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ABSTRACT

We consider typical analytic unimodal maps which possess a chaotic attractor. Our main result is an explicit
combinatorial formula for the exponents of periodic orbits. Since the exponents of periodic orbits form a complete set of
smooth invariants, the smooth structure is completely determined by purely topological data (“typical rigidity”), which
is quite unexpected in this setting. It implies in particular that the lamination structure of spaces of analytic unimodal
maps (obtained by the partition into topological conjugacy classes, see [ALM]) is not transversely absolutely continuous.
As an intermediate step in the proof of the formula, we show that the distribution of the critical orbit is described by the
physical measure supported in the chaotic attractor.
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1. Introduction

A unimodal map is a smooth (at least C2) map f : I → I, where I ⊂ R is an
interval, which has a unique critical point c ∈ int I which is a maximum. A unimodal
map f is said to be regular if it is hyperbolic and if its critical point is non-degenerate
and is not periodic or preperiodic. This definition is such that the set of regular maps
coincide with the set of unimodal maps which are structurally stable, see [K2] Theo-
rem 2. The class of regular maps is open in the C2 topology and dense in any smooth,
and even analytic, topology.

The main examples of unimodal maps are quadratic maps pa(x) = a − x2,
−1/4 ≤ a ≤ 2. Behind their innocent definition, the dynamics of quadratic maps
reveals an intricate structure and has been subject of intense research in the past few
decades.

Recently, several works have concentrated on investigating the dynamics of typ-
ical unimodal maps. The most natural notion of typical in this context is measure-
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theoretical: a dynamical property is said to be typical in the quadratic family if it is sat-
isfied by pa for Lebesgue almost every parameter a. This notion easily extends to the
(infinite-dimensional) setting of general unimodal maps: a property is typical if it cor-
responds to a full measure set of parameters in an ample class of families of unimodal
maps1.

The dynamics of regular maps is quite well understood: orbits in an open and
dense set of full Lebesgue measure converge to one of finitely many hyperbolic attract-
ing periodic cycles, and the complementary set is hyperbolic expanding. Due to the
works of Jakobson [ J ] and Benedicks-Carleson [BC], we know that non-regular uni-
modal maps correspond to a positive measure set of parameters in a large (C2 open)
set of parametrized families. In the works [L5], [AM1], the dynamics of typical non-
regular quadratic maps was described in great detail from the statistical point of view.
Those results were subsequently extended to typical analytic (and even smooth) uni-
modal maps in [ALM], [AM2] (in the quasiquadratic2 case), and finally in all gener-
ality in [AM3].

To describe our results, we will need the following from the picture that emerged
from those works: a typical non-regular unimodal map f possesses a unique transitive

finite union of intervals, Af , and a unique invariant probability measure absolutely continuous with

respect to Lebesgue measure, µf . Moreover Af is the support of µf and periodic points are
dense in Af .

We note that the definition of Af is given in terms of the topological dynamics
of f . We will call Af the non-trivial attractor of f and µf the non-trivial physical measure

of f .

Our aim in this paper is to establish much finer geometric properties of the
non-trivial attractor of a typical non-regular analytic unimodal map f . Roughly speak-
ing, we will show how topological invariants of f (coded using the theory of Milnor-
Thurston) can be used to determine (and actually compute) a complete set of smooth
invariants of Af .

In the proof of this connection between topological and smooth invariants, the
physical measure µf will play an important role. One of our most important steps is
to show how the information contained in the physical measure is enough to compute
some geometric invariants of hyperbolic Cantor sets.

Our main theorem can be seen as a proof of “geometric rigidity” in the typi-
cal setting, which is rather unexpected and even looks paradoxical at first. It can be
visualized in terms of the regularity properties of a certain codimension-one lamina-
tion constructed in [ALM]: the resulting rather amusing picture is related to some
recently discovered examples of measure-theoretical pathological laminations (Katok’s

1 This notion of typical is inspired by Kolmogorov, see [Ar].
2 A C3 unimodal map is said to be quasiquadratic if any C3 perturbation is conjugate to a quadratic map.
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“Fubini Foiled” phenomena presented by Milnor [Mi], and the examples in [SW]
and [RW]).

1.1. Statement of the results. — In this work, the ample set of families we will con-
sider for the definition of typical is very explicit: the set of non-trivial analytic families
of unimodal maps, that is, families which contain a dense set of regular parameters.
The set of non-trivial families is very large (its complement has infinite codimension).
Moreover, among families of quasiquadratic maps (a C3 open condition) it is much
easier to check for non-triviality: it is enough to show existence of one regular pa-
rameter (which is a C2 open condition). In particular, analytic families C3 close to the
quadratic family are non-trivial.

1.1.1. The formula. — To each point x ∈ I, let us associate an infinite sequence
(the itinerary) of 0s and 1s as follows. The k-th element is 0 if f k(x) is to the left of
the critical point, and 1 otherwise. Itineraries are clearly invariant under topological
conjugacy. The itinerary of the critical point of f is called the kneading sequence of f ,
and it is a particularly important invariant: the work of Milnor-Thurston shows that
the kneading sequence determines the set of itineraries of all points x ∈ I.

The kneading sequence is actually an “essentially” complete topological invari-
ant in the sense that it determines the topological conjugacy class up to some well un-
derstood obstructions corresponding to trivial dynamics. A simpler (and perhaps more
basic, as it applies in all dimensions) example of topological invariant is the set of
periodic orbits of the system, together with their periods. If p is a periodic point, its
itinerary is clearly periodic.

To a periodic orbit p of period n we can associate its exponent Df n( p). This
quantity is easily checked to be invariant by a diffeomorphic change of coordinates,
thus providing the simplest example of a smooth invariant. By the work of Liv̌sic [Li],
see also Shub-Sullivan [ShSu], in some circumstances (say, expanding maps of the
circle) exponents of periodic orbits form a complete set of smooth invariants, in the
sense that a topological conjugacy which preserves exponents is necessarily smooth. In
the unimodal case, the same result holds due to the work of Martens-de Melo [MM],
at least for the cases that appear in our considerations (non-trivial attractor of a typical
non-regular unimodal map).

The main result of this paper relates the above smooth and combinatorial in-
variants for typical non-regular analytic unimodal maps.

Theorem 1. — Let fλ be a non-trivial analytic family of unimodal maps. Then, for almost

every non-regular parameter λ, and for every periodic orbit p in the non-trivial attractor Afλ , the

exponent of p is determined by an explicit combinatorial formula involving the kneading sequence of

fλ and the itinerary of p.
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The formula goes as follows: let β be the kneading sequence of f and let α

be the periodic part of the itinerary of a periodic point p in Af . Let us consider the
asymptotic frequency r(αk, β) of αk (k repetitions of α) inside β. Ignoring for a moment
the problem of existence of this asymptotic frequency (which is part of Theorem 2
below), we obtain a non-increasing sequence of numbers between 0 and 1. It turns
out that this sequence decreases to 0 geometrically at some precise rate (this is related
to Theorem 3 below). The inverse of this rate is the absolute value of the exponent
of p (the sign being given by (−1)s where s is the number of 1s in α).

1.1.2. The critical orbit is typical. — Let us say that the asymptotic distribution
of (the orbit of ) a point x is given by a probability measure µ (or equivalently, x is in
the basin of µ, or x is typical for µ) if for any continuous function φ : I → R

lim
1
n

n−1∑

k=0

φ( f k(x)) =
∫

φdµ.(1.1)

One important step of the proof of Theorem A is to analyze the asymptotic dis-
tribution of the critical orbit. The existence of an asymptotic limit for the distribution
of the critical orbit is directly related to the existence of asymptotic frequencies r(α, β)

of an arbitrary finite sequence α inside the kneading sequence β of f .

Theorem 2. — Let fλ be a non-trivial analytic family of quasiquadratic maps. Then, for

almost every non-regular parameter λ, the critical point belongs to the basin of µfλ (the absolutely

continuous invariant measure of fλ).

In other words, for typical non-regular unimodal maps, the critical orbit is typ-
ical for the “correct” measure of the system. We are thus able to obtain the following
consequence:

Corollary 1. — In the setting of Theorem 2, one also has equality between the Lyapunov

exponent of the critical value and the Lyapunov exponent of µfλ .

Recall that the Lyapunov exponent of a point x is defined as

λ(x) = lim
ln |Df n(x)|

n
(1.2)

provided the limit exists. The Lyapunov exponent of µf is given by the formula

λ(µf ) =
∫

ln |Df |dµf .(1.3)

Some work is needed to go from Theorem 2 to Corollary 1, since ln |Df | is not con-
tinuous.

Previous progress in the direction of Theorem 2 was achieved (with very differ-
ent techniques) by Benedicks-Carleson [BC], who proved typicality of the critical orbit
for a positive measure set of parameters for the quadratic family.
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1.1.3. Regularity of the physical measure and hyperbolic sets. — In Theorem 1 we
are interested in the exponents of (repelling) periodic orbits. More generally, one is led
to ask about the geometry of (invariant) hyperbolic subsets K ⊂ Af (those are often
Cantor sets).

In order to apply Theorem 2 to reconstruct the geometry of K from the knead-
ing sequence of f , one is led to ask: is it possible to obtain sharp estimates for the
asymptotic geometry of K from knowledge of the physical measure?

In order to do so, one should be able to relate asymptotically the physical meas-
ure of gaps (and unions of gaps) of K and their (Lebesgue) size. Thus, behind this
problem is the issue of regularity of the physical measure µf .

It turns out that this problem is non-trivial: indeed, if one tries to estimate gen-
eral intervals, and not just gaps of hyperbolic sets, one would get quite negative results.
For instance, let us take f to be a quadratic map and let T be an interval of radius ε

around the critical point. Then µf (T) = µf ( f (T)), but |T| is of order ε while | f (T)|
is of order ε2. Thus, for general intervals, estimates of the physical measure might lead
to errors of order 2 (when taking logarithms) on estimates of Lebesgue measure (and
thus on the formula for exponents of periodic orbits). Connected to this fact is the fol-
lowing limitation on the regularity of µf : its density dµf is never in L2 (but, for typical
maps, is always in L p, for 1 ≤ p < 2, see §6.1).

So one is led to regularize the density dµf using the Cantor set K (or view dµf

through K). Let us denote dµK
f the function which is constant in each gap T of K

and takes the average value of dµf on T.
In other words, dµK

f is the expectation of dµf with respect to the sigma-algebra
B(K) of the gaps of K. The sigma-algebra B(K) gives us enough information to
compute the exponent of periodic orbits p in Af if, say, K is a Cantor set containing p
(any periodic point p ∈ Af can be included in such a Cantor set).

Theorem 3. — Let fλ be a non-trivial analytic family of unimodal maps. For almost every

non-regular parameter λ and any hyperbolic set K ⊂ I, we have dµK
fλ ∈ L p, for every 1 ≤ p < ∞.

One can see this estimate (together with Theorem 2) as a generalization of Theo-
rem 1, since it allows to compute using µf (which, due to Theorem 2 can be com-
puted combinatorially), fine asymptotics of general hyperbolic sets (of which periodic
orbits are an example).

We should point out that the lack of regularity of µf comes from the critical
point, and essentially distributes itself along the orbit of the critical value. In order to
show that µf behaves well with respect to hyperbolic sets, we must show roughly that
“the critical orbit distributes transversely with respect to K.”

