon10]).

Definition 10.1. — Let X be a complex manifold, and λ : X → C a holomorphic function.

A generalized connection with parameter λ, or more briefly a λ-connection, on a locally free

sheaf of OX-modules E is a C-linear morphism of sheaves

∇ : E → �1
X ⊗OX E

that satisfies the Leibniz rule with parameter λ, which is to say that

∇(f · s) = f · ∇s + df ⊗ λs

for local sections f ∈ �(U,OX) and s ∈ �(U,E ). A λ-connection is called integrable if its OX-

linear curvature operator ∇ ◦ ∇ : E → �2
X ⊗OX E is equal to zero.

Example 10.2. — An integrable 1-connection is an integrable connection in the
usual sense; an integrable 0-connection is the structure of a Higgs bundle on E .
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For an equivalent description of generalized connections, let �1 be the first in-
finitesimal neighborhood of the diagonal in X × X; it is the closed subscheme defined by
the ideal sheaf I2

�. Consider the short exact sequence

0 −→ �1
X ⊗OX E −→ (p1)∗

(
O�1 ⊗ p∗

2E
) p−→ E −→ 0,

where p1 : X × X → X and p2 : X × X → X are the two projections.

Lemma 10.3. — A λ-connection on E is the same thing as a morphism

s : E → (p1)∗
(
O�1 ⊗ p∗

2E
)

with the property that p ◦ s = λ idE .

Proof. — For connections in the usual sense, this is proved in [MM74, Section 3.1];
the argument there carries over to our case. �

On an abelian variety A, the moduli space E(A) of line bundles with integrable
λ-connection (for arbitrary λ ∈ C) may be constructed as follows. Observe first that any
λ-connection on a line bundle L ∈ Pic0(A) is automatically integrable. To construct the
moduli space, let mA ⊆ OA denote the ideal sheaf of the unit element 0 ∈ A. Restriction
of differential forms induces an isomorphism

mA/m2
A � H0

(
A,�1

A

) ⊗ OA/mA,

and therefore determines an extension of coherent sheaves

0 → H0
(
A,�1

A

) ⊗ OA/mA → OA/m2
A → OA/mA → 0.

Let P be the normalized Poincaré bundle on the product A × Â, and denote by
R�P : Db

coh(OA) → Db
coh(OÂ) the Fourier-Mukai transform. Then R�P(OA/m2

A) is a lo-
cally free sheaf E (A), and so we obtain an extension of locally free sheaves

(10.4) 0 → H0
(
A,�1

A

) ⊗ OÂ → E (A) → OÂ → 0

on the dual abelian variety Â. The corresponding extension of vector bundles is the one
in (9.1). By construction, E(A) comes with two algebraic morphisms π : E(A) → Â and
λ : E(A) → C. The following lemma shows that there is a universal line bundle with
generalized connection on A × E(A).

Lemma 10.5. — Let P̃ = (id×π)∗P denote the pullback of the Poincaré bundle to A×E(A).

Then there is a canonical generalized relative connection

∇̃ : P̃ → �1
A×E(A)/E(A) ⊗ P̃

that satisfies the Leibniz rule ∇̃(f · s) = f · ∇̃s + dA×E(A)/E(A)f ⊗ λs.
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Proof. — Let I� denote the ideal sheaf of the diagonal in A × A. Let Z be the non-
reduced subscheme of A × A × E(A) defined by the ideal sheaf OA×A×E(A) · I2

�. We have
a natural exact sequence

(10.6) 0 → P̃ ⊗ H0
(
A,�1

A

) → (p13)∗
(
OZ ⊗ p∗

23P̃
) → P̃ → 0,

and a generalized relative connection is the same thing as a morphism of sheaves

P̃ → (p13)∗
(
OZ ⊗ p∗

23P̃
)

whose composition with the morphism to P̃ acts as multiplication by λ. In fact, there is a
canonical choice, which we shall now describe. Consider the morphism

f : A × A → A × A, f (a, b) = (a, a + b).

Since f × idE(A) induces an isomorphism between the first infinitesimal neighborhood of
A × {0} × E(A) and the subscheme Z, we have

(f × idE(A))
∗(OZ ⊗ p∗

23P̃
) = p∗

2

(
OA/m2

A

) ⊗ (m × idE(A))
∗P̃

= p∗
2

(
OA/m2

A

) ⊗ p∗
13P̃ ⊗ p∗

23P̃,

due to the well-known fact that the Poincaré bundle satisfies

(m × idÂ)∗P = p∗
13P ⊗ p∗

23P

on A × A × Â. Since p13 ◦ (f × idE(A)) = p13, we conclude that we have

(p13)∗
(
OZ ⊗ p∗

23P̃
) = P̃ ⊗ p∗

2π
∗R�P

(
OA/m2

A

) = P̃ ⊗ p∗
2π

∗E (A)

on A × E(A); more precisely, (10.6) is isomorphic to the tensor product of P̃ and the
pullback of (10.4) by π ◦ p2.

Now the pullback of the exact sequence (10.4) to E(A) obviously has a splitting of
the type we are looking for: indeed, the tautological section of π∗E (A) gives a morphism
OE(A) → π∗E (A) whose composition with the projection to OE(A) is multiplication by λ.
Thus we obtain a canonical morphism P̃ → P̃ ⊗ p∗

2π
∗E (A) and hence, by the above, the

desired generalized relative connection. �

At any point e ∈ E(A), we thus obtain a λ(e)-connection on the line bundle corre-
sponding to π(e) ∈ Pic0(A). This shows that E(A) is the moduli space of (topologically
trivial) line bundles with integrable generalized connection. Using the properties of the
Picard scheme, one can show that E(A) is a fine moduli space in the obvious sense; as we
do not need this fact below, we shall not give the proof.

We close this section with two simple lemmas that describe how E(A) and (̃P, ∇̃)

behave under restriction to the fibers of λ : E(A) → C.
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Lemma 10.7. — We have λ−1(1) = A�, and the restriction of (̃P, ∇̃) to A × A� is equal to

(P�,∇�).

Proof. — This follows from the construction of A� and ∇� in [MM74, Chapter I ]. �

Recall that the cotangent bundle of A satisfies T∗A = A×H0(A,�1
A), and consider

the following diagram:

(10.8)

Lemma 10.9. — We have λ−1(0) = Â × H0(A,�1
A), and the restriction of (̃P, ∇̃) to

A × Â × H0(A,�1
A) is equal to the Higgs bundle

(
p∗

12P, p∗
13θA

)
,

where θA denotes the tautological holomorphic one-form on T∗A.

Proof. — This follows easily from the proof of Lemma 10.5. �

11. The extended Fourier-Mukai transform. — We shall now describe an extension
of the Fourier-Mukai transform to the case of algebraic RA-modules. Since we only
need a very special case in this paper, we leave a more careful discussion to a future
publication. Recall that DA is generated as an OA-algebra by a basis of vector fields
∂1, . . . , ∂g ∈ H0(A,TA), subject to the relations

[∂i, ∂j] = 0 and [∂i, f ] = ∂i f .

Likewise, RA is generated as an OA[z]-algebra by z∂1, . . . , z∂g , subject to

[z∂i, z∂j] = 0 and [z∂i, f ] = z · ∂i f .

It is not hard to show that RA is isomorphic to (p1)∗RA×C/C, where RA×C/C denotes
the OA×C-subalgebra of DA×C/C generated by zTA×C/C. If M is an algebraic RA-module,
then the associated quasi-coherent sheaf M̃ on A×C is naturally a module over RA×C/C,
and vice versa.

Now fix an algebraic RA-module M. Let RA×E(A)/E(A) denote the subalgebra of
DA×E(A)/E(A) generated by λTA×E(A)/E(A). The tensor product

(id×λ)∗M̃ ⊗OA×E(A)
P̃
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naturally has the structure of RA×E(A)/E(A)-module on A × E(A): concretely, the module
structure is given by λ(m ⊗ s) = (λm) ⊗ s = m ⊗ λs and λ∂i(m ⊗ s) = (z∂im) ⊗ s + m ⊗
∇̃∂i

(s). We may therefore consider the relative de Rham complex

DRA×E(A)/E(A)

(
(id×λ)∗M̃ ⊗OA×E(A)

(̃P, ∇̃)
)
,

which is defined just as in the case of D-modules.

Definition 11.1. — The Fourier-Mukai transform of an algebraic RA-module M is

F̃MA(M) = R(p2)∗ DRA×E(A)/E(A)

(
(id×λ)∗M̃ ⊗OA×E(A)

P̃
);

it is an object of Db(OE(A)), the bounded derived category of quasi-coherent algebraic sheaves on E(A).

Note. — Using the general formalism in [PR01], one can show that the Fourier-Mukai transform

induces an equivalence of categories

F̃MA : Db(RA) → Db(OE(A)).

Since this fact will not be used below, we shall omit the proof.

Lemma 11.2. — If M is a coherent algebraic RA-module, F̃MA(M) ∈ Db
coh(OE(A)).

Proof. — The proof is the same as in the case of DA-modules; for more details, refer
to [Lau96, Proposition 3.1.2 and Corollaire 3.1.3]. �

12. Compatibility. — Just as RA-modules interpolate between DA-modules and
quasi-coherent sheaves on the cotangent bundle T∗A, the extended Fourier-Mukai trans-
form in Definition 11.1 interpolates between the Fourier-Mukai transform for DA-
modules and the usual Fourier-Mukai transform for quasi-coherent sheaves. The purpose
of this section is to make that relationship precise.

Throughout the discussion, let M be a coherent algebraic DA-module and F•M
a good filtration of M by OA-coherent subsheaves. The graded SymTA-module

grF
•M=

⊕

k∈Z

FkM/Fk−1M

is then coherent over SymTA, and therefore defines a coherent sheaf on the cotangent
bundle T∗A that we shall denote by the symbol grFM. Now consider once more the Rees
module

RFM=
⊕

k∈Z

FkM · zk ⊆M⊗OA OA

[
z, z−1

]
,
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which is a graded RA-module, coherent over RA. The associated quasi-coherent sheaf

on A × C, which we shall denote by the symbol ˜RFM, is equivariant for the natural C∗-

action on the product. Moreover, it is easy to see that the restriction of ˜RFM to A × {1}
is a DA-module isomorphic to M, while the restriction to A × {0} is a graded SymTA-
module isomorphic to grF

•M.

Proposition 12.1. — Let M be a coherent algebraic DA-module with good filtration F•M.

Then the extended Fourier-Mukai transform F̃MA(RFM) ∈ Db
coh(OE(A)) of the associated graded

RA-module has the following properties:

(i) It is equivariant for the natural C∗-action on the vector bundle E(A).

(ii) Its restriction to A� = λ−1(1) is canonically isomorphic to FMA(M).

(iii) Its restriction to Â × H0(A,�1
A) = λ−1(0) is canonically isomorphic to

R(p23)∗
(
p∗

12P ⊗ p∗
1�

g

A ⊗ p∗
13(id×ι)∗ grFM

)
,

where the notation is as in the diagram in (10.8) above, and where ι = − id is the obvious

involution of H0(A,�1
A).

Proof. — (i) is true because RFM is a graded RA-module, and because (̃P, ∇̃) and
the relative de Rham complex are obviously C∗-equivariant. (ii) follows directly from
the definition of the Fourier-Mukai transform, using the base change formula for the
morphism λ : E(A) → C and Lemma 10.7.

The proof of (iii) is a little less obvious, and so we give some details. By base change,
it suffices to show that the restriction of the relative de Rham complex

DRA×E(A)/E(A)

(
(id×λ)∗

˜RFM⊗OA×E(A)
(̃P, ∇̃)

)

to A × Â × H0(A,�1
A) resolves the coherent sheaf p∗

12P ⊗ p∗
1�

g

A ⊗ p∗
13(id×ι)∗ grFM. After

a short computation, one finds that this restriction is isomorphic to the tensor product of
p∗

12P and the pullback, via p13, of the complex

(12.2)
[
p∗

1

(
grF

•M
) → p∗

1

(
�1

A ⊗OA grF
•M

) → ·· · → p∗
1

(
�

g

A ⊗OA grF
•M

)][g],
with differential p∗

1(�
k
A ⊗ grF

• M) → p∗
1(�

k+1
A ⊗ grF

• M) given by the formula

ω ⊗ m 	→ (−1)g(θA ∧ ω) ⊗ m + (−1)g

g∑

j=1

(dzj ∧ ω) ⊗ ∂jm.

But since grFM is the coherent sheaf on A × H0(A,�1
A) corresponding to the graded

SymTA-module grF
•M, the complex in (12.2) is a resolution of the coherent sheaf p∗

1�
g

A ⊗
(id×ι)∗ grFM by Lemma 12.3 below, and so we get the desired result. �

In the proof, we used the following lemma.
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Lemma 12.3. — Let F be a finitely generated SymTA-module, and denote by F̃ the associ-

ated coherent sheaf on T∗A = A × H0(A,�1
A). Then the complex

p∗
1(OA ⊗OA F ) → p∗

1

(
�1

A ⊗OA F
) → ·· · → p∗

1

(
�

g

A ⊗OA F
)

is a resolution of p∗
1�

g

A ⊗ (id×ι)∗F̃ , where ι is the involution of H0(A,�1
A).

Proof. — By construction, F = (p1)∗F̃ ; note that F ′ = (p1)∗(id×ι)∗F̃ is iso-
morphic to F as an OA-module, but sections of SymkTA act with an additional factor
of (−1)k . The tangent bundle of A is trivial; if we set V = T0A and S = Sym V, then
TA = V ⊗C OA and SymTA = S ⊗C OA. Because p1 : A × H0(A,�1

A) → A is affine, the
assertion is equivalent to the exactness of the complex

· · · −→ ∧2 V ⊗C S ⊗C F
d2−→ V ⊗C S ⊗C F

d1−→ S ⊗C F

d0−→ F ′ −→ 0,

where d0 is the obvious multiplication map, and where the other differentials

dk+1 :
∧k+1

V ⊗C S ⊗C F →
∧k

V ⊗C S ⊗C F

are given by the formula

(v0 ∧ v1 ∧ · · · ∧ vk) ⊗ s ⊗ f

	→
k∑

i=0

(−1)i(v0 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vk) ⊗ vis ⊗ f

+
k∑

i=0

(−1)i(v0 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vk) ⊗ s ⊗ vi f .

It is not hard to see that the complex in question is the tensor product (over S) of F with
the analogously defined complex of S-modules

(12.4) · · · −→ ∧2 V ⊗C S ⊗C S
d2−→ V ⊗C S ⊗C S

d1−→ S ⊗C S
d0−→ S′ −→ 0.

Note that d0 : Sk ⊗ S� → Sk+� is (−1)k times the usual multiplication map. The complex
in (12.4) is exact; one way to see this is to observe that S ⊗C S is isomorphic to the
polynomial ring C[x1, . . . , xg, y1, . . . , yg], and that the complex is just the usual Koszul
complex for the ideal (x1 + y1, . . . , xg + yg). �

C. The structure theorem

The purpose of this chapter is to prove the structure theorems for cohomology
support loci of holonomic and constructible complexes.
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13. Cohomology of constructible complexes. — In this section, we describe an analogue
of the Fourier-Mukai transform for constructible complexes on A, and use it to prove that
cohomology support loci are algebraic subvarieties of Char(A). We refer the reader to
[HTT08, Section 4.5] and to [Dim04, Chapter 4] for details about constructible com-
plexes and perverse sheaves.

The abelian variety A may be presented as a quotient V/�, where V is a complex
vector space of dimension g, and � ⊆ V is a lattice of rank 2g. Note that V is isomorphic
to the tangent space of A at the unit element, while � is isomorphic to the fundamental
group π1(A,0). We shall denote by k[�] the group ring of � with coefficients in a subfield
k ⊆ C; thus

k[�] =
⊕

λ∈�

keλ,

with eλ · eμ = eλ+μ. A choice of basis for � shows that k[�] is isomorphic to the ring of
Laurent polynomials in 2g variables. Any character ρ : � → C∗ extends uniquely to a
homomorphism of C-algebras

C[�] → C, eλ 	→ ρ(λ),

whose kernel is a maximal ideal mρ ⊆ C[�]; concretely, mρ is generated by the elements
eλ − ρ(λ), for λ ∈ �. It is easy to see that any maximal ideal of C[�] is of this form; this
means that Char(A) is the set of C-valued points of the scheme Spec C[�], and therefore
naturally an affine complex algebraic variety.

For any k[�]-module M, multiplication by the ring elements eλ determines a nat-
ural action of � on the k-vector space M. By the well-known correspondence between
representations of the fundamental group and local systems, it thus gives rise to a local
system on A.

Definition 13.1. — For a k[�]-module M, we denote by the symbol LM the corresponding

local system of k-vector spaces on A. Concretely,

LM(U) =
{
� : π−1(U) → M

∣∣∣∣
� is locally constant, and

�(v +λ) = e−1
λ �(v) for λ ∈ �

}

for all open sets U ⊆ A, where π : V → A is the quotient mapping.

Since k[�] is commutative, LM is actually a local system of k[�]-modules. The most
important example is LC[�], which is a local system of C[�]-modules of rank one; one can
show that it is isomorphic to the direct image with proper support π! CV of the constant
local system on the universal covering space π : V → A. This device allows us to construct
C[�]-modules, and hence quasi-coherent sheaves on Char(A), by twisting a complex of
sheaves of C-vector spaces by a local system of the form LM, and pushing forward along
the morphism p : A → pt to a point.
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Proposition 13.2. — Let k be a field, and let K ∈ Db
c(kA) be a constructible complex of

sheaves of k-vector spaces on A. Then for any finitely generated k[�]-module M, the direct image

Rp∗(K ⊗k LM) belongs to Db
coh(k[�]).

Proof. — Since K is a constructible complex of sheaves of k-vector spaces, the tensor
product K ⊗k LM is a constructible complex of sheaves of k[�]-modules. By [Dim04,
Corollary 4.1.6], its direct image is thus an object of Db

coh(k[�]). �

To understand how Rp∗(K ⊗k LM) depends on M, we need the following auxiliary
result. Recall that a fine sheaf on a manifold is a sheaf admitting partitions of unity; such
sheaves are acyclic for direct image functors.

Lemma 13.3. — Let F be a fine sheaf of C-vector spaces on A. Then the space of global

sections H0(A,F ⊗C LC[�]) is a flat C[�]-module, and for every C[�]-module M, one has

H0(A,F ⊗C LM) � H0(A,F ⊗C LC[�]) ⊗C[�] M,

functorially in M.

Proof. — Each sheaf of the form F ⊗C LM is clearly again a fine sheaf. Conse-
quently, M 	→ H0(A,F ⊗C LM) is an exact functor from the category of C[�]-modules
to the category of C[�]-modules. Since the functor also preserves arbitrary direct sums,
the result follows from the Eilenberg-Watts theorem in homological algebra [Wat60, The-
orem 1]. �

Proposition 13.4. — Let K ∈ Db
c(CA). Then for every C[�]-module M, one has

Rp∗(K ⊗C LM) � Rp∗(K ⊗C LC[�])
L⊗C[�] M,

and the isomorphism is functorial in M.

Proof. — We begin by choosing a bounded complex (F •, d) of fine sheaves quasi-
isomorphic to K. One way to do this is as follows. By the Riemann-Hilbert correspon-
dence, K � DRA(M•) for some M• ∈ Db

rh(DA); if we now let Ak
A denote the sheaf of

smooth k-forms on the complex manifold A, then by the Poincaré lemma, the single
complex determined by the double complex with terms

Ag+i

A ⊗OA Mj

is a complex of fine sheaves quasi-isomorphic to K. For any such choice, Rp∗(K⊗CLM) ∈
Db

coh(C[�]) is represented by the bounded complex of C[�]-modules

H0
(
A,F • ⊗C LM

) � H0
(
A,F • ⊗C LC[�]

) ⊗C[�] M,

and so the assertion follows from Lemma 13.3. �
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Now let ρ ∈ Char(A) be an arbitrary character; recall that mρ is the maximal ideal
of C[�] generated by the elements eλ − ρ(λ), for λ ∈ �. Using the notation introduced
above, we therefore have the alternative description Cρ � LC[�]/mρ

for the local system
corresponding to ρ.

Corollary 13.5. — For any character ρ ∈ Char(A), we have

Rp∗(K ⊗C Cρ) � Rp∗(K ⊗C LC[�])
L⊗C[�] C[�]/mρ

as objects of Db
coh(C).

We may thus consider the complex Rp∗(K ⊗C LC[�]) ∈ Db
coh(C[�]) as being a sort

of “Fourier-Mukai transform” of the constructible complex K ∈ Db
c(CA). This point of

view is justified also by its relationship with the Fourier-Mukai transform for D-modules
in Theorem 14.2 below.4

The results above are all that is needed to prove that the cohomology support loci
of a constructible complex are algebraic subsets of Char(A).

Theorem 13.6. — If K ∈ Db
c(CA), then each cohomology support locus Sk

m(A,K) is an

algebraic subset of Char(A).

Proof. — Recall that Char(A) is the complex manifold associated with the com-
plex algebraic variety Spec C[�]. Thus Rp∗(K ⊗C LC[�]) ∈ Db

coh(C[�]) determines an
object in the bounded derived category of coherent algebraic sheaves on Char(A), whose
fiber at any closed point ρ computes the hypercohomology of K ⊗C Cρ , according to
Corollary 13.5. We conclude that

Sk
m(A,K)

= {
ρ ∈ Char(A)

∣∣ dim Hk
(
Rp∗(K ⊗C LC[�])

L⊗C[�] C[�]/mρ

) ≥ m
}
,

and by Lemma 13.7 below, this description implies that Sk
m(A,K) is an algebraic subset

of Char(A). �

For the convenience of the reader, we include the following elementary lemma.

Lemma 13.7. — Let E be a perfect complex on a scheme X. For each k,m ∈ Z,

{
x ∈ X

∣∣ dim Hk(E
L⊗OX OX,x/mx) ≥ m

}

is the set of closed points of a closed subscheme of X.