1.1.4. Geometric rigidity, pathological laminations. — The main motivation for
Theorem 1 is, as described before, the possibility to compute, from topological infor-
mation, a complete set of smooth invariants. This may seem at first paradoxical, since
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exponents of periodic orbits can be varied without changing the topological class, and
they actually lead us to the opposite end of rigid systems: the “moduli space of smooth
structures” (in a fixed topological class) is infinite dimensional3. The usual examples of
geometrically rigid systems, Diophantine irrational rotations and Feigenbaum attrac-
tors4 do not have periodic orbits.

In order to visualize what is really happening, we must consider the partition of
the space of unimodal maps into topological conjugacy classes. The results of [ALM]
show that, in appropriate Banach spaces of analytic unimodal maps, the set of non-
regular topological classes form a lamination with analytic leaves and quasisymmetric
holonomy, at least almost everywhere5.

For each topological class of unimodal maps, the formula for exponents of pe-
riodic orbits determines at most one “preferred” smooth structure on the non-trivial at-
tractor6. In each non-regular topological class (of codimension one by [ALM]), the
set of maps with the “correct” smooth structure is a tiny set (of infinite codimension,
the parameters being precisely the exponents of periodic orbits, and possibly empty).
However, the set of typical non-regular unimodal maps (satisfying the conclusion of
Theorem 1) intersects each topological class precisely at such a tiny set.

So “typical rigidity” has interesting consequences for the regularity of the lami-
nation by topological classes: the stratification of the set of typical non-regular analytic unimodal

maps by topological classes is highly non-homogeneous, in the sense that it fails drastically to be ab-

solutely continuous. Indeed, that the lamination can not be absolutely continuous is eas-
ily checked since the phenomena we described imply the complete failure of Fubini’s
Theorem. (Although the setting is infinite dimensional, one can interpret those results
in parametrized families with at least two parameters.)

Remark. — Let us point out that one does not need the full power of Theorem 1
to prove that the lamination of [ALM] is not absolutely continuous. Indeed, Theo-
rem 2 already implies “typical rigidity” (though in a less explicit way), see §8.1.6.

1.1.5. On universality and the holonomy method. — The results of [ALM] imply
that the parameter space of the quadratic family do have a universal quasisymmet-

3 In the case of maps f admiting a (topological) attractor Af which is a cycle of intervals and which contains
a dense (and hence infinite) set of periodic orbits.

4 Since this paper is concerned only with the typical unimodal maps, it does not touch the very interesting
issue of rigidity of attractors of Feigenbaum maps (unimodal maps which are infinitely renormalizable of bounded
type), since those maps are relatively rare in parameter space. See [L4] for a thorough account and further references.

5 Almost everywhere here is indeed stronger than our notion of typical. More precisely, the set of non-regular
topological classes has a lamination structure in an open set containing all Kupka-Smale maps (unimodal maps with
a non-degenerate critical point and without non-hyperbolic periodic orbits). The complement of this open set is
clearly contained in a countable union of codimension-one analytic varieties.

6 For a general topological class, several things might go wrong, so that no smooth structure is determined.
At the level of the formula, for instance, its defining limits might not exist. The non-trivial attractor may not exist.
Even if both exist, the values for exponents thus obtained might not correspond to any smooth structure on the
non-trivial attractor.
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ric structure (due to the holonomy of the lamination). Although quasisymmetric maps
are not necessarily absolutely continuous, the metric universality was used in [ALM]
and [AM2] to transfer certain strong measure-theoretical results (regular or stochastic
dichotomy, Collet-Eckmann condition and polynomial recurrence of the critical or-
bit) from the quadratic family to other analytic families of (quasiquadratic) unimodal
maps.

This so called holonomy method, consisting in the comparison between parameter
spaces of different families had to be applied to properties which are topological in-
variants. More seriously, the set of combinatorics concerned must have full measure
simultaneously in all non-trivial families of unimodal maps.

The lack of absolute continuity of the lamination established now sets a limit to
the metric universality of the parameter space of unimodal families (as the quadratic
family). Our Theorem 1 is particularly interesting in this respect since it gives an
example of a result which is definitely inaccessible by the holonomy method (which
clearly can not be used to prove that the lamination itself is not absolutely continu-
ous).

1.1.6. Related matters. — Another consequence of our techniques is the exis-
tence of a combinatorial formula for the Lyapunov exponent of typical non-regular
unimodal maps. This exponent coincides with the one of the critical value by Corol-
lary 1. This formula is quite simple, but is given in terms of the principal nest descrip-
tion of the combinatorics instead of itineraries, so we postpone its formulation to §8.2.

In view of Theorem 1, it is natural to ask how to effectively relate the informa-
tion about the exponents of periodic orbits to other properties of interest of a typical
non-regular unimodal map. Although we will not investigate this problem in this pa-
per, we would like to call attention to one situation where such a relation might be
explicitly obtained.

It is common to organize periodic orbits in a zeta function. The general formula
for a zeta function is

ζφ(z) = exp




∞∑

n=1

zn

n

∑

p∈Fix( f n)

n−1∏

k=0

φ( f k( p))



(1.4)

where Fix( f n) is the set of fixed points of f n and φ is a weight function which is to be
chosen according to the problem to be studied.

The relation of zeta functions and the thermodynamical formalism of hyperbolic
dynamical systems is well developed. However it is reasonable to expect that this re-
lation might also hold for certain non-uniformly hyperbolic unimodal maps, and in
[KN] some results in this direction were obtained in the Collet-Eckmann case.
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For the weight φ = |Df |−1, the zeta function can be written as

ζ|Df |−1(z) = exp




∞∑

n=1

∞∑

m=1

zmn

m

∑

p∈Pern( f )

1
|Df n( p)|m



(1.5)

where Pern( f ) is the set of periodic orbits of (prime) period n. Notice that in this case
the zeta function only depends on the exponent of periodic orbits, so by Theorem 1
it can be expressed combinatorially for typical non-regular maps. This choice of the
weight is particularly interesting: it is related to the physical measure µf , and the re-
sults of [KN] show that the poles of ζ|Df |−1 can be sometimes related to parts of the
spectrum of the Ruelle transfer operator, which encodes (in some cases precise) infor-
mation about the rates of decay of correlations of the system (for certain classes of
observables). It is a natural problem to show that the second pole of ζ|Df |−1 gives in-
deed the exact rate of decay of correlations (for smooth enough observables) of typical
non-renormalizable unimodal maps.

1.2. Complex techniques. — The successful investigation of families of unimodal
maps, especially the quadratic family, was heavily tied to the possibility of the inter-
twined use of real and complex techniques. Many of the most beautiful aspects of the
theory of unimodal maps (particularly with respect to connections to different fields)
show up only when one complexifies the dynamics.

Our results are based on the coupling of two main methods. For the analysis
of the dynamics in phase space, we use a statistical description of the critical orbit.
Techniques from complex dynamics are used to obtain the Phase-Parameter relation,
which allows to compare the phase space and the parameter space of a non-trivial
family. Those complex techniques are mainly based in the work of Lyubich.

The Phase-Parameter relation was proved in [AM1] in the case of the quadratic
family, and in [AM3] in all generality. This last result can be directly used in our
context and will allow us to concentrate mostly on the real dynamics of unimodal
maps.

1.3. Outline. — In §2, we present some background on the dynamics of uni-
modal maps. In §3, we state precisely the formula for periodic orbits. We then prove
Theorem 1, assuming the validity of Theorems 2 and 3.

In §4, we discuss the combinatorics of the principal nest and introduce our basic
tool to make parameter estimates: the Phase-Parameter relation. We then present some
of the estimates obtained in [AM1].

In §5, we prove Theorem 2. The proof is technical but has a clear strategy,
which we describe in §5.1. In §6, we reduce Theorem 3 to the so called Main esti-
mate, which we prove in §7. The proof of the Main estimate is the most technically
involved part of this work.
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In §8, we describe in more detail some of the consequences of Theorems 1, 2
and 3 discussed in the introduction (rigidity, singularity of the lamination, and a for-
mula for the Lyapunov exponent of the physical measure).
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2. Preliminaries

2.1. Notation. — As usual, N = {0, 1, 2, ...} stands for the set of natural num-
bers; Z stands for the integers; R stands for the real line; C stands for the complex
plane.

The Lebesgue measure of a set X ⊂ R will be denoted by |X|.
Given a diffeomorphism φ : J → J′ between two real intervals, its distortion or

non-linearity is defined as

dist(φ) = sup
x,y∈J

|Dφ(x)|
|Dφ( y)| .(2.1)

Its Schwarzian derivative is given by the formula:

Sφ = D3φ

Dφ
− 3

2

(
D2φ

Dφ

)2

.(2.2)

The condition of negative Schwarzian derivative plays an important role in one-di-
mensional dynamics. This condition is preserved under composition.

2.2. Quasisymmetric maps. — A quasisymmetric map is a homeomorphism
h : R → R such that there exists a constant k such that for any x ∈ R, a > 0,

1
k

<
h(x + a) − h(x)
h(x) − h(x − a)

< k.(2.3)

Equivalently, h is quasisymmetric if it has a real-symmetric quasiconformal ex-
tension to the whole C (Ahlfors-Beurling). We say that h is γ -qs if there exists such an
extension with dilatation bounded by γ . The quasisymmetric constant of a quasisym-
metric map h is the infimum of the dilatations of all those extensions7. In particular,
if h1 is γ1-qs and h2 is γ2-qs, h2 ◦ h1 is γ1γ2-qs.

7 It is possible to work out upper bounds for the quasisymmetric constant in terms of the k in (2.3) and
inversely.
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If h : X → R is a monotonic map defined on X ⊂ R, we will also say that h is
γ -qs if it has a γ -qs extension to R.

One of the main concepts we will need in our paper was introduced in [AM1].
The γ -qs capacity of a set X ⊂ R inside some interval T ⊂ R is defined as

pγ (X|T) = sup
|h(X ∩ T)|

h(T)
(2.4)

where h : R → R ranges over all γ -qs maps. An important property of γ -qs capacity
is its behavior under tree decomposition: if Tj ⊂ T are disjoint intervals and X ⊂ ∪Tj

then

pγ (X|T) ≤ pγ (∪Tj|T) sup
j

pγ (X|Tj).(2.5)

We will sometimes use the notation p(X|T) = p1(X|T) = |X ∩ T|/|T|.
2.3. Unimodal maps. — We refer to the book of de Melo and van Strien [MS]

for the general background in one-dimensional dynamics.
We will say that a smooth (at least C2) map f : I → I of the interval I =

[−1, 1] is unimodal if f (−1) = −1, f (x) = f (−x) and 0 is the only critical point of
f and is non-degenerate, so that D2f (0) 
= 0. The introduction of normalization and
symmetry in this definition is exclusively for the simplicity of the notation, and is no
loss of generality, see also Appendix C of [ALM]. The assumption of non-degeneracy
of the critical point is clearly typical.