4 In this setting, the transform does not determine the original constructible complex: for example, if K is any
constructible sheaf whose support is a finite union of points of A, then Rp∗(K ⊗C LC[�]) is a free C[�]-module of finite
rank.
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Proof. — Since the statement is local, it suffices to consider the case of a complex

Ek−1 f−−→ Ek
g−−→ Ek+1

of free R-modules of finite rank. For any prime ideal P ⊆ R, we shall use the notation

Ek−1 ⊗R R/P
fP−−→ Ek ⊗R R/P

gP−−→ Ek+1 ⊗R R/P

for the tensor product of the above complex by R/P. Now rk(ker gP/ im fP) ≥ m is clearly
equivalent to having rk(ker gP) ≥ m + i and rk(im fP) ≤ i for some i ≥ 0. Consequently,
the set of prime ideals P ∈ Spec R for which rk(ker gP/ im fP) ≥ m is equal to

⋃

i≥0

{
P

∣∣ rk(ker gP) ≥ m + i
} ∩ {

P
∣∣ rk(ker fP) ≥ rk

(
Ek−1

) − i
}
.

But this set can be defined by the vanishing of certain minors of f and g, and is therefore
naturally a closed subscheme of Spec R. �

For the more arithmetic questions in Section 16, we make the following observation
about fields of definition.

Proposition 13.8. — Let k be any subfield of C. If K ∈ Db
c(kA) is a constructible complex of

sheaves of k-vector spaces, then Rp∗(K ⊗k LC[�]) is defined over k.

Proof. — Indeed, we have LC[�] =Lk[�] ⊗k C, and therefore

Rp∗(K ⊗k LC[�]) � Rp∗(K ⊗k Lk[�]) ⊗k C

is obtained by extension of scalars from an object of Db
coh(k[�]). �

14. Comparison theorems. — Recall that we have a biholomorphic mapping

� : A� → Char(A)

that takes a line bundle with integrable connection to the corresponding local system of
rank one. In this section, we relate the Fourier-Mukai transform of a holonomic complex
M ∈ Db

h(DA) and the transform of the constructible complex DRA(M). Our first result
is purely set-theoretic, and concerns the relationship between the cohomology support
loci of M and DRA(M).

Theorem 14.1. — Let M ∈ Db
h(DA) be a holonomic complex on A. Then

�
(
A,Sk

m(A,M)
) = Sk

m

(
A,DRA(M)

)

for every k,m ∈ Z.
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Proof. — Let (M•, d) be the given holonomic complex. For any line bundle with
integrable connection (L,∇), the associated local system ker∇ is a subsheaf of L, and we
have (ker∇) ⊗C OA = L. This means that the natural sheaf morphisms

(
�

g+i

A ⊗OA Mj
) ⊗C ker∇ → �

g+i

A ⊗OA

(
Mj ⊗OA L

)

are isomorphisms for every i, j ∈ Z. Since they are compatible with the differentials d1 =
(−1)g∇Mj and d2 = id⊗ d , we obtain an isomorphism of complexes

DRA

(
M•) ⊗C ker∇ → DRA

(
M• ⊗OA (L,∇)

)
,

and therefore the desired relation between their hypercohomology groups. �

The second result is much stronger, and directly relates the two complexes
FMA(M) and Rp∗(DRA(M) ⊗C LC[�]). This only makes sense on the level of coher-
ent analytic sheaves, because � is not algebraic. For the remainder of this section, every

coherent sheaf is a coherent analytic sheaf.

Theorem 14.2. — Let M ∈ Db
h(DA) be a holonomic complex on A. Then the complex of

coherent analytic sheaves R�∗ FMA(M) is quasi-isomorphic to the complex of coherent analytic sheaves

determined by Rp∗(DRA(M) ⊗C LC[�]).

We shall denote by R = O(Char(A)) the ring of global holomorphic functions on
the Stein manifold Char(A). It is an algebra over C[�]: the holomorphic function cor-
responding to eλ takes a character ρ to the complex number ρ(λ). From the induced �-
action on R, we obtain a local system LR on the abelian variety A, and Proposition 13.4
says that

Rp∗
(
DRA(M) ⊗C LC[�]

) ⊗C[�] R � Rp∗
(
DRA(M) ⊗C LR

)
.

The idea of the proof of Theorem 14.2 is to relate this complex of finitely generated
R-modules to the complex of global sections of R�∗ FMA(M).

We begin by recalling the analytic description of the Poincaré bundle on A × A�.
Since � ⊗Z R = V, the canonical isomorphism

HomR(V,C) = HomZ(�,C)

allows us to identify a group homomorphism f : � → C with the induced R-linear func-
tional f : V → C. Now any such f ∈ HomR(V,C) gives rise to a translation-invariant
complex-valued one-form df on the abelian variety A, and therefore determines a line
bundle with integrable connection on A: the underlying smooth line bundle is A ×C; the
complex structure is given by ∂̄ + (df )0,1, and the connection by ∂ + (df )1,0. Briefly, we
say that the line bundle with integrable connection is defined by the operator d + df ; the
local system of its flat sections corresponds to the character ρf : � → C∗, ρf (λ) = e−f (λ).
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We thus have a commutative diagram:

Both horizontal arrows are surjective homomorphisms of complex Lie groups; their ker-
nels are equal to the subspace HomZ(�,Z(1)), where Z(1) = 2π i · Z ⊆ C. Note that if
f (�) ⊆ Z(1), then e−f descends to a nowhere vanishing real analytic function on A. On
the product V × HomR(V,C), one has the tautological function

F : V × HomR(V,C) → C, F(v, f ) = f (v).

Now we can describe the Poincaré bundle P� and the universal relative connec-
tion ∇� : P� → �1

A×A�/A� ⊗ P� on A × A�. The discrete group � × HomZ(�,Z(1)) acts
smoothly on the trivial bundle V × HomR(V,C) × C by the formula

(λ,φ) · (v, f , z) = (
v + λ, f + φ, e−φ(v)z

)
,

and the quotient is a smooth line bundle on A × A�. Its space of global sections consists
of all smooth functions σ : V × HomR(V,C) → C that satisfy

σ(v + λ, f + φ) = e−φ(v)σ (v, f )

for every λ ∈ � and every φ ∈ HomZ(�,Z(1)). The original bundle has both a complex
structure and a relative integrable connection, defined by the operator

(dV + dVF) + ∂̄HomR(V,C);
one can show that this operator descends to the quotient, and endows the smooth line
bundle from above with a complex structure and a connection relative to A�. This gives
a useful model for the pair (P�,∇�).

We now turn to the proof of Theorem 14.2. Our first concern is to describe the
direct image of (P�,∇�) under the projection p1 : A × A� → A�. Because A� is biholomor-
phic to Char(A), it is a Stein manifold, and so Ri(p1)∗P� = 0 for i ≥ 1. (Remember that
every coherent sheaf is a coherent analytic sheaf in this section.) It is also easy to see from the
analytic description of the Poincaré bundle that the sections of (p1)∗P� over an open set
U ⊆ A are

{
σ : π−1(U) × HomR(V,C) → C

∣∣∣∣
σ(v, f ) is holomorphic, and
σ(v+λ, f +φ) = e−φ(v)σ (v, f )

}
.

After taking the direct image of ∇� : P� → �1
A×A�/A� ⊗ P� and using the projection for-

mula, we end up with an operator

(p1)∗∇� : (p1)∗P� → �1
A ⊗OA (p1)∗P�.
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The next lemma relates its kernel to the local system defined by R = O(Char(A)).

Lemma 14.3. — The kernel of (p1)∗∇� is canonically isomorphic to LR.

Proof. — As with any representation of �, the sections of the local system LR over
an open set U ⊆ A are given by

LR(U) =
{
� : π−1(U) → R

∣∣∣∣
� is locally constant, and
�(v + λ) = e−1

λ �(v) for λ ∈ �

}
.

Now the operator (p1)∗∇� takes a section σ : π−1(U) × HomR(V,C) → C of (p1)∗P�

to the section (dV + dVF)(σ ) of �1
A ⊗ (p1)∗P�. This shows that σ lies in the kernel of

(p1)∗∇� exactly when s = eFσ is locally constant in its first argument. Remembering that
F(v, f ) = f (v), we compute that

s(v + λ, f + φ) = e(f +φ)(v+λ)e−φ(v)σ (v, f ) = ef (λ)s(v, f ).

Consequently, s(v,−) descends to a global holomorphic function on Char(A), and so we
get an element �(v) ∈ R. The resulting function � : π−1(U) → R is locally constant and
satisfies �(v + λ) = e−1

λ �(v), which means that � ∈ LR(U). Because this process is clearly
reversible, we obtain the asserted isomorphism. �

We can now complete the proof of Theorem 14.2 by imitating the argument from
the set-theoretic result about cohomology support loci.

Proof of Theorem 14.2. — Let (M•, d) be the given holonomic complex; to shorten
the notation, set K = DRA(M•). Our first task is to construct a morphism from the
complex of C[�]-modules Rp∗(K ⊗C LC[�]) to the complex of R-modules

Rp∗R�∗ FMA

(
M•) � Rp∗ FMA

(
M•)

here and elsewhere in the proof, p always denotes the mapping from a complex manifold
to a point. From the definition of the Fourier-Mukai transform,

Rp∗ FMA

(
M•) � Rp∗

(
R(p2)∗ DRA×A�/A�

(
p∗

1M• ⊗OA×A�

(
P�,∇�

)))

� Rp∗
(
R(p1)∗ DRA×A�/A�

(
p∗

1M• ⊗OA×A�

(
P�,∇�

)))
.

Because �
g+i

A×A�/A� � p∗
1�

g+i

A , we have a collection of morphisms

�
g+i

A ⊗OA Mj ⊗OA (p1)∗P� → (p1)∗
(
�

g+i

A×A�/A� ⊗OA×A�
p∗

1Mj ⊗OA×A�
P�

)
.

According to Lemma 14.3, the subsheaf ker(p1)∗∇� of (p1)∗P� is isomorphic to LR; by
composing with the inclusion of LC[�] into LR, we obtain morphisms

�
g+i

A ⊗OA Mj ⊗C LC[�] → (p1)∗
(
�

g+i

A×A�/A� ⊗OA×A�
p∗

1Mj ⊗OA×A�
P�

)
.
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These morphisms are clearly compatible with the differentials in both double complexes,
and so we obtain a morphism

DRA

(
M•) ⊗C LC[�] → (p1)∗ DRA×A�/A�

(
p∗

1M• ⊗OA×A�

(
P�,∇�

))

between the associated single complexes. Putting everything together, we get a canonical
morphism of complexes of C[�]-modules

Rp∗(K ⊗C LC[�]) → Rp∗R�∗ FMA

(
M•).

In the derived category, it induces a morphism from the complex of coherent analytic
sheaves on Char(A) determined by Rp∗(K⊗C LC[�]) to the complex of coherent analytic
sheaves R�∗ FMA(M•); this can be seen, for example, by representing the former by a
bounded complex of free C[�]-modules.

To conclude the proof, we have to show that the morphism is an isomorphism in
the derived category. This is equivalent to the cone of the morphism being acyclic, and is
therefore a local problem. Because the local ring at every point of the complex manifold
Char(A) is noetherian, and because both complexes are objects of Db

coh(OChar(A)), we can
apply Nakayama’s lemma; it is therefore enough to show that the restriction to every point
ρ ∈ Char(A) is an isomorphism. But by Corollary 13.5 and base change, this restriction
agrees with the morphism in the proof of Theorem 14.1; it is a quasi-isomorphism by the
argument given there. �

15. Structure theorem. — The goal of this section is to prove Theorem 2.2 and Theo-
rem 7.3, which together describe the structure of cohomology support loci for holonomic
complexes of DA-modules and for constructible complexes of sheaves of C-vector spaces.

Our proof is based on the observation that � : A� → Char(A) is an isomorphism of
complex Lie groups, but not of complex algebraic varieties. The most striking difference
between the two sides is that A� does not have any non-constant global algebraic functions
[Lau96, Théorème 2.4.1], whereas Char(A) is affine. Now linear subvarieties are clearly
algebraic in both models, because

�
(
(L,∇) ⊗ im

(
f � : B� → A�

))

= �(L,∇) · im
(
Char(f ) : Char(B) → Char(A)

)
.

The content of the following result by Simpson [Sim93, Theorem 3.1] is that finite unions
of linear subvarieties are the only closed subsets with this property.

Theorem 15.1 (Simpson). — Let Z be a closed algebraic subset of A�. If �(Z) is again a

closed algebraic subset of Char(A), then Z is a finite union of linear subvarieties of A�, and �(Z) is a

finite union of linear subvarieties of Char(A).
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In Theorem 13.6, we have already seen that cohomology support loci are algebraic
subsets of Char(A). With the help of the Fourier-Mukai transform, it is easy to show that
they are also algebraic subsets of A�.

Proposition 15.2. — If M ∈ Db
coh(DA), then the cohomology support loci Sk

m(A,M) are

algebraic subsets of A�.

Proof. — Since A� is a quasi-projective algebraic variety, we may represent
FMA(M) by a bounded complex (E •, d) of locally free sheaves on A�. Now let (L,∇) be
a line bundle with integrable connection, and let i(L,∇) denote the inclusion morphism.
By the base change theorem,

Ri∗(L,∇) FMA(M) � DRA

(
M⊗OA (L,∇)

)
,

and so we have

Sk
m(A,M) = {

(L,∇) ∈ A�
∣∣ dim Hk

(
i∗(L,∇)

(
E •, d

)) ≥ m
}
.

Because of Lemma 13.7, this description shows that Sk
m(A,M) is an algebraic subset of

A�, as claimed. �

We can now prove the two structure theorems from the introduction.

Proof of Theorem 2.2. — Let M ∈ Db
h(DA) be a holonomic complex. Then DRA(M)

is constructible, and we have

�
(
Sk

m(A,M)
) = Sk

m

(
A,DRA(M)

)

by Theorem 14.1. Proposition 15.2 shows that Sk
m(A,M) is an algebraic subset of A�;

Theorem 13.6 shows that Sk
m(DRA(M)) is an algebraic subset of Char(A). We conclude

from Simpson’s Theorem 15.1 that both must be finite unions of linear subvarieties of A�

and Char(A), respectively. The assertion about objects of geometric origin is proved in
Section 16 below. �

Proof of Theorem 3.2. — This follows from Theorem 14.2 and Simpson’s results by
the same argument as the one just given. �

16. Objects of geometric origin. — In this section, we study cohomology support loci
for semisimple regular holonomic DA-modules of geometric origin, as defined in [BBD82,
6.2.4]. To begin with, recall the following definition for mixed Hodge modules, due to
Saito [Sai91, Definition 2.6].
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Definition 16.1. — A mixed Hodge module is said to be of geometric origin if it is obtained

by applying several of the standard cohomological functors Hi f∗, Hi f!, Hi f ∗, Hi f !, ψg , φg,1, D, �,

⊕, ⊗, and Hom to the trivial Hodge structure QH of weight zero, and then taking subquotients in the

category of mixed Hodge modules.

One of the results of Saito’s theory [Sai88, Sai90] is that any semisimple perverse
sheaf of geometric origin, in the sense of [BBD82, 6.2.4], is a direct summand of a per-
verse sheaf underlying a mixed Hodge module of geometric origin. Consequently, any
semisimple regular holonomic D-module of geometric origin is a direct summand of a
D-module that underlies a polarizable Hodge module of geometric origin.

Theorem 16.2. — Let M be a semisimple regular holonomic DA-module of geometric origin.

Then each cohomology support locus Sk
m(A,M) is a finite union of arithmetic linear subvarieties of A�.

We introduce some notation that will be used during the proof. For any field auto-
morphism σ ∈ Aut(C/Q), we obtain from A a new complex abelian variety Aσ . Likewise,
an algebraic line bundle (L,∇) with integrable connection on A gives rise to (Lσ ,∇σ ) on
Aσ , and so we have a natural isomorphism of abelian groups

cσ : A� → (
Aσ

)�
.

Now recall the following notion, due in a slightly different form to Simpson, who modeled
it on Deligne’s definition of absolute Hodge classes.

Definition 16.3. — A closed subset Z ⊆ A� is said to be absolute closed if, for every field

automorphism σ ∈ Aut(C/Q), the set

�
(
cσ (Z)

) ⊆ Char
(
Aσ

)

is closed and defined over Q̄.

The following theorem about absolute closed subsets is also due to Simpson.

Theorem 16.4 (Simpson). — An absolute closed subset of A� is a finite union of arithmetic linear

subvarieties.

Proof. — Simpson’s definition [Sim93, p. 376] of absolute closed sets actually con-
tains several additional conditions (related to the space of Higgs bundles); but as he ex-
plains, a strengthening of [Sim93, Theorem 3.1], added in proof, makes these conditions
unnecessary. In fact, the proof of [Sim93, Theorem 6.1] goes through unchanged with
only the assumptions in Definition 16.3. �

With the help of Simpson’s result, the proof of Theorem 16.2 is straightforward.
We first establish the following lemma.
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Lemma 16.5. — Let M ∈ MHM(A) be a mixed Hodge module, with underlying filtered DA-

module (M,F). Then the cohomology support loci of the perverse sheaf DRA(M) are algebraic subsets

of Char(A) that are defined over Q̄.

Proof. — By definition, a mixed Hodge module has an underlying perverse sheaf
rat M with coefficients in Q, and DRA(M) � (rat M) ⊗Q C. By Proposition 13.8, it fol-
lows that Rp∗(DRA(M)⊗C LC[�]) ∈ Db

coh(C[�]) is obtained by extension of scalars from
an object of Db

coh(Q[�]). The assertion about cohomology support loci now follows easily
from Corollary 13.5. �

The same result is true for any holonomic DA-module with Q̄-structure; that is to
say, for any holonomic DA-module whose de Rham complex is the complexification of a
perverse sheaf with coefficients in Q̄. This is what Mochizuki calls a “pre-Betti structure”
in [Moc10].

Lemma 16.6. — Let K ∈ Db
c(Q̄A) be a perverse sheaf with coefficients in Q̄. Any simple

subquotient of K ⊗Q̄ C is the complexification of a simple subquotient of K.

Proof. — We only have to show that if K ∈ Db
c(Q̄A) is a simple perverse sheaf,

then K ⊗Q̄ C ∈ Db
c(CA) is also simple. By the classification of simple perverse sheaves,

there is an irreducible locally closed subvariety X ⊆ A, and an irreducible representation
ρ : π1(X) → GLn(Q̄), such that K is the intermediate extension of the local system asso-
ciated with ρ. Since Q̄ is algebraically closed, ρ remains irreducible over C, proving that
K ⊗Q̄ C is still simple. �

Proof of Theorem 16.2. — We first show that this holds when M underlies a mixed
Hodge module M obtained by iterating the standard cohomological functors (but with-
out taking subquotients). Fix two integers k,m, and set Z = Sk

m(A,M). In light of
Lemma 16.5, it suffices to prove that each set cσ (Z) is equal to Sk

m(Aσ ,Mσ ) for some
polarizable Hodge module Mσ ∈ MHM(Aσ ). But since M is of geometric origin, this is
obviously the case; indeed, we can obtain Mσ by simply applying σ to the finitely many
algebraic varieties and morphisms involved in the construction of M.

Now suppose that M is an arbitrary semisimple regular holonomic DA-module of
geometric origin. Then M is a direct sum of simple subquotients of DA-modules underly-
ing mixed Hodge modules of geometric origin. By the same argument as before, it suffices
to show that the perverse sheaf DRA(Mσ ) is defined over Q̄ for any σ ∈ Aut(C/Q). Now
DRA(Mσ ) is again a direct sum of simple subquotients of perverse sheaves underlying
mixed Hodge modules; by Lemma 16.6, it is therefore the complexification of a perverse
sheaf with coefficients in Q̄. We then conclude the proof as above. �
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D. Codimension bounds and perverse coherent sheaves

After a brief review of perverse coherent sheaves, we investigate how the Fourier-
Mukai transform for holonomic complexes interacts with various t-structures.

17. Perverse coherent sheaves. — Let X be a smooth complex algebraic variety. In
this section, we recall the construction of perverse t-structures on the bounded derived
category Db

coh(OX) of coherent algebraic sheaves, following [Kas04]. For a (possibly non-
closed) point x of the scheme X, we denote the residue field at the point by κ(x), the
inclusion morphism by ix : Specκ(x) ↪→ X, and the codimension of the closed subvariety
{x} by codim(x) = dimOX,x.

Definition 17.1. — A supporting function on X is a function p : X → Z from the un-

derlying topological space of the scheme X to the integers, with the property that p(y) ≥ p(x) whenever

y ∈ {x}.
Given a supporting function, Kashiwara defines two families of subcategories

pD≤k
coh(OX) = {

F ∈ Db
coh(OX)

∣∣ Li∗x F ∈ D≤k+p(x)

coh

(
κ(x)

)
for all x ∈ X

}
,

pD≥k
coh(OX) = {

F ∈ Db
coh(OX)

∣∣ Ri!xF ∈ D≥k+p(x)

coh

(
κ(x)

)
for all x ∈ X

}
.

The following fundamental result is proved in [Kas04, Theorem 5.9] and, based on a
suggestion by Deligne, in [AB10, Theorem 3.10].

Theorem 17.2 (Kashiwara, Arinkin-Bezrukavnikov). — The above subcategories define a

bounded t-structure on Db
coh(OX) if and only if the supporting function has the property that

p(y) − p(x) ≤ codim(y) − codim(x)

for every pair of (possibly non-closed) points x, y ∈ X with y ∈ {x}.
For example, the function p = 0 corresponds to the standard t-structure on

Db
coh(OX). An equivalent way of putting the condition in Theorem 17.2 is that the dual

function p̂(x) = codim(x)− p(x) should again be a supporting function. If that is the case,
one has the identities

p̂D≤k
coh(OX) = RHom

(
pD≥−k

coh (OX),OX

)

p̂D≥k
coh(OX) = RHom

(
pD≤−k

coh (OX),OX

)
,

which means that the duality functor RHom(−,OX) exchanges the two perverse t-
structures defined by p and p̂.
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Definition 17.3. — The heart of the t-structure defined by p is denoted

pCoh(OX) = pD≤0
coh (OX) ∩ pD≥0

coh (OX),

and is called the abelian category of p-perverse coherent sheaves.

We are interested in a special case of Theorem 17.2, namely the set of objects
F ∈ Db

coh(OX) with codim SuppHi(F) ≥ 2i for all i ≥ 0. Define a function

m : X → Z, m(x) =
⌊

1
2 codim(x)

⌋
.