Basic examples of unimodal maps are given by quadratic maps

qτ : I → I, qτ(x) = τ − 1 − τx2,(2.6)

where τ ∈ [1/2, 2] is a real parameter.
Let Uk, k ≥ 2 be the space of Ck unimodal maps. We endow Uk with the Ck

topology. A map f ∈ U3 is quasiquadratic if any nearby map g ∈ U3 is topologically
conjugate to some quadratic map. We denote by U ⊂ U3 the space of quasiquadratic
maps. By the theory of Milnor-Thurston and Guckenheimer [MS], a map f ∈ U3

with negative Schwarzian derivative and Df (−1) > 1 is quasiquadratic, so quadratic
maps qτ , τ ∈ (1/2, 2] belong to U.

A map f ∈ U2 is said to be Kupka-Smale if all periodic orbits are hyperbolic.
It is said to be hyperbolic if it is Kupka-Smale and the critical point is attracted to
a periodic attractor. It is said to be regular if it is hyperbolic and its critical point is not
periodic or preperiodic. It is well known that regular maps are structurally stable.

In this paper, an analytic family of unimodal maps will be understood as a one-
parameter family { fλ ∈ U2}λ∈Λ (where Λ ⊂ R is an interval), such that the corres-
pondence (λ, x) �→ fλ(x) is analytic. (The measure-theoretical description of analytic
families in several parameters follows from the one-parameter case, see [AM3].)
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Recall that, by [K2], regular maps are dense in both smooth and analytic topolo-
gies. Let us say that an analytic family of unimodal maps is non-trivial if regular pa-
rameters are dense. If all maps in the family are quasiquadratic, it can be shown that
a family is non-trivial if it contains one regular parameter (this is clear from Theo-
rem A of [ALM] and also by using Kozlovski’s trick of [K2]).

2.4. Renormalization. — Let f ∈ U2. A symmetric (about 0) interval T ⊂ I is said
to be nice if the iterates of ∂T never return to int T. A nice interval T 
= I is said to
be a restrictive (or periodic) interval of period m for f if f m(T) ⊂ T and m is minimal
with this property. In this case, the map A ◦ f m ◦ A−1 : I → I is again unimodal for
some affine homeomorphism A : T → I and is called a renormalization8 of f . The map
f m : T → T will be called a prerenormalization of f .

We say that f is infinitely renormalizable if there exists arbitrarily small restrictive
intervals, and we say it is finitely renormalizable otherwise.

Let F ⊂ U2 be the class of Kupka-Smale finitely renormalizable maps whose
critical point is recurrent, but not periodic.

The following result shows that when investigating typical properties of analytic
unimodal maps, it is enough to deal with the quasiquadratic case.

Theorem 4 (Theorem B of [AM3]). — Let fλ be a non-trivial analytic family of unimodal

maps. Then for almost every non-regular parameter λ, fλ has a renormalization which is quasi-

quadratic.

It is easy to check that the conclusions of Theorems 1, 2, or 3 do not depend
on considering a map or its renormalization. Due to this result, in the arguments to
follow, we will concentrate on the description of quasiquadratic map and non-trivial
analytic families of quasiquadratic maps.

2.5. Some metric properties. — The condition of negative Schwarzian derivative
plays an important role when one needs to do distortion estimates. One of the main
tools is the Koebe Principle:

Lemma 1 (Koebe Principle, see [MS], page 258). — Let f : T → R be a diffeomor-

phism with non-negative Schwarzian derivative. If T′ ⊂ T and both components L and R of

T \ T′ are bigger than ε|T′| then the distortion of f |T′ is bounded by (1+ε)2

ε2 . In particular, we

have min{| f (L)|, | f (R)|} ≥ δ(ε)ε| f (T′)|, where δ(ε) > 0 satisfies limε→∞ δ(ε) > 9
100 .

The Koebe Principle gives control on the inverse branches of maps with nega-
tive Schwarzian derivative (since such inverse branches have positive Schwarzian de-
rivative).

8 A more usual convention is to call A ◦ f m ◦ A−1 a unimodal restriction if m = 1, reserving the name
renormalization for the case m > 1, but we won’t make this distinction.
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Due to the recent results of Kozlovski, we know that the condition of negative
Schwarzian is not needed for application of the Koebe Principle (for unimodal maps
in U3 which are Kupka-Smale), see Theorem B of [K1] for instance. We will thus
apply the above Koebe Principle without further comments in our setting.

2.5.1. Hyperbolicity. — It was shown by Mañé [MS] that (for one-dimensional
maps of class C2) the obstruction to uniform expansion lies in critical points and non-
repelling periodic orbits. Since quasiquadratic maps in F do not have non-repelling
periodic orbits, this implies:

Lemma 2. — Let f ∈ F be a quasiquadratic map, and let T be a nice interval. There exist

constants C > 0, λ > 1 such that if f k(x) ∈ I \ T, k = 0, ..., m − 1 then |Df m(x)| > Cλm.

Corollary 2. — Under the hypothesis of the previous lemma, if K is a compact invariant set

which does not contain 0, then f |K is uniformly expanding.

2.6. Physical measures. — Let µ be a probability measure which is invariant
under the dynamics of f . The basin of µ is the set of points x ∈ I such that

lim
1
m

m−1∑

k=0

δf k(x) = µ(2.7)

in the weak∗ topology, where δy denotes the Dirac mass on y. We say that µ is a physi-

cal measure if the basin of µ has positive Lebesgue measure. A quasiquadratic map can
have at most one physical measure [BL], which (if it exists) has always a basin of full
Lebesgue measure. If f is hyperbolic, then the uniform distribution in the attracting
periodic orbit is the physical measure of f . If f is stochastic, that is, it has an abso-
lutely continuous invariant measure µ, then this measure is ergodic and, by Birkhoff ’s
Theorem, it is a physical measure. Notice that there exist quadratic maps without any
physical measure, see [MS], Chapter V, Section 5.

If f is stochastic, then it is finitely renormalizable. Let f k : T → T be its last
prerenormalization. It turns out that the support of µ is A = T0 ∪ ... ∪ Tk−1 where
T0 = [ f 2k(0), f k(0)] and Tj = f j(T0). Notice that f k(T0) = T0. We could have defined
A topologically in this way without any reference to µ.

The set A has another remarkable property: it is the smallest compact subset of
I such that

1. for almost every x ∈ I, ω(x) ⊂ A;
2. for generic x ∈ I, ω(x) ⊂ A.

Those two conditions mean exactly that A is the topological and metric attractor of f
in the sense of Milnor.
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Remark. — All quasiquadratic unimodal maps have a unique topological and
a unique metric attractor. Both concepts of attractor coincide by [L1].

A sufficient condition for f to be stochastic is the Collet-Eckmann condition:
|Df n( f (0))| grows exponentially fast.

Theorem 5 (Corollary C of [AM3]). — Let fλ be a non-trivial family of analytic unimodal

maps. Then almost every non-regular parameter belongs to F and satisfies the Collet-Eckmann con-

dition.

We will need the following result of Keller about general stochastic unimodal
maps:

Theorem 6 (see [MS], Theorem 3.2, Chapter V). — Let f be a quasiquadratic stochastic

map, and let µ be its physical measure. Then dµ is uniformly bounded from below on A.

Remark. — Keller’s Theorem is stated in [MS] for maps with negative
Schwarzian derivative. The result for quasiquadratic maps can be obtained with the
same proof using the results of Kozlovski [K1].

Notice that while dµ is always bounded from below, it is definitely not bounded
from above, and we will need to work a lot to obtain in Theorem 3 a reasonable
estimate for dµ. Notice also that our proof of Theorem 3 is not a general one for
stochastic maps: we have to exclude lots of them. It is easy to see that some exclusion
has to be done, for instance, one must exclude stochastic maps with non-recurrent
critical point.9

3. The formula

3.1. Combinatorics. — Let us have a symbol space Σ with finitely many elements.
A (finite or infinite) sequence of elements of Σ will be called a word. In the space ΣN

of infinite words, we let the shift operator σ act by σ(α0α1...) = α1α2....
Given a finite word α and r ∈ N ∪ {∞}, we let αr denote r repetitions of α.

A finite word α is said to be irreducible if α = βr for some r implies α = β. If α is
an infinite word which is periodic, there exists a unique irreducible word α such that
α = α∞.

3.1.1. Frequencies. — If α = α0...αm−1 is a finite word and β = β0β1... is an
infinite word, we define the lower and upper frequencies of α in β in the natural

9 Since the critical value (which is associated to a square-root singularity for the density of the physical
measure) belongs to an invariant hyperbolic Cantor set.
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way:

r+(α, β) = lim sup
n→∞

1
n

#{0 ≤ k ≤ n − 1|αi = βk+i, 0 ≤ i ≤ m − 1},(3.1)

r−(α, β) = lim inf
n→∞

1
n

#{0 ≤ k ≤ n − 1|αi = βk+i, 0 ≤ i ≤ m − 1}.(3.2)

The frequency r(α, β) is defined as the common value of r+(α, β) and r−(α, β)

if they coincide. We say that β is normal if, for any α, r+(α, β) = r−(α, β).

3.1.2. Geometric frequencies. — Let α be a finite word and β be a normal infinite
word. Let us consider the non-increasing sequence r(αk, β). We want to associate to
α and β a quantity related to the decay of r(αk, β). In the case of exponential decay,
it is natural to define the upper and lower geometric frequencies:

ρ+(α, β) = lim sup
n→∞

r(αn, β)1/n,(3.3)

ρ−(α, β) = lim inf
n→∞ r(αn, β)1/n.(3.4)

The geometric frequency ρ(α, β) is the common value of ρ+(α, β) and ρ−(α, β)

if they coincide. We say that β is geometrically normal if for any α, ρ+(α, β) and
ρ−(α, β) coincide.

3.2. Itineraries. — Let us associate to an unimodal map f some symbolic dy-
namics. We fix the symbol space Σ = {0, c, 1}. Let Θ : I → Σ be defined by
Θ|[−1, 0) = 0, Θ|(0, 1] = 1, and Θ(0) = c.

The itinerary of a point x ∈ I is the infinite word θ(x) = θ0θ1..., where θk =
Θ( f k(x)).

The (discontinuous) map θ : I → ΣN satisfy θ ◦ f = σ ◦ θ. It is clear that if p is
a periodic point for f , then θ( p) is a periodic word for σ .

Given a word α, we let Iα ⊂ I be the set of points whose itinerary starts with α.
Depending on α, Iα can be either an interval, a point or empty.

3.3. Proof of Theorem 1 assuming Theorems 2 and 3. — We will actually prove
the following stronger:

Theorem 7. — Let f be a quasiquadratic unimodal map such that

1. f is Collet-Eckmann and has an absolutely continuous invariant measure µ supported in

a cycle of intervals A;

2. 0 belongs to the basin of µ;

3. For any invariant hyperbolic set K, and any 1 ≤ p < ∞, dµK
f ∈ L p.
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Then θ(0) is geometrically normal and for any z ∈ A periodic (of period m),

|Df m(z)| = ρ(θ(z), θ(0))−1.(3.5)

Moreover, for any α such that ρ(α, θ(0)) > 0, there exists a periodic orbit z ∈ A such that

θ(z) = α∞.

Proof. — Let θ(0) = θ0θ1.... Let α = α0...αm−1 be an arbitrary finite word. Notice
that θk+j = αj , 0 ≤ j ≤ m − 1, if and only if f k(0) ∈ Iα, so by definition of basin of µ,
r(α, θ(0)) = µ(Iα). In particular, θ(0) is normal.

Let z ∈ A be a periodic orbit, and let α = θ(z). By item 1, we conclude that z is
repelling, and since f is quasiquadratic, ∩Iαk = {z}, and the length m of α is the period
of z. Let q, q′ ∈ Iα be periodic orbits in opposite sides of z, and let qk = ( f km|Iαk+1)−1(q)
and q′

k = ( f km|Iαk+1)−1(q′). Let K be the hyperbolic set consisting of z, the forward
orbit of q and q′ and all qk and q′

k. Let Tk = [q′
k, qk]. It is easy to see that there exists

j > 0 such that for all k > j,

Tk+j ⊂ Iαk ⊂ Tk−j .(3.6)

In particular,

ρ+(α, θ(0)) = lim sup
n→∞

µ(Tn)
1/n,(3.7)

ρ−(α, θ(0)) = lim inf
n→∞ µ(Tn)

1/n.(3.8)

By Theorem 6, there exists a constant C > 0 such that dµ|A ≥ C. On the other
hand, Tk ⊂ A for k big enough, so µ(Tk) ≥ C|[q′

k, qk]|. It is clear that

lim
n→∞ |Tn|1/n = |Df m(z)|−1,(3.9)

so ρ−(α, θ(0)) ≥ |Df m(z)|−1.
By item 3, for all 1 ≤ p < ∞, there exists a constant Cp such that, for all k ≥ 0,

(∫

Tk

(dµK)p

)1/p

≤ Cp.(3.10)

In particular, by the Hölder inequality,

µ(Tk) =
∫

Tk

dµK ≤
(∫

Tk

(dµK)p

) 1
p
(∫

Tk

1
p

p−1

)1− 1
p

≤ Cp|Tk|1− 1
p .(3.11)

Taking k → ∞ we get

ρ+(α, θ(0)) ≤ |Df m(z)|−1+ 1
p .(3.12)

Since 1 ≤ p < ∞ is arbitrary, we get (3.5).
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If α is an arbitrary finite word, then either Iαk ∩ A is eventually empty or ∩Iαk

is a repelling periodic orbit z in A. In the first case, obviously ρ(α, θ(0)) = 0. In the
second case, by the previous discussion, ρ(α, θ(0)) = |Df m(z)|−1 > 0, where m is the
length of α. In particular, θ(0) is geometrically normal. ��

Remark. — Let us note that the Collet-Eckmann condition already implies
a number of interesting properties (see [NS]). For instance, if f is a quasiquadratic
Collet-Eckmann map, then there exists a constant λ > 1 such that if p is a periodic
orbit of period n then |Df n( p)| ≥ λn.

4. Phase-parameter relation and statistics of the principal nest

In this section we will discuss the principal nest combinatorics, and then state
the Phase-Parameter relation, which is our means to obtain parameter results based
on phase estimates. We will then present some results on the statistics of the principal
nest.

4.1. Principal nest combinatorics. — If T ⊂ I is a nice interval, the domain of the
first return map RT to T consists of a (at most) countable union of intervals which we
denote Tj . We reserve the index 0 for the component of 0: 0 ∈ T0, if 0 returns to T.
From the nice condition, RT|Tj is a diffeomorphism if 0 /∈ Tj , and is an even map if
0 ∈ Tj . The domain containing 0 will be called the central domain of RT and will be
denoted T0. The return RT is said to be central if RT(0) ∈ T0. If f is quasiquadratic
with recurrent but not periodic critical point, the domain of the first return map is
dense and its complement is a regular Cantor set.

Let f ∈ F be quasiquadratic, and let T be its smallest restrictive interval (of
period m′). Define a sequence of nested nice intervals In by induction as follows. Let
I0 = [−p, p] where p is the unique orientation reversing fixed point of f m′ : T → T.
Assuming In defined, let Rn : In → In be the first return map and In+1 = I0

n . Since f is
finitely renormalizable, ∩In = {0}.

Let Ω be the set of all finite sequences of non-zero integers (possibly empty). For
any element d ∈ Ω, d = ( j1, ..., jm) we associate a branch Rd

n of Rm
n , whose domain is

Id
n = {x ∈ In|Rk(x) ∈ I jk+1

n , 0 ≤ k < m}.
Let Ln : In → I0

n be the first landing map. The domain of Ln is the union of
intervals Cd

n = (Rd
n)

−1(I0
n).

4.2. Phase-Parameter relation. — We will now quickly define formally the Phase-
Parameter relation, and we will discuss in the next section the way it is applied for
measure-theoretical problems.
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Definition 1. — Let us say that a family fλ of quasiquadratic maps satisfies the Topological

Phase-Parameter relation at a parameter λ0 if f = fλ0 ∈ F , and there exists i0 > 0 and a sequence

of nested intervals Ji, i ≥ i0 such that:

1. Ji is the maximal interval containing λ0 such that for all λ ∈ Ji there exists a homeo-

morphism Hi[λ] : I → I such that fλ ◦ Hi[λ]|(I \ Ii+1) = Hi[λ] ◦ f .

2. There exists a homeomorphism Ξi : Ii → Ji such that Ξi(C
d
i ) (respectively, Ξi(I

d
i )) is

the set of λ such that the first return of 0 to Hi[λ](Ii) under iteration by fλ belongs to

Hi[λ](Cd
i ) (respectively, Hi[λ](Id

i )).

Let Ki be the closure of the union of all ∂Cd
i and ∂Id

i . Notice that Hi and Ξi are
only uniquely defined in Ki. Condition (2) of the Topological Phase-Parameter relation
can be equivalently formulated as the existence of a homeomorphism Ξi : Ii → Ji such
that the first return of the critical point (under iteration by fλ) to Hi[λ](Ii) belongs to
Hi[λ](Ki) if and only if λ ∈ Ξi(Ki).

Let us assume we have a non-trivial family of unimodal maps satisfying the
Phase-Parameter relation at a parameter f = fλ0 . It will be important to estimate the
metric properties of Hi|Ki and Ξi|Ki.

Let Ĩi+2 = (Ri|I0
i )

−1(Id
i ), where d is such that (Ri|I0

i )
−1(Cd

i ) = Ii+2.

Let τi ∈ Z be such that Ri(0) ∈ Iτi
i . Let K̃i = (∪j∂I j

i ∪ ∂Ii) \ Ĩi+1.
Let J j

i = Ξi(I
j
i ).

Let us say that f ∈ F is simple if only finitely many Rn have central returns.

Definition 2. — Let fλ be a family of unimodal maps. We say that fλ satisfies the Phase-

Parameter relation at λ0 if f = fλ0 is simple, fλ satisfies the Topological Phase-Parameter relation

at λ0 and for every γ > 1, there exists i0 > 0 such that for i > i0 we have:

(PhPa1) Ξi|(Ki ∩ Iτi
i ) is γ -qs,

(PhPa2) Ξi|K̃i is γ -qs,

(PhPh1) Hi[λ]|Ki is γ -qs if λ ∈ Jτi
i ,

(PhPh2) the map Hi[λ]|K̃i is γ -qs if λ ∈ Ji.

Theorem 8 (Theorem A of [AM3]). — Let fλ be a non-trivial analytic family of quasi-

quadratic maps. Then fλ satisfies the Phase-Parameter relation at almost every non-regular parameter.

(Theorem A of [AM3] actually covers the non-quasiquadratic case as well.)

4.3. Using the Phase-Parameter relation. — Let us now explain how the Phase-
Parameter relation can be used to prove that some property is typical among non-
regular analytic unimodal maps.
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Notice that, due to the previous results, it is enough to prove that the prop-
erty is satisfied by almost every parameter in a non-trivial analytic family of quasi-
quadratic maps. From now on we shall always work inside such a fixed family. We can fur-
ther restrict our scrutiny to the subset of parameters which are simple and satisfy the
Phase-Parameter relation. It is also clearly enough to restrict ourselves to the analysis
of unimodal maps which are exactly k-times renormalizable for some fixed (but ar-
bitrary) k. We shall use “with total probability” to denote some property that is valid for a full

measure set of parameters under those restrictions.

We will now illustrate the basic principle with an example worked out in [AM1].
For a simple map f = fλ0 which is quasiquadratic, simple and satisfies the Phase-

Parameter relation, let us associate a sequence of “statistical parameters” in the follow-
ing way. Let sn be the number of times the critical point 0 returns to In before the first
return to In+1. Let cn = |In+1|/|In|. Each of the points of the sequence Rn(0),...,Rsn

n (0)

can be located anywhere inside In. Pretending that the distribution of those points is
indeed uniform with respect to Lebesgue measure, we may expect that sn is about c−1

n .
Let us try to make this rigorous. Consider the set of points Ak ⊂ In which iterate

exactly k times in In before entering In+1. Then most points x ∈ In belong to some Ak

with k in a neighborhood of c−1
n (to be computed precisely using a statistical argument,

in this case, fixing some small ε > 0, we can take the neighborhood to be c−1+2ε
n < k <

c−1−ε
n for n big). By most, we mean that, say, the complement has at most probability
αn which is some summable sequence. In this case, it is not hard to see that we can
take αn = cεn , which indeed decays exponentially, and so is summable, for all simple
maps f by [L1].

If the phase-parameter relation were Lipschitz, we would now argue as follows:
the probability of a parameter be such that Rn(0) ∈ Ak with k out of the “good neigh-
borhood” of values of k is also summable (since we only multiply those probabilities by
the Lipschitz constant) and so, by Borel-Cantelli, for almost every parameter this only
happens a finite number of times. More precisely, we would use the following version
of Borel-Cantelli:

Lemma 3 (Lemma 3.1 of [AM1]). — Let X ⊂ R be a measurable set such that for each

x ∈ X is defined a sequence Dn(x) of nested intervals converging to x such that for all x1, x2 ∈ X
and any n, Dn(x1) is either equal or disjoint to Dn(x2). Let Q n be measurable subsets of R and

qn(x) = |Q n ∩ Dn(x)|/|Dn(x)|. Let Y be the set of x in X which belong to finitely many Q n. If∑
qn(x) is finite for almost any x ∈ X then |Y| = |X|.

Unfortunately, the Phase-Parameter relation is not Lipschitz. To make the above
argument work, we must have better control of the size of the “bad set” of points
which we want the critical value to not fall into. In order to do so, in the statistical
analysis of the sets Ak we control the quasisymmetric capacity (instead of Lebesgue
measure) of the complement of the set of points whose entrance times belong to the
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good neighborhood. This makes the analysis sometimes much more difficult: capacities
are not probabilities (since they are not additive), so we can have two disjoint sets with
capacity close to 1. This will usually introduce some error that was not present in the
naive analysis: this is the ε in the exponents present above. If we were not forced to
deal with capacities, we could get much finer estimates.

Incidentally, to keep the error low, making ε close to 0, we need to use capacities
with constant γ close to 1. It will indeed be very important for us that the Phase-
Parameter relation we use provides constants near 1, since this will allow us to partially
get rid of those error terms. This is also the reason that the estimates in [AM2] (which
employed weaker Phase-Parameter estimates) are worse than [AM1].

Coming back to our problem, we see that we should concentrate in proving that
for almost every parameter, certain bad sets have summable γ -qs capacities for some
constant γ independent of n (but which can depend on f ).