It is easily verified that both m and the dual function

m̂ : X → Z, m̂(x) =
⌈

1
2 codim(x)

⌉

are supporting functions. As a consequence of Theorem 17.2, m defines a bounded t-
structure on Db

coh(OX); objects in the heart mCoh(OX) will be called m-perverse coherent

sheaves.5

The next lemma follows easily from [Kas04, Lemma 5.5].

Lemma 17.4. — The perverse t-structures defined by m and m̂ satisfy

mD≤k
coh(OX) = {

F ∈ Db
coh(OX)

∣∣ codim SuppHi(F) ≥ 2(i − k) for all i ∈ Z
}

m̂D≤k
coh(OX) = {

F ∈ Db
coh(OX)

∣∣ codim SuppHi(F) ≥ 2(i − k) − 1

for all i ∈ Z
}
.

By duality, this also describes the subcategories with ≥ k.

Consequently, an object F ∈ Db
coh(OX) is an m-perverse coherent sheaf precisely

when codim SuppHi(F) ≥ 2i and codim Supp RiHom(F,OX) ≥ 2i − 1 for every integer
i ≥ 0. This shows one more time that the category of m-perverse coherent sheaves is not
preserved by the duality functor RHom(−,OX).

Lemma 17.5. — If F ∈ mD≥0
coh (OX) or F ∈ m̂D≥0

coh (OX), then F ∈ D≥0
coh (OX).

Proof. — This is obvious from the fact that m̂ ≥ m ≥ 0. �

When it happens that both F and RHom(F,OX) are m-perverse coherent sheaves,
F has surprisingly good properties.

5 We use this letter because m and m̂ are as close as one can get to “middle perversity”. There is of course no actual
middle perversity for coherent sheaves, because the equality p = p̂ cannot hold unless X is a point.
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Proposition 17.6. — If F ∈ mD≤0
coh (OX) also satisfies RHom(F,OX) ∈ mD≤0

coh (OX), then it

has the following properties:

(i) Both F and RHom(F,OX) belong to mCoh(OX).

(ii) Let r ≥ 0 be the least integer with Hr(F) 
= 0; then every irreducible component of

SuppHr(F) has codimension 2r.

(iii) If H0(F) is nonzero, then it is a torsion-free sheaf on X.

Proof. — The first assertion follows directly from Lemma 17.4. To prove the second
assertion, note that we have codim SuppHr(F) ≥ 2r. After restricting to an open neigh-
borhood of the generic point of any given irreducible component, it therefore suffices to
show that if Hi(F) = 0 for i < r, and codim SuppHr(F) > 2r, then Hr(F) = 0. Under
these assumptions, we have

codim SuppHi(F) ≥ max(2i,2r + 1) ≥ i + r + 1,

and therefore RHom(F,OX) ∈ D≥r+1
coh (OX) by [Kas04, Proposition 4.3]. The same argu-

ment, applied to RHom(F,OX), now shows that F ∈ D≥r+1
coh (OX).

Now suppose in addition that H0(F) 
= 0. Because X is nonsingular, H0(F) being
torsion-free is equivalent to the inequalities

codim Supp RiHom
(
H0(F),OX

) ≥ i + 1 for every i ≥ 1.

To prove these inequalities, let τ≤n and τ≥n denote the truncation functors with respect to
the standard t-structure on Db

coh(OX); we have a distinguished triangle

(τ≥1F)[−1] →H0(F) → F → τ≥1F.

After applying the functor RHom(−,OX), we obtain an exact sequence

· · · → Ri+1Hom(F,OX) → RiHom
(
H0(F),OX

) → Ri+1Hom(τ≥1F,OX)

→ ·· ·
By assumption, the support of RiHom(F,OX) has codimension ≥ 2i; moreover, the sup-
port of Ri+1Hom(τ≥1F,OX) has codimension ≥ i + 2 by [Kas04, Proposition 4.3]. This
is enough to conclude that H0(F) is torsion-free. �

18. Description of the t-structure. — In this section, we show that the standard t-
structure on Db

h(DA) corresponds, under the Fourier-Mukai transform FMA, to the m-
perverse t-structure.

Theorem 18.1. — Let M ∈ Db
h(DA) be a holonomic complex on A. Then one has

M ∈ D≤k
h (DA) ⇐⇒ FMA(M) ∈ mD≤k

coh(OA�),

M ∈ D≥k
h (DA) ⇐⇒ FMA(M) ∈ mD≥k

coh(OA�).
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In particular, M is a single holonomic DA-module if and only if its cohomology support loci satisfy

codim Sk
1(A,M) ≥ |2k| for every k ∈ Z.

The first step of the proof consists in the following “generic vanishing theorem” for
holonomic DA-modules. In the regular case, this result is due to Krämer and Weissauer
[KW11, Theorem 1.1], whose argument relies on the (difficult) recent proof of Kashi-
wara’s conjecture for semisimple perverse sheaves [Sab13]. By contrast, our argument is
completely elementary.

Proposition 18.2. — Let M be a holonomic DA-module. Then for every i > 0, the support of

the coherent sheaf Hi FMA(M) is a proper subset of A�.

Proof. — Let F•M be a good filtration by OA-coherent subsheaves; this exists by
[HTT08, Theorem 2.3.1]. As in Section 12, we consider the associated coherent RA-
module RFM defined by the Rees construction, and its Fourier-Mukai transform

F̃MA(RFM) ∈ Db
coh(OE(A)).

By Proposition 12.1, F̃MA(RFM) is equivariant for the C∗-action on E(A), and for any
z 
= 0, its restriction to λ−1(z) � A� is isomorphic to FMA(M). It is therefore sufficient
to prove that the restriction of F̃MA(RFM) to λ−1(0) = A × H0(A,�1

A) has the asserted
property. By Proposition 12.1, this restriction is isomorphic to

(18.3) R(p23)∗
(
p∗

12P ⊗ p∗
13(id×ι)∗ grFM⊗ p∗

1�
g

A

)
,

where the notation is as in (10.8). Now M is holonomic, and so each irreducible compo-
nent of Supp(grFM) has dimension g. The support of p∗

13(id×ι)∗ grFM therefore has the
same dimension as Â × H0(A,�1

A), which implies that the support of the higher direct
image sheaves in (18.3) is a proper subset of Â × H0(A,�1

A). �

Together with the structure theory for cohomology support loci and basic proper-
ties of the Fourier-Mukai transform, this result now allows us to prove the first equivalence
asserted in Theorem 18.1.

Lemma 18.4. — For any M ∈ D≤k
h (DA), one has FMA(M) ∈ mD≤k

coh(OA�).

Proof. — The proof is by induction on dim A, the statement being obviously true
when A is a point. Since FMA is triangulated, it suffices to prove the statement for k = 0.
According to Lemma 17.4, what we then need to show is the following: for any holo-
nomic complex M ∈ D≤0

h (DA) concentrated in nonpositive degrees, the Fourier-Mukai
transform FMA(M) satisfies, for every � ≥ 1, the inequality

codim SuppH� FMA(M) ≥ 2�.
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Let Z be any irreducible component of SuppH� FMA(M), for some � ≥ 1. By Theo-
rem 3.2, Z is a linear subvariety of A�, hence of the form Z = t(L,∇)(im f �) for a surjective
morphism f : A → B and a suitable point (L,∇) ∈ A�. Furthermore, Proposition 18.2
shows that codim Z > 0, and therefore dim B < dim A. Setting r = dim A − dim B > 0,
we thus have codim Z = 2r.

Using the properties of the Fourier-Mukai transform listed in Theorem 9.5, we
find that the pullback of FMA(M) to the subvariety Z is isomorphic to

L
(
f �

)∗
Lt∗(L,∇) FMA(M) � FMB

(
f+

(
M⊗OA (L,∇)

)) ∈ Db
coh(OB�).

From the definition of the direct image functor f+, it is clear that f+(M ⊗OA (L,∇))

belongs to the subcategory D≤r
h (DB). The inductive assumption now allows us to con-

clude that the restriction of FMA(M) to Z lies in the subcategory mD≤r
coh(OZ). But Z is

an irreducible component of SuppH� FMA(M); it follows that � ≤ r, and consequently
codim Z ≥ 2�, as asserted. �

Lemma 18.5. — Let M ∈ Db
h(DA) be a holonomic complex. If its Fourier-Mukai transform

satisfies FMA(M) ∈ D≤k
coh(OA�), then M ∈ D≤k

h (DA).

Proof. — It again suffices to prove this for k = 0. By [Lau96, Théorème 3.2.1], we
can recover M—up to canonical isomorphism—from its Fourier-Mukai transform as

M= 〈−1A〉∗R(p1)∗
(
P� ⊗OA×A�

p∗
2 FMA(M)

)[g],

where p1 : A × A� → A and p2 : A × A� → A� are the two projections. If we forget about
the DA-module structure and only consider M as a complex of quasi-coherent sheaves
of OA-modules, we can use the fact that π : A� → A is affine to obtain

M= 〈−1A〉∗R(p1)∗
(
P ⊗OA×Â

p∗
2 π∗ FMA(M)

)[g],

where now p1 : A × Â → A and p2 : A × Â → Â. By virtue of Theorem 3.2, every irre-
ducible component of SuppH� FMA(M) is contained in a linear subvariety of codimen-
sion at least 2�; consequently, every irreducible component of Suppπ∗H� FMA(M) still
has codimension at least �. From this, it is easy to see that HiM= 0 for i > 0, and hence
that M ∈ D≤0

h (DA). �

Proof of Theorem 18.1. — The first equivalence is proved in Lemma 18.4 and Lemma
18.5 above. The second equivalence follows from this by duality, using the compatibil-
ity of the Fourier-Mukai transform with the duality functors for DA-modules and OA�-
modules (see Theorem 9.5). �
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19. Stability under truncation. — If the proposal in Section 6 has merit, and Fourier-
Mukai transforms of holonomic complexes are indeed “hyperkähler constructible com-
plexes”, then a complex of coherent sheaves on A� should belong to the subcategory

FMA

(
Db

h(DA)
) ⊆ Db

coh(OA�)

if and only if all of its cohomology sheaves do. This is because “constructibility” of a
complex should be defined in terms of the cohomology sheaves.

In this section, we prove that this is indeed the case. The result is that the subcat-
egory FMA(Db

h(DA)) is closed under the truncation functors τ≤n and τ≥n for the standard

t-structure on Db
coh(OA�). This is of course equivalent to the statement about cohomology

sheaves, but more convenient for doing induction.

Theorem 19.1. — Let F = FMA(M) for some M ∈ Db
h(DA). Then for every n ∈ Z, the

truncations τ≤nF and τ≥nF are again Fourier-Mukai transforms of holonomic complexes.

Proof. — It suffices to show the assertion for τ≤0F. Since FMA(τ≥1M) ∈ D≥1
coh (OA�)

by Lemma 17.5, we may replace M by τ≤0M and assume without loss of generality that
M ∈ D≤0

h (DA). Since codim SuppHiF ≥ 2i, each HiF with i ≥ 1 is then a torsion sheaf,
supported in a finite union of linear subvarieties of A�. We shall argue that, by suitably
modifying M, it is possible to remove these torsion sheaves from the picture, leaving us
with τ≤0F.