There is one final detail to make this idea work in this case: there are two Phase-
Parameter statements, and we should use the right one. More precisely, there will be
situations where we are analyzing some sets which are union of I j

n (return sets), and
sometimes union of Cd

n (landing sets). In the first case, we should use the PhPa2 and
in the second the PhPa1. Notice that our Phase-Parameter relations only allow us to
“move the critical point” inside In with respect to the partition by I j

n, to do the same
with respect to the partition by Cd

n , we must restrict ourselves to Iτn
n . In all cases, how-

ever, the bad sets considered should be either union of I j
n or Cd

n.
For our specific example, the Ak are union of Cd

n , and we must use PhPa1. In
particular we have to study the capacity of a bad set inside Iτn

n . Here is the estimate
that we should go after:

Lemma 4. — For almost every parameter, for every ε > 0, there exists γ > 1 such that

pγ (Xn|Iτ
n) is summable, where Xn is the set of points x ∈ In which enter In+1 either before c−1+ε

n
or after c−1−ε

n returns to In.

And as a consequence of PhPa1 we get:

Lemma 5. — With total probability, for all ε > 0, for all n sufficiently big,

c−1+ε
n < sn < c−1−ε

n .(4.1)

In the language of Lemma 3, X would be the set of simple quasiquadratic pa-
rameters satisfying the Phase-Parameter relation and which are exactly k-times renor-
malizable, Dn(λ), λ ∈ X would be Jτn

n (λ), and Q n ⊂ X would be the set of parameters
such that either sn < c−1+ε

n or sn > c−1−ε
n .

4.4. Some results on the statistics of the principal nest. — Let us collect here
some results of [AM1] on the dynamics of typical non-regular analytic unimodal maps
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(the results were initially proved in the quadratic setting, but hold in general due
to [AM3]).

Let rn( j) be such that Rn|I j
n = f rn( j). For x ∈ I j

n, we let rn(x) = rn( j). Let ln(d )

be such that Ln|Cd
n = f ln(d ), and for x ∈ Cd

n , let ln(x) = ln(d ). Let vn = rn(0). Recall
that we have defined sn = |d| where Rn(0) ∈ Cd

n , so that Rn+1(0) = Rsn+1
n (0). Let

cn = |In+1|/|In|.
We define the following convenient notation

IX
n =

⋃

j∈X

I j
n, I(X, n) = |IX

n |
|In| =

∑

j∈X

|I j
n|

|In|, X ⊂ Z,(4.2)

IX
n =

⋃

d∈X

Id
n, I(X, n) =

∑

d∈X

|Id
n|

|In| , X ⊂ Ω,(4.3)

CX
n =

⋃

d∈X

Cd
n, C(X, n) = |CX

n |
|In| =

∑

d∈X

|Cd
n|

|In| , X ⊂ Ω.(4.4)

(Thus IX
n and I(X, n) are defined both for X ⊂ Z and X ⊂ Ω.)

The following summarizes Lemma 4.3, Corollaries 6.8 and 6.10, and Re-
mark 6.3 of [AM1].

Lemma 6. — Almost every non-regular map satisfies

lim
ln vn+1

ln c−1
n

= lim
ln sn

ln c−1
n

= lim
ln ln c−1

n+1

ln c−1
n

= lim
ln rn(τn)

ln c−1
n−1

= 1.(4.5)

In particular, cn decays very fast (this type of decay is called torrential).

4.4.1. Distortion estimates. — Let us now discuss some estimates on the position
of the critical value of the return maps Rn, which are relevant for distortion estimates.
The following summarizes Lemmas 4.8 and 4.10 (and their proof ) of [AM1].

Lemma 7. — For almost every non-regular map, for every δ > 0, for any n big enough, the

following holds:

1. |Rn(0)| > n−1−δ|In|, and in particular, Rn(0) /∈ Ĩn+1,

2. The distance between Rn(0) to ∂In is at least n−1−δ|In|,
3. For any d ∈ Ω, if Rn(0) /∈ Cd

n , then the distance between Rn(0) and Cd
n is at least

n−1−δ|Cd
n|,

4. For any d ∈ Ω, dist(Rd
n) ≤ n

1
2 +δ.

The estimate above for distortion of branches Rd
n is pessimistic in a sense. For

most branches, we have much better bounds. Indeed, if Rn−1(I j
n) ⊂ Cd

n−1 and Rn−1(0) /∈
Id

n−1, then dist( f |I j
n)−1 is at most of order of the quotient of |I j

n| by the distance from
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I j
n to 0 (this can be bounded from above by O(|Cd

n−1|/|Id
n−1|) because Rn−1(0) /∈ Id

n−1),
so dist( f |I j

n) = 1 + O(cn−1). Since Rn|I j
n is the composition of f |I j

n and a diffeomor-
phism onto In (which extends to In−1) with distortion bounded by 1 + O(cn−1) (by the
Koebe principle), we see that for all those branches the distortion of Rn is at most
1 + O(cn−1).

Notice that for any j, both components of In \ I j
n have size at least |I j

n|2nc−1/2
n−1 .

Indeed, let Rn−1(I j
n) ⊂ Cd

n−1. Each connected component of In−1 \ Cd
n−1 must have size

at least of order 24nc−1
n−1|Cd

n−1| (which implies the desired estimate), unless |d| = 0 (that
is Cd

n−1 = In). In this last case, the first item of the previous lemma implies that each
connected component of In \ I j

n has size at least of order 2−nc−1
n−1|I j

n| ≥ 2nc−1/2
n−1 |I j

n|.
In particular, if dist(Rn|I j

n) = 1+O(cn−1) and the last entry of d is j, we can also
find better bounds for the distortion of Rd

n . Indeed, Rd
n is the composition of a map

onto I j
n which extends to In, and has distortion bounded by 1 + o(c1/2

n−1) and Rn|I j
n, so

we have dist(Rd
n ) = 1 + o(c1/2

n−1).

4.4.2. Estimates on the capacity of some relevant sets. — In the course of proving
the above estimates, one obtains several estimates for the quasisymmetric capacities of
certain sets, which will be important here. In order to be definite, let ε = ε(γ) be the
smallest number such that, for κ = 1 + ε

5 and for any γ -qs map h we have

1
κ

( | J|
|I|

)κ

≤ |h( J)|
|h(I)| ≤

(
κ| J|
|I|

)1/κ

,(4.6)

so that ε(γ) → 0 as γ → 1.
The following summarizes Corollaries 6.5 and 6.7 of [AM1].

Lemma 8. — For almost every non-regular map, if ε0 = ε(γ) < 1/100, then, for n large

enough

pγ

(
rn(x) > kc−4

n

∣∣In

) ≤ e−k, k ≥ 1,(4.7)

pγ

(
rn(x) < c−1+2ε0

n−1

∣∣In

) ≤ cε0/10
n−1 ,(4.8)

pγ

(
rn(x) > c−1−2ε0

n−1

∣∣In

) ≤ e−c
−ε0/5
n−1 .(4.9)

5. The critical orbit is typical

5.1. Outline. — Let us summarize the main steps in the proof of Theorem 2.
(1) We must show that (with total probability) the proportion of time the critical or-
bit spends in any given interval T ⊂ I is given by µ(T). It is of course enough to
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consider a countable class of intervals which generates all Borelians, and then prove
the distribution result (with total probability) for each interval in the class. Our choice
of intervals will be domains ξ of the first landing map from I to In0 (for arb-
itrary n0).

This argument is detailed in §5.4.1.
(2) We must be able to estimate µ(ξ) in terms of return branches. Let ψξ

n (x) be the
frequency of visits to ξ of the iterates of a point x ∈ In before x returns to In (ψξ

n (x)
only depends on the branch I j

n containing x). We show that ψξ
n is concentrated around

µ(ξ) and indeed we show that µ(ξ) is the unique number q such that, for every ε > 0,
we have limn→∞ p(|ψξ

n (x) − q| > ε|In) = 0.
This step is carried out in §5.4.2.

(3) We use an explicit Large Deviation Estimate (this key estimate is Proposition 2) to
obtain a quantitative estimate on the rate of decay of p(|ψξ

n (x) − µ(ξ)| > ε|In) (in n)
using only the fact that it decays to 0. We obtain a torrential estimate ( p(|ψξ

n (x) −
µ(ξ)| > ε|In) < c1/20

n−1 ).
(4) We would like to show that returns Rn(0) of the critical point belong to branches
of Rn with “close to correct” distribution on ξ , that is |ψξ

n (Rn(0))−µ(ξ)| < ε. The pre-
vious estimate indicate that this should be the case, but the Phase-Parameter relation
is just quasisymmetric. We show that the torrential rate of decay still holds if instead
of probabilities p(|ψξ

n (x)−µ(ξ)| > ε|In) we consider qs-capacities pγ(n)(|ψξ
n (x)−µ(ξ)| >

ε|In), provided we choose γ(n) very close to 1. This argument does not give any rea-
sonable bound on the rate of decay of γ(n) to 1, it could be very fast.

This step is carried out in Proposition 3.
(5) We want to show that we may actually take γ(n) as a constant γ bigger than 1. For
this we argue that a torrentially small set of branches (in the γ(ns)-qs sense) of a fixed
level ns has torrentially small effect (in the γ -qs sense for some fixed 1 < γ < γ(ns))
with respect to total (and partial) time of branches in the subsequent levels. This ar-
gument follows the proof of the Collet-Eckmann condition in [AM1], where we used
those ideas to control the propagation of weakly hyperbolic branches. A little bit of
change is needed in order to avoid a loss of the quasisymmetric constant of level ns,
on which we do not have control. For this reason, we will work with modified qua-
sisymmetric capacities in some arguments.

The arguments related to this step are developed in §5.2.
(6) As a consequence of (4) and (5), we see that except for a set with torrentially small
γ -qs capacity, return branches of level n are “very good” in the sense that they spend
most of their time following branches of level ns which satisfy |ψξ

ns
− µ(ξ)| < ε. As

a consequence, those “very good” return branches of level n satisfy |ψξ
n − µ(ξ)| < 2ε.

As a bonus we get for free the estimates for intermediate moments (not just full re-
turns), which are needed also in the proof of the Collet-Eckmann condition, see Propo-
sition 1.
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(7) Using the Phase-Parameter relation we make the critical point fall in “very good”
branches (Lemmas 21 and 22). Thus the distribution of the critical orbit on ξ is 2ε

close to µ(ξ). Making ε go to 0 we obtain Theorem 2.

5.2. Inductive estimates. — In this section we will show that a small (in the quasi-
symmetric sense) set of branches of level n0 has a small effect on most (in the quasi-
symmetric sense) branches of level n ≥ n0. This kind of argument was already needed
in the analysis of [AM1], so we will keep a similar notation to that work, and will
refer to it for some computations.

Remark. — The estimates we will obtain in this section hold for all parameters
satisfying the estimates of §4.4 (thus there is no parameter exclusion going on in this
section).

5.2.1. Modified capacities. — For our application, we will need a modification of
the γ -qs capacities used by [AM1]. This is not the same modification used by [AM3].

We say that h is a (γ, C)-homeomorphism if h = h2 ◦ h1 where h2 is γ -qs and h1

is C1 with distortion bounded by C.
If X ⊂ I is a Borelian set, we let

pγ,C(X|I) = sup
|h(X ∩ I)|

|h(I)|(5.1)

where h ranges over all (γ, C)-homeomorphisms.
Through the end of this section we will fix ε0 very small (say, 1/1000), but we

won’t need to make ε0 → 0 later on. Choose γ̂ very close to 1 so that ε(γ̂ ) ≤ ε0, in
the notation of §4.4.2.

Let us fix C and γ0 close to 1 so that for n big, any (γ0, Cn+1
n )-homeomorphism

is a γ̂ -qs homeomorphism. Let Cn = C · n+1
n , C̃n = C2n+3

2n+1 .
In what follows, we will work with some fixed 1 ≤ γ ≤ γ0, but the estimates will

be uniform for γ in this range, and with the sequences Cn and C̃n. We will use (γ, Cn)

capacities to estimate the size of sets of return branches of level n and (γ, C̃n) for sets
of landing branches of level n.

The introduction of those constants is motivated by the following result which
can be proved using the methods of [AM1].

Lemma 9 (Analogous to Remarks 5.1 and 5.2 of [AM1]). — With total probability, there

exists n0 such that for n > n0 and for all 1 ≤ γ ≤ γ0, the following holds. If X ⊂ In then

pγ,C̃n

((
Rd

n

)−1
(X)

∣∣Id
n

) ≤ 2npγ,Cn(X|In).(5.2)
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And if X ⊂ In and

pγ,C̃n
(X|In) ≤ δ ≤ 2−n2

.(5.3)

then

pγ,Cn+1

((
Rn

∣∣I0
n

)−1
(X)|In+1

) ≤ δ1/5.(5.4)

Induction applied to (5.2) gives:

Lemma 10 (Analogous to Lemma 5.4 of [AM1]). — With total probability, there exists n0

such that for n > n0 and all 1 ≤ γ ≤ γ0 the following holds. Let Q n ⊂ Z and let Q n(m, r) be

the set of all d with length m and at least r entries on Q n. Let

qn = pγ,Cn

(
IQ n

n

∣∣In

)
,(5.5)

qn(m, r) = pγ,C̃n

(
IQ n(m,r)

n

∣∣In

)
.(5.6)

Then

qn(m, r) ≤
(

m
r

)
(2nqn)

r.(5.7)

More generally, for any fixed d , defining

qd
n(m, r) = pγ,C̃n

((
Rd

n

)−1(
IQ n(m,r)

n

)∣∣Id
n

)
,(5.8)

we have

qd
n(m, r) ≤

(
m
r

)
(2nqn)

r.(5.9)

This estimate will be mainly used to estimate qn(m, r) for m large and r
m larger

than (6 · 2n)qn. Notice that if q−1 ≥ 6 · 2n and q ≥ qn then by Stirling formula,

qn(m, (6 · 2n)qm) ≤ 2−(6·2n)qm,(5.10)

and
∑

k≥q−2

qn(k, (6 · 2n)qk) ≤ 2−nq−12−(6·2n)q−1
.(5.11)

5.2.2. Estimates on time. — Following [AM1], we define the set of standard
landings at time n, LS(n) ⊂ Ω as the set of all d = ( j1, ..., jm) satisfying the following.

(LS1) c−1/2
n < m < c−1−2ε0

n ,
(LS2) rn( ji) < c−14

n−1 , for all i,
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(LS3) #
{
1 ≤ i ≤ k, rn( ji) < c−1+2ε0

n−1

}
< (6 · 2n)cε0/10

n−1 k, for c−2
n−1 ≤ k ≤ m,

(LS4) #
{
1 ≤ i ≤ k, rn( ji) > c−1−2ε0

n−1

}
< (6 · 2n)e−c

−ε0/5
n−1 k, for c−1/n

n ≤ k ≤ m.

Lemma 11 (Analogous to Lemma 7.1 of [AM1]). — With total probability we have

pγ̂

(
CΩ\LS(n)

n

∣∣In

)
< c1/3

n ,(5.12)

pγ̂

(
CΩ\LS(n)

n

∣∣Iτn
n

)
< c1/3

n .(5.13)

Let T ⊂ Z be given. Let us define VG(T, n0, n) ⊂ Z and LE(T, n0, n) ⊂ Ω

inductively as follows. Let VG(T, n0, n0) = Z \ T. Assuming VG(T, n0, n) defined, let
LE(T, n0, n) be the set of all d ∈ LS(n) such that d = ( j1, ..., jm) and

(LE) #{ ji /∈ VG(T, n0, n), 1 ≤ i ≤ k} < (6 · 2n)c1/20
n−1 k, for c−2

n−1 ≤ k ≤ m.

We now define VG(T, n0, n + 1) as the set of all j such that Rn(I
j
n+1) ⊂

LE(T, n0, n).
In what follows, we will work under the condition that T is a small set of

branches of some (deep) level n0 in the sense that

pγ,Cn0

(
IT

n0

∣∣In0

)
< c1/20

n0−1(5.14)

for some n0 and some 1 ≤ γ ≤ γ0.
The class VG(T, n0, n) is designed so that those branches do not pass very often

by T before returning. The precise constants in the definition were chosen so that they
allow to show that VG(T, n0, n) corresponds to most branches of level n (by induction).
Those two estimates are given below:

Lemma 12 (see also Lemma 7.2 of [AM1]). — With total probability, for all n0 sufficiently

big, if T satisfies (5.14) for some 1 ≤ γ ≤ γ0 then for all n ≥ n0, we have

pγ,C̃n

(
CΩ\LE(T,n0,n)

n

∣∣In

)
< c2/7

n(5.15)

pγ,Cn

(
IZ\VG(T,n0,n)

n

∣∣In

)
< c1/20

n−1 .(5.16)

Furthermore,

pγ,C̃n

(
CΩ\LE(T,n0,n)

n

∣∣Iτn
n

)
< c2/7

n .(5.17)

Proof. — If (5.15) is valid for n then by (5.4) we get

pγ,Cn+1

(
IZ\VG(T,n0,n+1)

n+1

∣∣In+1

)
< c2/35

n < c1/20
n(5.18)

which gives (5.16) for n + 1.
Let us assume the validity of (5.16) for n. Then the (γ, C̃n)-capacity of the set

of standard landings which fail to satisfy LE is much less than cn, by (5.10). Using
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Lemma 11 we get

pγ,C̃n

(
CΩ\LE(T,n0,n)

n

∣∣In

)
< c1/3

n + cn ≤ c2/7
n .(5.19)

This implies that (5.15) is valid for n. A similar computation gives (5.17) for n.
Since (5.16) is valid for n0 by hypothesis, we get (5.15), (5.16) and (5.17) for all

n by induction. ��
Lemma 13 (Analogous to Lemma 7.6 of [AM1]). — With total probability, for all n0 big

enough and for all n ≥ n0, the following holds. Let j ∈ VG(T, n0, n + 1), and let d be such that

Rn(I
j
n+1) ⊂ Cd

n and d = ( j1, ..., jm). Let c−2/n
n < k ≤ rn+1( j). Let mk be biggest possible with

vn +
mk∑

j=1

rn( ji) ≤ k(5.20)

βk =
∑

1≤i≤mk,

ji∈VG(T,n0,n)

rn( ji).(5.21)

Then 1 − βk
k < c1/100

n−1 .

Lemma 14. — With total probability, for all n0 big enough and for all n ≥ n0, the following

holds. Let j ∈ VG(T, n0, n + 1) and x ∈ I j
n+1, and let c−2/n

n ≤ k ≤ rn+1(x). Then
∑

i<k,
f i(x)∈IT

n0

rn0( f i(x)) < c1/200
n0−1 k.(5.22)

Proof. — Let αn = ∑n−1
k=n0

c1/110
k−1 < c1/200

n0−1 . We show by induction that if
∑

i<rn(x),
f i(x)∈IT

n0

rn0( f i(x)) ≤ αnrn(x), for all x ∈ IVG(T,n0,n)
n ,(5.23)

then ∑

i<k,
f i(x)∈IT

n0

rn0( f i(x)) < αn+1k, for all x ∈ IVG(T,n0,n+1)
n+1 , c−2/n

n ≤ k ≤ rn+1(x).(5.24)

Indeed (using the notation of Lemma 13),
∑

i<k,
f i(x)∈IT

n0

rn0( f i(x)) ≤ k − βk + αnβk + c−14
n−1(5.25)

≤
(

1 − βk

k
+ αn + c−14

n−1 c2/n
n

)
k ≤ αn+1k.

This gives our result by induction, since for n = n0, the left side of (5.23) is 0. ��
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5.2.3. Control of intermediate times. — Let us define LC(T, n0, n) ⊂ Ω, n0, n ∈ N,
n ≥ n0 as the set of all d = ( j1, ..., jm) in LE(T, n0, n) satisfying

(LC1) ji ∈ VG(T, n0, n), 1 ≤ i ≤ c−1/30
n−1 ,

(LC2) #
{
1 ≤ i ≤ k, rn( ji) < c−1+2ε0

n−1

}
< (6 · 2n)cε0/10

n−1 k, for c−ε0/5
n−1 ≤ k ≤ m,

(LC3) #{1 ≤ i ≤ k, ji /∈ VG(T, n0, n)} < (6 · 2n)c1/60
n−1 k, for c−1/30

n−1 ≤ k ≤ m,
(LC4) #

{
1 ≤ i ≤ k, rn( ji) > c−1−2ε0

n−1

}
< (6 · 2n)c100

n−1k, for c−200
n−1 ≤ k ≤ m,

(LC5) rn( ji) < c−1−2ε0
n−1 , 1 ≤ i ≤ ec

−ε0/5
n−1 /2.

Lemma 15 (Analogous to Lemma 7.7 of [AM1]). — With total probability, for all n0

sufficiently big and all n ≥ n0, if T satisfies (5.14), then

pγ,C̃n

(
CΩ\LC(T,n0,n)

n

∣∣In

)
< c1/100

n−1(5.26)

and if τn ∈ VG(T, n0, n),

pγ,C̃n

(
CΩ\LC(T,n0,n)

n

∣∣Iτn
n

)
< c1/100

n−1 .(5.27)

Proposition 1. — With total probability, for all n0 sufficiently big, for all n ≥ n0 + 1, for

all T, if d ∈ LC(T, n0, n), then for all c−4/(n−1)

n−1 < k ≤ ln(d ), and for all x ∈ Cd
n ,

∑

i≤k,
f i(x)∈IT

n0

rn0( f i(x)) < 2c1/200
n0−1 k.(5.28)

Proof. — The proof follows closely the argument of Lemma 7.11 of [AM1], but
since the claim is formally different, we will repeat some steps here, referring to the
computations in [AM1].

Let d = ( j1, ..., jm). Assume that k ≤ rn( j1). Since j1 ∈ VG(T, n0, n), we get the
result as a consequence of Lemma 14. This will still work if we take k ≤ rn( j1) + ...