To measure the difference between F and τ≤0F, we introduce the set

N(F) =
⋃

i≥1

SuppHiF,

which is again a finite union of linear subvarieties of A�. Our goal is to reduce the size
of the set N(F), because N(F) is empty if and only if τ≤0F � F. Let i : Z ↪→ A� be an
irreducible component of N(F) of maximal dimension, let k ≥ 1 be the biggest integer
such that Z is an irreducible component of SuppHkF, and let m ≥ 1 be the multiplicity
of HkF along Z. We shall now describe how to modify M in a way that reduces the value
of m (and eventually also of k) but leaves the set N(F) ∪ {Z} invariant. After repeating
this construction a number of times, we can remove Z from the set N(F), possibly adding
linear subvarieties of Z of lower dimension in the process. After finitely many steps, we
thus arrive at N(F) = ∅, which is the desired outcome.

Since Z is a linear subvariety, we have Z = t(L,∇)(im f �), where f : A → B is a
morphism of abelian varieties with connected fibers, and (L,∇) ∈ A�; to simplify the
notation, we shall assume that (L,∇) = (OA, d). If we set r = dim A − dim B, then
codim Z = 2r; moreover, the fact that Z is an irreducible component of SuppHkF im-
plies that 2r = codim Z ≥ 2k, and hence that r ≥ k.

Now consider the pullback Li∗F to the subvariety Z. By construction, the k-th co-
homology sheaf of Li∗F is supported on all of Z, while all higher cohomology sheaves are
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torsion. By Theorem 9.5, we have Li∗F � FMB(f+M), and therefore Hk FMB(f+M) 
= 0.
If we now define

N = τ≥kf+M ∈ D[k,r]
h (DB),

we obtain a distinguished triangle

FMB(τ≤k−1f+M) → FMB(f+M) → FMB(N ) → FMB(τ≤k−1f+M)[1];
we conclude that Hk FMB(N ) and i∗HkF are isomorphic at the generic point of Z, and
that Hi FMB(N ) is a torsion sheaf for i > k.

The adjunction morphism M → f +f+M induces a morphism M → f +N . We
choose M′ ∈ Db

h(DA) so as to have a distinguished triangle

M′ →M→ f +N →M′[1].
Since f is smooth of relative dimension r, we have f +N ∈ D[k−r,0]

h (DA); consequently,
M′ ∈ D≤1

h (DA). Let F′ = FMA(M′); we claim that N(F′) ⊆ N(F), that τ≤0F′ � τ≤0F, and
that the multiplicity of HkF′ along Z is strictly smaller than that of HkF.

The first part is obvious: by Theorem 9.5, we have FMA(f +N ) � Ri∗ FMB(N ),
and so the support of the Fourier-Mukai transform of f +N is entirely contained in Z.
Moreover, FMA(f +N ) belongs to D≥k

coh(OA�); the support of Hk FMA(f +N ) is equal to
Z, while all higher cohomology sheaves are supported in proper subvarieties of Z. In
particular, τ≤0F′ � τ≤0F.

To prove the assertion about the multiplicity, observe that we have an exact se-
quence

0 →HkF′ →HkF →Hk FMA

(
f +N

)
.

Now Hk FMA(f +N ) � i∗Hk FMB(N ) is isomorphic to i∗HkF at the generic point of Z.
After localizing at the generic point of Z, we can apply Lemma 19.2 below, which implies
that the multiplicity of HkF′ along Z is strictly less than that of HkF.

To conclude the reduction step, we now set M′′ = τ≤0M′ and F′′ = FMA(M′′).
Then M′′ ∈ D≤0

h (DA), we have τ≤0F′′ � τ≤0F, and while N(F′′) ⊆ N(F), the multiplicity
of HkF′′ along Z is strictly smaller than that of HkF. As explained above, this suffices to
conclude the proof. �

Lemma 19.2. — Let (R,m) be a local ring, and let M a nonzero finitely generated R-module

with mnM = 0 for some n ≥ 1. If we set M′ = ker(M → M/mM), then

dimR/m M′ = dimR/m M − dimR/m M/mM < dimR/m M.

In particular, the multiplicity of M′ is strictly smaller than that of M.
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Proof. — Nakayama’s lemma implies that M/mM 
= 0. �

Here are several immediate consequences of Theorem 19.1.

Corollary 19.3. — A complex of coherent sheaves on A� is the Fourier-Mukai transform of a

holonomic complex if and only if all of its cohomology sheaves are.

Proof. — One direction is obvious because of Theorem 19.1; the other follows from
the fact that Db

h(DA) is a thick subcategory of Db
coh(DA). �

Corollary 19.4. — Suppose that F ∈ Coh(OA�) is the Fourier-Mukai transform of a holo-

nomic complex. Then the same is true for its reflexive hull.

Proof. — The reflexive hull Hom(Hom(F ,O),O) is obtained from F by dualizing
and truncating twice; both operations preserve the property of being the Fourier-Mukai
transform of a holonomic complex. �

Corollary 19.5. — Suppose that F ∈ Coh(OA�) is the Fourier-Mukai transform of a

holonomic complex. If F is reflexive, then there is a holonomic DA-module M such that F �
H0 FMA(M).

Proof. — Let N ∈ D≤0
h (DA) be such that F = FMA(N ). If we now define M =

H0N , then the distinguished triangle

FMA(τ≤−1N ) → F → FMA(M) → FMA(τ≤−1N )[1]
gives us an exact sequence

(19.6) H0 FMA(τ≤−1N ) → F →H0 FMA(M) →H1 FMA(τ≤−1N ).

By Lemma 18.4, FMA(τ≤−1N ) is an object of mD≤−1
coh (OA�), and so the supports of the

two sheaves on the outside have codimension ≥ 2 and ≥ 4, respectively. Because F
is torsion-free, this forces F → H0 FMA(M) to be injective. But then we know from
Proposition 17.6 that H0 FMA(M) is a torsion-free sheaf; putting everything together, it
follows that F �H0 FMA(M). �

E. Simple holonomic D-modules

This chapter is devoted to a more careful study of Fourier-Mukai transforms of
simple holonomic DA-modules. In particular, we shall discover that they are intersection
complexes for the m-perverse coherent t-structure, in a sense made precise below.
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20. Classification by support. — In this section, we prove a structure theorem for the
Fourier-Mukai transform of a simple holonomic DA-module. The idea is that, in the case
of a simple holonomic D-module, the support of the Fourier-Mukai transform must be a
single linear subvariety; and if that linear subvariety is not equal to A�, then the D-module
in question is—up to tensoring by a line bundle—pulled back from a lower-dimensional
abelian variety.

Theorem 20.1. — Let M be a simple holonomic DA-module, and let r ≥ 0 be the least integer

such that Hr(FMA(M)) 
= 0. Then there is an abelian variety B of dimension dim B = dim A − r,

a surjective morphism f : A → B with connected fibers, and a simple holonomic DB-module N , such

that

M⊗OA (L,∇) � f ∗N

for a suitable point (L,∇) ∈ A�. Moreover, we have SuppH0(FMB(N )) = B� and

Supp FMA(M) = (L,∇) ⊗ im
(
f � : B� → A�

)
.

This result clearly implies Theorem 5.1 from the introduction. Here is the proof of
the corollary about simple holonomic DA-modules with Euler characteristic zero.

Proof of Corollary 5.2. — Let (L,∇) ∈ A� be a generic point. Because

0 = χ(A,M) = χ
(
A,M⊗OA (L,∇)

)

= dim H0
(
A,DRA

(
M⊗OA (L,∇)

))
,

we find that the support of H0 FMA(M) is a proper subset of A�. Both FMA(M) and the
dual complex belong to mD≤0

coh (OA�) by Theorem 18.1, and so we conclude from Proposi-
tion 17.6 that H0 FMA(M) = 0. Now it only remains to apply Theorem 20.1. �

For the proof of Theorem 20.1, we need two small lemmas. The first describes the
inverse image of a simple holonomic D-module.

Lemma 20.2. — Let f : A → B be a surjective morphism of abelian varieties, with connected

fibers. If N is a simple holonomic DB-module, then f ∗N is a simple holonomic DA-module.

Proof. — Since f is smooth, f ∗N = OA ⊗f −1OB f −1N is a holonomic DA-module. Ac-
cording to the classification of simple holonomic D-modules [HTT08, Theorem 3.4.2],
there is a locally closed subvariety X ⊆ B, and an irreducible representation ρ : π1(X) →
GL(V), such that N is the minimal extension of the integrable connection on X associ-
ated with ρ. Now f has connected fibers, and so the map on fundamental groups

f∗ : π1

(
f −1(X)

) → π1(X)
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is surjective. Clearly, the pullback f ∗N is equal, over f −1(X), to the integrable connection
associated with the representation ρ ◦ f∗ : π1( f −1(X)) → π1(X) → GL(V). This repre-
sentation is still irreducible because f∗ is surjective; to conclude the proof, we shall argue
that f ∗N is the minimal extension.

By [HTT08, Theorem 3.4.2], it suffices to show that f ∗N has no submodules
or quotient modules that are supported outside of f −1(X). Suppose that M ↪→ f ∗N is
such a submodule. We have f +N = f ∗N [r], where r = dim A−dim B; by adjunction, the
morphism M ↪→ f ∗N corresponds to a morphism f+M[r] →N , which factors uniquely
as

f+M[r] →Hr f+M→N .

Since Hr f+M is supported outside of X, this morphism must be zero; consequently,
M = 0. A similar result for quotient modules can be derived by applying the duality
functor, using [HTT08, Theorem 2.7.1]. This shows that f ∗N is the minimal extension
of a simple integrable connection, and hence simple. �

The second lemma deals with restriction to an irreducible component of the sup-
port of a complex.

Lemma 20.3. — Let X be a scheme, and let F ∈ Db
coh(OX). Suppose that Z is an irreducible

component of the support of Hr(F) that is not contained in SuppHi(F) for any i > r. Let i : Z ↪→ X
be the inclusion. Then the morphism

Hr(F) →Hr
(
Ri∗Li∗F

)

induced by adjunction is nonzero at the generic point of Z.

Proof. — After localizing at the generic point of Z, we may assume that X = Spec R
for a local ring (R,m), and that F ∈ Db

coh(R) is represented by a complex

· · · −→ Fr−2 d−→ Fr−1 d−→ Fr

of finitely generated free R-modules. Set M = Hr(F) = Fr/dFr−1, which is a finitely
generated R-module with M 
= 0. Then Hr(Ri∗Li∗F) � M/mM, and the morphism
M → M/mM is nonzero by Nakayama’s lemma. �

We can now prove our structure theorem for simple holonomic DA-modules.6

Proof of Theorem 20.1. — Let F = FMA(M) ∈ Db
coh(OA�). Theorem 18.1 shows that

F ∈ mCoh(OA�); by duality, it follows that RHom(F,OA�) ∈ mCoh(OA�), too. According to

6 The proof can be simplified by using the fact that semi-simplicity is preserved under projective direct images. This
is a very hard theorem by Sabbah and Mochizuki—see [Sab13] for the history of this result—and so it seemed better to
give an elementary proof.
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Proposition 17.6, the codimension of the support of Hr(F) is therefore equal to 2r for
some r ≥ 0; moreover, each irreducible component of SuppHr(F) is a linear subvariety
by Theorem 3.2. After tensoring M by a suitable line bundle with integrable connection,
we may therefore assume that one irreducible component of the support of Hr(F) is equal
to im f �, for a surjective morphism of abelian varieties f : A → B with connected fibers
and dim B = dim A − r.