+ rn( jt), where ji is very good for 1 ≤ i ≤ t.
Let mk be the last return completed before k, that is

∑mk
i=1 rn( ji) ≤ k. We must

analyze the case where ji is not very good for some i ≤ mk + 1. In this case, we must
have, by LC1, mk ≥ c−1/30

n−1 . Let βk be given by (5.21). After some computations, we get
(see [AM1])

∑

i≤mk,

ji /∈VG(T,n0,n)

rn( ji) ≤ 4c1/35
n−1 k,(5.29)

and

rn( jmk+1) ≤ c1/80
n−1 k,(5.30)
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(if mk = |d|, that is, k = ln(d ), we will make the convention that rn( jmk+1) = 0). We
obtain

∑

i≤k,
f i(x)∈IT

n0

rn0( f i(x)) ≤ c1/200
n0−1 βk + rn( jmk+1) +

∑

i≤mk,

ji /∈VG(T,n0,n)

rn( ji) ≤ 2c1/200
n0−1 k.(5.31)

��

5.3. Large deviation estimate

5.3.1. More precise estimates on return times. — We will need several times the
following elementary result.

Lemma 16. — Let m > 100. If q ∈ [0, 1] and ε ≥ m−1/4 then

∑

| k
m −q|>ε

(
m
k

)
qk(1 − q)m−k ≤ e−m1/4

.(5.32)

Proof. — Let yk = (m
k

)
qk(1 − q)k, and recall that yk ≤ 1 for all k (since

∑
yk = 1).

It is enough to show that
∑

k/m>q+ε yk ≤ e−m1/4
/2, since the estimate corresponding to

k
m < q−ε reduces to this one after interchanging q and 1−q. Let xk = yk+1

yk
= 1−k/m

(k+1)/m · q
1−q .

If k
m ≥ q + ε

2 then xk < 1−q−ε/2
q+ε/2 · q

1−q < 1 − ε

2 . Notice that if k is minimal with k
m > q + ε

then there are about εm
2 integers j < k such that q + ε

2 ≤ j
m . We conclude that

∑

k
m >q+ε

yk ≤
∑

i≥ εm
2

(
1 − ε

2

)i

≤ 2
ε

e−mε2/4 ≤ e−m1/4

2
,(5.33)

and the result follows. ��
Notation warning. — In what follows, we will work with a fixed typical unimodal

map f . We will use δ
(n)
1 , ..., δ

(n)
14 to denote several small constants (going to 0 with n).

We shall always choose δ
(n)
i+1 after fixing δ

(n)
i , and satisfying (among other requirements)

δ
(n)
i+1 ≥ 10δ

(n)
i . We shall also take δ

(n)
1 > n−1.

5.3.1.1. — Let dn−1 be such that Rn−1(0) ∈ C
dn−1
n−1 , and let Bn be the set of

all j such that Rn−1(I j
n) = Cd

n−1, where |d| < |dn−1| and d = ( j1, ..., jk) is obtained by
considering the first k entries of dn−1. Let An = Z \ ({0} ∪ Bn). Recall the estimates
of §4.4.1. One readily sees that I(Bn, n) ≤ 2−nc1/2

n−1 and for j ∈ Bn, rn( j) ≤ vn. Notice
that if j ∈ An, the interval I j

n is far from the critical point in the sense that c−1
n−1|I j

n| is
not much bigger than the distance from I j

n to 0. It follows that, for any d whose last
entry belongs to An, dist(Rd

n ) < 1 + δ
(n)
1 c1/2

n−1. If the last entry belongs to Bn we will use
the general estimate dist(Rd

n ) ≤ n2/3.
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5.3.1.2. — Let mn(d ) be the number of entries of d which belong to An. The
following easy estimates follow from the previous discussion by induction:

(
1 − (

1 + δ
(n)
2 c1/2

n−1

)
cn

)m ≤ I({mn(d ) = m}, n)(5.34)

≤ (
1 + δ

(n)
2 c1/2

n−1

)(
1 − (

1 − δ
(n)
2 c1/2

n−1

)
cn

)m
,

cn

(
1 − (

1 + δ
(n)
2 c1/2

n−1

)
cn

)m ≤ C({mn(d ) = m}, n)(5.35)

≤ (
1 + δ

(n)
2 c1/2

n−1

)
cn

(
1 − (

1 − δ
(n)
2 c1/2

n−1

)
cn

)m
.

Let Q (m′, m) ⊂ Ω be the set of d of size m′ and with at least m entries on Bn,
that is, Q (m′, m) = {d ∈ Ω, |d| = m′, |d|−mn(d )| ≥ m}. Let q(m′, m) = I(Q (m′, m), n).
From the definition and the estimates on distortion we have

q(m′, m) ≤ q(m′ − 1, m) + δ
(n)
3 c1/2

n−1(q(m
′ − 1, m − 1) − q(m′ − 1, m))(5.36)

= (
1 − δ

(n)
3 c1/2

n−1

)
q(m′ − 1, m) + δ

(n)
3 c1/2

n−1q(m′ − 1, m − 1),

which implies by induction,

q(m′, m) ≤
m′∑

k=m

(
m′

k

)(
δ

(n)
3 c1/2

n−1

)k(
1 − δ

(n)
3 c1/2

n−1

)m′−k
.(5.37)

Let us compute a few consequences of those estimates. Let H be the set of all
d ∈ Ω such that at least one of the following holds:

(H1) |d| ≥ c−1/n
n and |d| − mn(d ) ≥ 2c1/2

n−1|d|,
(H2) d has some entry ji satisfying rn( ji) ≥ c−14

n−1 .

Using the present discussion to estimate (H1) and (4.7) to estimate (H2) we get

C(H, n) ≤ I(H, n) ≤ e−c−1/(8n)
n + e−c−19/2

n−1 ≤ e−c−9
n−1 .(5.38)

Let V be the set of d with mn(d ) ≤ c−1/n
n . The present discussion gives

C(V, n) ≤ 2c1−1/n
n .(5.39)

5.3.1.3. — We will also need the following easy estimate:

Lemma 17. — Fix P ⊂ An, and let p = I(P, n). Let P(m, r) ⊂ Ω be the set of all

d with mn(d ) = m and with exactly r entries in P. Let P(m, r) (respectively P(m, r)) denote the

union of all P(m, r′) with r′ ≥ r (respectively r′ ≤ r). Let p(m, r) = I(P(m, r), n), p(m, r) =
I(P(m, r), n) and p(m, r) = I(P(m, r), n).
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We have, with p = p(1 + 4δ
(n)
1 c1/2

n−1) and p = p(1 − 4δ
(n)
1 c1/2

n−1)

p(m, r) ≤ (1 − p)p(m − 1, r) + p · p(m − 1, r − 1)(5.40)

p(m, r) ≤ (1 − p)p(m − 1, r) + p · p(m − 1, r − 1)(5.41)

p(m, r) ≤ (
1 + 2δ

(n)
2 c1/2

n−1

) m∑

k=r

(
m
k

)
pk

(1 − p)m−k(5.42)

p(m, r) ≤ (
1 + 2δ

(n)
2 c1/2

n−1

) r∑

k=0

(
m
k

)
pk(1 − p)m−k.(5.43)

Proof. — We notice that p(1, 0) ≤ 1 − p, p ≤ p(1, 1) ≤ p(1 + 2δ
(n)
1 c1/2

n−1). Let
us consider a connected component E of IP(m,r)

n . It is either contained in a connected
component of IP(m−1,r)

n or it is contained in a component Ê of IP(m−1,r−1)
n . In this last

case, the iterate of Rn which takes Ê to In (necessarily with distortion bounded by
1 + δ

(n)
1 c1/2

n−1) must take E to a component of IP(1,1)
n . It follows that

p(m, r) ≤ p(m − 1, r) + (
1 + δ

(n)
1 c1/2

n−1

)
p(m − 1, r − 1)p(1, 1).(5.44)

Since p(m − 1, r − 1) = p(m − 1, r − 1) − p(m − 1, r), we get (5.40), and (5.42) follows
by induction.

Let us now consider a connected component E of IP(m,r)
n . It is either contained in

a connected component of IP(m−1,r−1)
n or it is contained in a component Ê of IP(m−1,r)

n .
In this last case, the iterate of Rn which takes Ê to In (necessarily with distortion
bounded by 1 + δ

(n)
1 c1/2

n−1) must take E to a component of In \ IP(1,1)
n . It follows that

p(m, r) ≤ p(m − 1, r − 1) + p(m − 1, r)
(
1 − (

1 − δ
(n)
1 c1/2

n−1

)
p(1, 1)

)
.(5.45)

Since p(m − 1, r) = p(m − 1, r) − p(m − 1, r − 1), we get (5.41), so (5.43) follows by
induction. ��

5.3.2. Return times. — Let us fix Θ ⊂ Z \ {0}, θ = I(Θ, n). We would like to
estimate

ζ =
∑

j∈Θ

rn( j)I( j, n)(5.46)

in terms of θ (especially for the case Θ = Z \ {0}). In the particular case Θ = Z \ {0},
we will get a very accurate estimate, that |In|ζ converges, as n grows, to some positive
constant (this would be obvious if the density of the physical measure were continuous
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and positive at the critical point). For general Θ, we will get an upper bound |In|ζ =
O(θ(1 − ln θ) + cn−1). Both estimates are contained in Lemma 18.

In order to estimate ζ it is convenient to write ζ = ζA + ζB, where

ζA =
∑

j∈Θ∩An

rn( j)I( j, n), ζB =
∑

j∈Θ∩Bn

rn( j)I( j, n).(5.47)

Notice that it is easy to estimate (using §5.3.1.1)

ζB ≤ vnI(Θ ∩ Bn, n) ≤ c−1−δ
(n)
4

n−1 min
{
θ, 2−nc1/2

n−1

}
.(5.48)

To estimate ζA, we will consider the level sets Ms = { j ∈ An ∩ Θ| rn( j) = s}, so that
ζA = ∑

sms, where ms = I(Ms, n). Let L = {s|ms ≥ c1/(8n)
n }, S = {s|ms < c1/(8n)

n }. Define

ζL =
∑

s∈L

sms, ζS =
∑

s∈S

sms,(5.49)

so that ζA = ζL + ζS. Notice that by (4.7),

ζS =
∑

s∈S,

s≤c−1/(32n)
n

sms +
∑

s∈S,

s>c−1/(32n)
n

sms(5.50)

≤ c1/(16n)
n +

∑

t≥c−1/(32n)
n

te−c−4
n−1t ≤ c1/(32n)

n .

5.3.2.1. — Let N be the set of all d ∈ Ω such that mn(d ) ≥ c−1/n
n and at least

one of the following holds:

(N1) For some s ∈ L, the number u of entries ji of d belonging to Ms satisfies either
u
m > (1 + 4δ

(n)
1 c1/2

n−1)ms + c1/(8n)
n , or u

m < (1 − 4δ
(n)
1 c1/2

n−1)ms − c1/(8n)
n .

(N2) For some s ∈ S, the number u of entries ji of d belonging to Ms satisfies
u
m ≥ 2c1/(8n)

n .