To produce the required simple DB-module, consider the direct image f+M, which
belongs to D≤r

h (DB). We have a distinguished triangle

τ≤r−1( f+M) → f+M→Hr( f+M)[−r] → · · ·
in Db

h(DB), and hence also a distinguished triangle

(20.4) f +τ≤r−1( f+M) → f +f+M→ f +Hr( f+M)[−r] → · · ·
in Db

h(DA). Since f is smooth, f +Hr( f+M)[−r] = f ∗Hr( f+M) is a single holonomic
DA-module. Let α : M→ f +f+M be the adjunction morphism.

Now we observe that the induced morphism M→ f ∗Hr( f+M) must be nonzero.
Indeed, suppose to the contrary that the morphism was zero. Then α factors as

M→ f +τ≤r−1( f+M) → f +f+M.

If we apply the Fourier-Mukai transform to this factorization, and use the properties in
Theorem 9.5, we obtain

F → Rf �
∗ FMB

(
τ≤r−1( f+M)

) → Rf �
∗ L

(
f �

)∗
F,

which is a factorization of the adjunction morphism for the closed embedding f �. In
particular, we then have

Hr(F) →Hr
(
Rf �

∗ FMB

(
τ≤r−1( f+M)

)) →Hr
(
Rf �

∗ L
(

f �
)∗

F
);

but because the coherent sheaf in the middle is supported in a subset of im f � of codimen-
sion at least two, this contradicts Lemma 20.3. Therefore, M → f ∗Hr( f+M) is indeed
nonzero.

Being a holonomic DB-module, Hr( f+M) admits a finite filtration with simple
quotients; consequently, we can find a simple holonomic DB-module N and a nonzero
morphism M → f ∗N . Since M is simple, and f ∗N is also simple by Lemma 20.2, the
morphism must be an isomorphism, and so M� f ∗N .

To prove the final assertion, note that f ∗N = f +N [−r]; on account of Theo-
rem 9.5, we therefore have

FMA(M) � FMA

(
f ∗N

) � Rf �
∗ FMB(N )[−r].
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Since im f � is an irreducible component of the support of Hr(FMA(M)), it follows that
SuppH0(FMB(N )) = B�, as claimed. �

The proof also gives the following surprising improvement of Theorem 18.1 for
simple holonomic D-modules.

Corollary 20.5. — Let M be a simple holonomic DA-module with H0 FMA(M) 
= 0. Then

for every k > 0, we have codim SuppHk FMA(M) ≥ 2k + 2.

Proof. — If we had codim SuppHk FMA(M) = 2k for some k > 0, then the same
proof as above would show that M is pulled back from an abelian variety of dimension
g − k. This possibility is ruled out by our assumption that H0 FMA(M) 
= 0. �

21. Rigidity of the Fourier-Mukai transform. — Corollary 20.5 has a very interest-
ing consequence, namely that the Fourier-Mukai transform of a simple holonomic DA-
module is completely determined by a single locally free sheaf: the restriction of the 0-th
cohomology sheaf to the open subset where it is locally free.

Proposition 21.1. — Let M be a simple holonomic DA-module, and suppose that the support

of F = FMA(M) is equal to A�. Then H0F is a reflexive coherent sheaf, locally free on the complement

of a finite union of linear subvarieties of codimension ≥ 4; and F is uniquely determined by the restriction

of H0F to that open subset.

Proof. — We shall use the symbols τ≤n and τ≥n for the truncation functors with
respect to the standard t-structure on Db

coh(OA�).
Let us first show that H0F is reflexive. We have F ∈ mCoh(OA�), and therefore

F ∈ D≥0
coh (OA�), according to Theorem 18.1 and Lemma 17.5. This means that we can

write down a distinguished triangle

H0F → F → τ≥1F → (
H0F

)[1],
and after dualizing, an exact sequence

RiHom(F,O) → RiHom
(
H0F,O

) → Ri+1Hom(τ≥1F,O).

Since RHom(F,O) is isomorphic to the Fourier-Mukai transform of the simple holo-
nomic DA-module 〈−1A〉∗DAM, we get codim Supp RiHom(F,O) ≥ 2i + 2 for all i ≥ 1;
on the other hand, we have τ≥1F ∈ D≥1

coh (OA�), and [Kas04, Proposition 4.3] shows that

codim Supp Ri+1Hom(τ≥1F,O) ≥ i + 2.

Together, this proves that codim Supp RiHom(H0F,O) ≥ i + 2 for every i ≥ 1; because
A� is nonsingular, these inequalities guarantee that H0F is reflexive.
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Now let j : U ↪→ A� be the maximal open subset where H0F is locally free. Observe
that the complement

A� \ U =
⋃

k≥1

Supp RkHom(F,OA�) =
⋃

k≥1

〈−1A�〉SuppHk FMA(DAM)

is a finite union of linear subvarieties of A�, of codimension at least four. Because H0F is
reflexive, it is uniquely determined by j∗H0F; in fact, we have

H0F � j∗j∗H0F.

To prove the remaining assertion, it will be enough to show that, for each n ≥ 0,
the truncation τ≤nF can be reconstructed starting from H0F. We shall argue by induction
on n ≥ 0, using that τ≤0F =H0F. Consider the distinguished triangle

τ≤nF → F → τ≥n+1F → (τ≤nF)[1].
According to Corollary 20.5, we have codim SuppHi(F) ≥ 2i +2 ≥ i +n+3 for every i ≥
n + 1; in combination with [Kas04, Proposition 4.3], this implies that RHom(τ≥n+1F,O)

belongs to D≥n+3
coh (OA�). After dualizing, we conclude that

τ≤n+1RHom(F,O) � τ≤n+1RHom(τ≤nF,O).

The same argument, applied to the dual complex RHom(F,O), shows that

τ≤n+2F � τ≤n+2RHom
(
τ≤n+1RHom(F,O),O

)
.

Together, this says that we always have

(21.2) τ≤n+2F � τ≤n+2RHom
(
τ≤n+1RHom(τ≤nF,O),O

)
,

thereby concluding the proof. �

The procedure used during the proof leads to the following striking result.

Corollary 21.3. — Under the same assumptions as above, FMA(M) can be reconstructed, up

to isomorphism, by applying the functor

τ≤�−1 ◦ RHom(−,O) ◦ · · · ◦ τ≤2 ◦ RHom(−,O) ◦ τ≤1 ◦ RHom(−,O) ◦ j∗

to the locally free sheaf j∗H0 FMA(M); here � is any odd integer with � ≥ dim A.

Proof. — This follows (21.2) and the fact that F ∈ D≤dim A−1
coh (OA�). �

22. Intersection complexes. — The formula in Corollary 21.3 for the Fourier-Mukai
transform of a simple holonomic DA-module is similar to Deligne’s formula for the inter-
section complex of a local system. The purpose of this section is to turn that analogy into
a rigorous statement.7

7 In [AB10, Section 4], Arinkin and Bezrukavnikov also define a notion of “coherent IC-sheaves”. Unfortunately, I
do not know how their definition relates to Definition 22.1.
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We shall use the assumptions and notations of Section 17; in particular, X will be a
smooth complex algebraic variety. We write τ≤n and τ≥n for the truncation functors with
respect to the standard t-structure on Db

coh(OX). To simplify the notation, let us introduce
the symbol

� = RHom(−,OX) : Db
coh(OX) → Db

coh(OX)opp

for the naive duality functor. Define

�(X) = 2
⌈

dim X + 1
4

⌉
− 1,

which is the smallest odd integer such that 2� + 1 ≥ dim X.

Definition 22.1. — Let F be a reflexive coherent sheaf. The complex

IC(F ) = (
τ≤�(X)−1 ◦ � ◦ τ≤�(X)−2 ◦ � ◦ · · · ◦ τ≤2 ◦ � ◦ τ≤1 ◦ �

)
F

will be called the intersection complex of F .

In the definition, �(X) may be replaced by any odd integer � with the property
that 2� + 1 ≥ dim X; will see below that this does not change the resulting complex of
coherent sheaves (up to isomorphism).

When the coherent sheaf F is locally free, we of course have IC(F ) � F . The
first result is that IC(F ) is always an m-perverse coherent sheaf.

Proposition 22.2. — The complex IC(F ) is an m-perverse coherent sheaf. Its 0-th cohomology

sheaf is isomorphic to F , and

codim SuppHi IC(F ) ≥ 2i + 1 for every i ≥ 1.

The dual complex � IC(F ) has the same properties, but H0� IC(F ) �Hom(F ,OX).

Proof. — Our main task is to show that both IC(F ) and � IC(F ) belong to the
subcategory mD≤0

coh (OX). We recursively define a sequence of complexes by setting

Fn = τ≤n−1�Fn−1,

starting from F0 = Hom(F ,OX). Observe that F1 � F , because we are assuming that
F is reflexive. We shall first prove by induction on n ≥ 0 that

(22.3) Fn ∈ D≥0
coh (OX), and codim SuppHiFn ≥ 2i + 1 for every i ≥ 1.

To get started, note that (22.3) is obviously true for n = 0 and n = 1: indeed, both F0 =
Hom(F ,OX) and F1 � F are sheaves.
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Suppose now that we already know the result for all integers between 0 and n.
From the definition of Fn, we obtain a distinguished triangle

Fn → �Fn−1 → τ≥n�Fn−1 → Fn[1];
after dualizing again, this becomes

(22.4) �τ≥n�Fn−1 → Fn−1 → �Fn → (�τ≥n�Fn−1)[1].
From (22.3), we get �Fn ∈ m̂D≥0

coh (OX); together with Lemma 17.5, this implies that both
�Fn and Fn+1 = τ≤n�Fn are objects of D≥0

coh (OX).
It remains to show that Fn+1 also lies in the subcategory mD≤0

coh (OX). According to
[Kas04, Proposition 4.3], which we have already used several times,

codim Supp
(
Hi�τ≥n�Fn−1

) ≥ i + n;
from (22.3), we also know that codim SuppHiFn−1 ≥ 2i + 1 for i ≥ 1. The distinguished
triangle in (22.4) gives an exact sequence

(22.5) HiFn−1 →Hi�Fn →Hi+1�τ≥n�Fn−1,

from which it follows that codim SuppHi�Fn ≥ min(2i + 1, i + n + 1) ≥ 2i + 1 as long as
1 ≤ i ≤ n. This means that Fn+1 = τ≤n�Fn also satisfies (22.3). We have thus proved that
(22.3) is true for all n ≥ 0. A useful consequence is that

HiFn = 0 once i > b(X) =
⌈

dim X
2

⌉
− 1,

which means that Fn ∈ D≤b(X)

coh (OX) for every n ≥ 0.
Next, let us show that the sequence of complexes Fn eventually settles into the

pattern F,�F,F,�F, . . . . Here we need a bound on the amplitude of �Fn:

(22.6) Hi�Fn = 0 if i > b(X) and i > dim X − n − 1.

The proof is again by induction on n ≥ 0: the statement is obviously true for n = 0 and
n = 1; for the inductive step, one uses (22.5). Looking back at (22.4), we can then say that
τ≥n�Fn−1 = 0 as soon as n > b(X) and n > dim X − (n − 1) − 1; this translates into the
condition that

2n − 1 ≥ dim X.

If that is the case, we get

Fn−1 � �Fn and Fn+1 = τ≤n�Fn � Fn−1,
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and so from that point on, the sequence of complexes alternates between Fn−1 and �Fn−1.
Consequently, the intersection complex of F satisfies

IC(F ) � F� and � IC(F ) � F�+1

where � is any odd integer such that 2�+1 ≥ dim X. Since it is obvious from the definition
that H0 IC(F ) is isomorphic to F , we have now proved everything that was asserted. �

As in the case of Fourier-Mukai transforms, the fact that F is reflexive means that
IC(F ) is already determined by the restriction of F to an open subset.

Corollary 22.7. — Let j : U ↪→ X denote the maximal open subset where F is locally free.

Then the intersection complex of F satisfies

IC(F ) � IC
(
j∗j∗F

)
,

and is therefore uniquely determined by the locally free sheaf j∗F .

Proof. — The codimension of X \ U is ≥ 2, and so j∗j∗F is isomorphic to F . �

We can therefore extend the definition of the intersection complex to locally free
sheaves that are defined on the complement of a subset of codimension at least two.

Definition 22.8. — Let j : U ↪→ X be an open subset with codim(X \ U) ≥ 2, and let E
be a locally free coherent sheaf on U. Then the complex

ICX(E ) = IC(j∗E )

will be called the intersection complex of E (with respect to X).

Our next result is that ICX(E ) actually behaves like an intersection complex: it
does not have nontrivial subobjects or quotient objects whose support is properly con-
tained in X. For technical reasons, the statement is not symmetric.

Proposition 22.9. — Let F be a torsion-free coherent sheaf on X.

(a) If a subobject of ICX(E ) in the abelian category mCoh(OX) is supported on a proper subset

of X, then that subobject must be zero.

(b) If a quotient object of ICX(E ) in the abelian category m̂Coh(OX) is supported on a proper

subset of X, then that quotient object must be zero.

Proof. — Since � interchanges the two abelian categories mCoh(OX) and
m̂Coh(OX), it suffices to prove (a) for both ICX(E ) and � ICX(E ). Set F = j∗E . We
shall only deal with IC(F ); the argument in the other case is exactly the same.
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Suppose then that we have a subobject E of IC(F ), with Supp E 
= X; we need to
show that E = 0. Because mCoh(OX) is defined as the heart of a t-structure, E being a
subobject means that we have a distinguished triangle

E → IC(F ) → F → E[1]

in which E and F are objects of mCoh(OX). After dualizing, this becomes

�F → � IC(F ) → �E → �F[1].

Now �F ∈ m̂Coh(OX) has the property that codim SuppHi�F ≥ 2i − 1; we also know
from Proposition 22.2 that codim SuppHi� IC(F ) ≥ 2i + 1 for i ≥ 1. Looking at the
second distinguished triangle, we find that

codim SuppHi�E ≥ 2i + 1

for i ≥ 1; in fact, this also holds for i = 0 because Supp E 
= X. This clearly means that
�E ∈ mD≥0

coh (OX), too. Now apply Proposition 17.6 to get �E = 0. �

Note that the distinction between mCoh(OX) and m̂Coh(OX) does not matter if we
only consider objects for which the support of every cohomology sheaf has even dimen-
sion. This is the case for Fourier-Mukai transforms of holonomic complexes.

Proposition 22.10. — Suppose that a reflexive coherent sheaf F on A� is the Fourier-Mukai

transform of a holonomic complex. Then the same is true for IC(F ).

Proof. — A look at the formula for the intersection complex in Definition 22.1
shows that it is obtained by repeatedly dualizing and truncating. By Theorem 9.5 and
Theorem 19.1, both operations preserve the subcategory FMA(Db

h(DA)). �

As an object of the abelian category FMA(Db
h(DA)), the intersection complex of F

now has neither subobjects nor quotient objects that are supported in a proper subset of
A� (except for the zero object). This shows that the analogy with the intersection complex
in [BBD82] is meaningful.

F. Miscellaneous results

This concluding chapter contains a small number of additional results about
Fourier-Mukai transforms of holonomic complexes.
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23. A criterion for holonomicity. — In this section, we give a necessary and sufficient
condition for a complex of coherent sheaves on A� to be of the form FMA(M) for a
holonomic complex M. Unfortunately, this condition is not very useful in practice: on
the one hand, it is hard to verify; on the other hand, it does not directly imply any of the
properties of Fourier-Mukai transforms of holonomic complexes that we already know.8

Proposition 23.1. — The following conditions on F ∈ Db
coh(OA�) are equivalent:

(a) F is the Fourier-Mukai transform of a holonomic complex.

(b) For every L ∈ Pic0(Â), the cohomology groups

Hk
(
A�,F ⊗ π∗L

)

are finite-dimensional for every k ∈ Z.

Proof. — Since FMA : Db
coh(DA) → Db

coh(OA�) is an equivalence of categories, there
is a (essentially unique) complex of D-modules M ∈ Db

coh(DA) with F � FMA(M). Ac-
cording to [HTT08, Theorem 3.3.1], M is a holonomic complex if and only if

i+a M ∈ Db
coh(C)

for every point a ∈ A. Let Pa ∈ Pic0(Â) denote the line bundle on Â corresponding to the
point a ∈ A. If p : A� → pt is the morphism to a point, we have

i+a M= Rp∗
(
FMA(M) ⊗ π∗P−1

a

)

by Theorem 9.5; this immediately implies the asserted equivalence. �

24. Chern characters. — The purpose of this section is to compute the algebraic
Chern character of FMA(M), for M a holonomic DA-module.

For a smooth algebraic variety X, we denote by CH(X) the algebraic Chow ring
of X. To begin with, observe that since π : A� → Â is an affine bundle in the Zariski
topology, the pullback map π∗ : CH(Â) → CH(A�) is an isomorphism.

Proposition 24.1. — Let M be a holonomic DA-module. Then the algebraic Chern character

of the Fourier-Mukai transform FMA(M) lies in the subring of CH(Â) generated by CH1
1(Â) =

Pic0(Â).

Proof. — Since π : E(A) → Â is an algebraic vector bundle containing A� = λ−1(1),
pullback of cycles induces isomorphisms

CH(Â) � CH
(
E(A)

) � CH
(
A�

)
.

8 In a sense, this answers the question raised in Section 6—but not in a way that is particularly useful. The problem
is that the condition is Proposition 23.1 is a global one, whereas we are really asking for a local characterization of Fourier-
Mukai transforms of holonomic complexes.
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As in the proof of Proposition 18.2, choose a good filtration F•M and consider the
Fourier-Mukai transform F̃MA(RFM) of the associated Rees module. Its restriction
to A� is isomorphic to FMA(M), and so it suffices to show that the Chern charac-
ter of F̃MA(RFM) is contained in the subring generated by Pic0(Â). Since λ−1(0) =
Â × H0(A,�1

A), we only need to prove this after restricting to Â × {ω} ⊆ λ−1(0), for any
choice of ω ∈ H0(A,�1

A).
By Proposition 12.1, the restriction of F̃MA(RFM) to λ−1(0) is isomorphic to

(24.2) R(p23)∗
(
p∗

12P ⊗ p∗
1�

g

A ⊗ p∗
13(id×ι)∗ grFM

)
.

Since M is holonomic, the support of grFM is of pure dimension g. Now choose ω ∈
H0(A,�1

A) general enough that the restriction of grFM to A × {ω} is a coherent sheaf
with zero-dimensional support. The restriction of (24.2) to Â × {ω} is then the Fourier-
Mukai transform of a coherent sheaf on A with zero-dimensional support; its algebraic
Chern character must therefore be contained in the subring of CH(Â) generated by
Pic0(Â). �

Corollary 24.3. — Let M be a holonomic DA-module. Then all the Chern classes of

FMA(M) are zero in the singular cohomology ring of A�.

25. Ampleness results. — The following result says that, in most cases, the singular
locus of a holonomic D-module is an ample divisor.

Theorem 25.1. — Let M be a holonomic D-module with support equal to A. Let D(M) be

the image in A of the projectivized characteristic variety of M. If χ(A,M) 
= 0, then D(M) is an

ample divisor.

Proof. — Since the Euler characteristic of any holonomic DA-module is nonnega-
tive, it suffices to prove the assertion when M is simple. If D(M) is not an ample divisor,
then all of its codimension one components are fibered in a fixed abelian subvariety, and
so there is a morphism f : A → B, with dim B = dim A − r, such that no codimension
one component of D(M) dominates B. On A \ D(M), we have a vector bundle with
integrable connection; its restriction to a general fiber of f extends to a vector bundle
with integrable connection on the entire fiber. We can then argue as in the proof of The-
orem 20.1 to show that M ⊗OA (L,∇) � f ∗N for a simple holonomic DB-module N .
But this implies that χ(A,M) = 0. �

The following result is inspired by the application of Hodge modules and their
Fourier-Mukai transforms to varieties of general type in [PS14].

Theorem 25.2. — Let M be a holonomic D-module on A, and suppose that for some ample

line bundle L, there is a nonzero morphism of OA-modules L →M.
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(a) If SuppM= A, then the singular locus D(M) is an ample divisor.

(b) The projection Ch(M) → H0(A,�1
A) is surjective.

Proof. — Both assertions will be proved if we manage to show that H0 FMA(M) 
=
0. The given morphism induces a nonzero morphism of DA-modules

DA ⊗OA L →M,

and therefore a nonzero morphism

FMA(DA ⊗OA L) → FMA(M)

between their Fourier-Mukai transforms. By Theorem 9.5, we have

FMA(DA ⊗ L) = Lπ∗R�P(L) = π∗EL,

where EL = (p2)∗(P ⊗ p∗
1L) is a locally free sheaf of rank H0(A,L) on Â. Because

FMA(M) ∈ D≥0
coh (OA�), the morphism factors through H0 FMA(M), which is only possi-

ble if the latter is not zero. �

Acknowledgements

This work was supported by the World Premier International Research Center
Initiative (WPI Initiative), MEXT, Japan, and by NSF grant DMS-1331641. I thank
Mihnea Popa and Pierre Schapira for their comments about the paper, and Takuro
Mochizuki, Kiyoshi Takeuchi, Giovanni Morando, and Kentaro Hori for useful discus-
sions. An anonymous referee pointed out several small mistakes, and his/her insightful
remarks also suggested a better proof for Theorem 14.2. Lastly, I am very grateful to my
parents-in-law for their hospitality while I was writing the first version of this paper.

REFERENCES

[Ara92] D. ARAPURA, Higgs line bundles, Green-Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull., New Ser.,
Am. Math. Soc., 26 (1992), 310–314.

[AB10] D. ARINKIN and R. BEZRUKAVNIKOV, Perverse coherent sheaves, Mosc. Math. J., 10 (2010), 3–29.
[BS94] S. BANDO and Y.-T. SIU, Stable Sheaves and Einstein-Hermitian Metrics, Geometry and Analysis on Complex Mani-

folds, pp. 39–50, World Sci. Publ., River Edge, 1994.
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