It follows from Lemmas 16 and 17 that

I(N, n) ≤ 2e−c−1/(10n)
n .(5.51)

Let D = N ∪ H ∪ V and D̂ = N ∪ H. By (5.51), (5.38) and (5.39) we have

C(D, n) ≤ c1−2/n
n(5.52)

C(D̂, n) ≤ e−c−17/2
n−1 .(5.53)
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If d /∈ D, we have

1
mn(d )

∑

ji∈Θ

rn( ji) ≥ (
1 − δ

(n)
5 c1/2

n−1

)
ζL,(5.54)

1
mn(d )

∑

ji∈Θ

rn( ji) ≤ (
1 + δ

(n)
5 c1/2

n−1

)
ζL + (|d| − mn(d ))vn + 2c−28

n−1 c1/(8n)
n(5.55)

≤ (
1 + δ

(n)
5 c1/2

n−1

)
ζL + c

− 1
2 −δ

(n)
5

n−1 ,

while, if d /∈ D̂, we have either d /∈ V (in which case (5.54) and (5.55) hold) or d ∈ V
in which case we have ln(d ) ≤ c−2/n

n .
Notice that D, ζ and ζL depend on Θ (and on n). If needed we will stress this

dependence by writing D(Θ), ζ(Θ) and ζL(Θ).

5.3.2.2. — Let

αn = ζ(Z \ {0}) =
∑

j 
=0

rn( j)I( j, n).(5.56)

Notice that due to (4.8),

αn > c−1+δ
(n)
6

n−1 .(5.57)

Lemma 18. — We have
∣∣∣∣

αn

αn−1c−1
n−1

− 1
∣∣∣∣ < c1/30

n−2 ,(5.58)

and for any set Θ ⊂ Z \ {0} with θ = I(Θ, n), we have

ζ(Θ) =
∑

j∈Θ

rn( j)I( j, n) ≤ (3θ(1 − ln θ) + cn−1)αn.(5.59)

Proof. — Letting Θ = Z\ {0} and keeping the previous notation, we have clearly

ζL ≤ αn = ζL + ζB + ζS ≤ ζL + vnI(Bn, n) + c1/(32n)
n ≤ ζL + c

− 1
2 −δ

(n)
7

n−1 ,(5.60)

and since αn ≥ c−1+δ
(n)
6

n−1 by (5.57), we actually have

1 ≤ αn

ζL
≤ 1 + c

1
2 −δ

(n)
8

n−1 .(5.61)
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The previous discussion in §5.3.2.1 gives for d /∈ D,

(
1 − c

1
2 −δ

(n)
9

n−1

)
αn ≤ (

1 − δ
(n)
5 c1/2

n−1

)
ζL(5.62)

≤ 1
mn(d )

∑
rn( ji) = ln(d )

mn(d )
≤ (

1 + c
1
2 −δ

(n)
9

n−1

)
αn.

Using the estimate (5.35) on the distribution of mn(d ), we get

(
1 − c

1
2 −δ

(n)
10

n−1

)
c−1
n αn ≤

∑

d /∈D

ln(d )C(d, n)(5.63)

which implies that for each j ∈ An we have

I( j, n)
(
1 − c

1
2 −δ

(n)
11

n−1

)
c−1
n αn ≤

∑

Cd
n⊂I j

n

ln(d )C(d, n).(5.64)

Let us now consider the set Z ⊂ An of all j such that Rn(I0
n) contains I j

n, rn( j) <
c−14
n−1 , and such that Rn(0) is at least c1/4

n−1|In| away from I j
n. Let Ẑ denote the set of j ∈ Z

such that Rn(I
j
n+1) ⊂ IZ

n . Then I(Z \ Ẑ, n + 1) < c1/9
n−1. Since I( j, n) ≤ δ

(n)
12 c1/2

n−1 for all j,
the distortion of (Rn|I0

n)
−1 restricted to any component of IZ

n is bounded by 1+δ
(n)
14 c1/4

n−1.
We conclude

(
1 − c1/10

n−1

)
αnc−1

n ≤
∑

j∈Ẑ

rn+1( j)I( j, n + 1) ≤ αn+1.(5.65)

Let Xt be the set of d with ln(d ) ≥ t(1 + c
1
2 −10δ

(n)
14

n−1 )c−1
n αn. Notice that

t ≥ c1−2/n
n �⇒ Xt ∩ D = Xt ∩ D̂.(5.66)

On the other hand, by (5.62),

d ∈ Xt \ D �⇒ mn(d ) ≥ t
(
1 + c

1
2 −9δ

(n)
14

n−1

)
c−1
n ,(5.67)

so, by (5.35), C(Xt \ D, n) ≤ (1 − c
1
2 −8δ

(n)
14

n−1 )e−t , which gives by (5.53)

C(Xt, n) ≤ (
1 − c

1
2 −8δ

(n)
14

n−1

)
(e−t + e−c−25/3

n−1 ), t ≥ c1−2/n
n .(5.68)

If j ∈ Z, we can estimate

C
(
Xt ∩

{
d ∈ Ω, Cd

n ⊂ I j
n

}
, n

)
(5.69)

≤ I( j, n)
(
1 − c

1
2 −5δ

(n)
14

n−1

)
(e−t + e−c−25/3

n−1 ), t ≥ c1−2/n
n , j ∈ Z.
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Let Yt be the set of j 
= 0 with Rn(I
j
n+1) = Cd

n , d ∈ Xt . The following estimates
are immediate from (5.68), (5.69):

I(Yt, n + 1) ≤ 2n(e−t + e−c−8
n−1)1/2, t ≥ c1−2/n

n(5.70)

I(Yt ∩ Ẑ, n + 1) ≤ e−t + e−c−8
n−1, t ≥ c1−2/n

n .(5.71)

This last estimate implies in particular

I(Yt, n + 1) ≤ e−t + e−c−8
n−1 + c1/9

n−1 ≤ (
1 + c1/20

n−1

)
e−t, c1−2/n

n ≤ t ≤ ln c−1/20
n−1 .(5.72)

Using additionally that by (4.7), I(Yt, n + 1) ≤ e−tc4
n for t ≥ c−4

n , and that obviously
I(Yt, n + 1) ≤ 1 for all t, we see that (5.70), (5.72) imply

Yt ≤ s(t) =






1 for t < c1−2/n
n ,

(
1 + c1/20

n−1

)
e−t for c1−2/n

n ≤ t < ln c−1/20
n−1 ,

2n+1e−t/2 for ln c−1/20
n−1 ≤ t < c−8

n−1,

2n+1e−c−8
n−1/2 for c−8

n−1 ≤ t < c−5
n ,

e−tc4
n for t ≥ c−5

n ,

(5.73)

which gives
∫ ∞

0
I(Yt, n + 1)dt ≤ 1 + c1/20

n−1 .(5.74)

By definition of Xt and Yt, we have

0 
= j ∈ Yt ⇐⇒ rn+1( j) ≥ vn + t
(
1 + c

1
2 −10δ

(n)
14

n−1

)
c−1
n αn,(5.75)

so that (5.74) implies

αn+1 ≤ vn(1 − cn+1) + (
1 + c

1
2 −10δ

(n)
14

n−1

)
αnc−1

n

∫ ∞

0
I(Yt, n + 1)(5.76)

≤ (
1 + c1/30

n−1

)
αnc−1

n .

Estimates (5.65) and (5.76) imply (5.58), shifting n to n + 1.
Moreover, for any set Θ ⊂ Z \ {0}, with θ = I(Θ, n + 1), (5.73) implies

∫ ∞

0
I(Yt ∩ Θ, n + 1)dt ≤

∫ ∞

0
min{θ, s(t)}dt ≤ 5

2
θ(1 − ln θ) + cn

2
,(5.77)

which (together with (5.75) and (5.65)) implies (5.59), shifting n to n + 1. ��
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We can now conclude:

Proposition 2 (Large Deviation Estimate). — Let Θ ⊂ Z \ {0}, θ = I(Θ, n). Let F be

the set of d such that

1
ln(d )

∑

ji∈Θ

rn( ji) ≥ 4
(
θ(1 − ln θ) + c1/4

n−1

)
.(5.78)

Then C(F, n) ≤ 2c1−2/n
n .

Proof. — By the previous considerations §5.3.2.1, except for d in an exceptional
set D(Θ) satisfying C(D(Θ), n) ≤ c1−2/n

n , (5.55) holds, that is

1
mn(d )

∑

ji∈Θ

rn( ji) ≤ (
1 + δ

(n)
5 c1/2

n−1

)
ζL(Θ) + c

− 1
2 −δ

(n)
5

n−1 ,(5.79)

where, by Lemma 18,

ζL(Θ) ≤ (3θ(1 − ln θ) + cn−1)αn.(5.80)

By the proof of Lemma 18, except for d in an exceptional set D(Z\{0}) ⊂ Ω satisfying
C(D(Z \ {0}), n) ≤ c1−2/n

n , (5.62) holds, that is

ln(d )

mn(d )
≥ (

1 − c
1
2 −δ

(n)
9

n−1

)
αn.(5.81)

Estimates (5.79) and (5.81) imply that for d /∈ D(Θ) ∪ D(Z \ {0}),

1
ln(d )

∑

ji∈Θ

rn( ji) ≤
(
1 + δ

(n)
5 c1/2

n−1

)
ζL(Θ) + c

− 1
2 −δ

(n)
5

n−1
(
1 − c

1
2 −δ

(n)
9

n−1

)
αn

≤ 4θ(1 − ln θ) + c1/3
n−1,(5.82)

thus F ⊂ D(Θ) ∪ D(Z \ {0}). The result follows. ��

5.4. Proof of Theorem 2

5.4.1. Series of reductions. — First notice that the physical measure µfλ depends
measurably on λ. This means that for any continuous φ : I → R, λ �→ ∫

φ(x)dµfλ(x)
is measurable, and follows from formula

∫
φ(x)dµfλ(x) = lim

n→∞
1
2n

n−1∑

k=0

∫ 1

−1
φ ◦ f k

λ (x)dx.(5.83)
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Notice also that the set of parameters such that the critical point is typical for the
physical measure is measurable: it is the intersection of the sets of parameters such
that lim 1

n

∑n−1
k=0 φi ◦ f k

λ (0) = ∫
φi(x)dµfλ(x), where φi is some countable dense subset

of C0(I, R).
We will argue by contradiction. If Theorem 2 is false, there exists a positive

measure set J1 of non-regular parameters λ such that the critical point is not in the
basin of the physical measure µfλ . Since almost all parameters in J1 are finitely renor-
malizable, there exists a subset J2 ⊂ J1 of positive measure of parameters which are
exactly k times renormalizable, with some fixed k.

For each parameter λ in J2, let us consider the sequence of partitions Υn of
the interval I in connected components of the domain of the first landing map from I
to In. Those partitions get more refined as n increases, the size of the largest compon-
ent (of order at most cn−1) decreasing to 0 with n. Thus, there exists some η > 0 and
a positive measure set of parameters J3 ⊂ J2, such that for all parameters in J3

there exists at least one component ξλ ∈ Υη (that may be chosen to depend measur-
ably on λ) such that the asymptotic frequency of the critical orbit in ξλ either does not
exists or is different from µfλ(ξ

λ). Proceeding further, there exists ε > 0 and a positive
measure set J4 ⊂ J3 such that for all parameters in J4.

lim sup

∣∣∣∣
1
k

#
{
i ≤ k, f i

λ(0) ∈ ξλ
} − µfλ(ξ

λ)

∣∣∣∣ > ε(5.84)

(notice that λ �→ µfλ(ξ
λ) is measurable since λ �→ µfλ is measurable).

The set J4 is contained in the union of parameter intervals Jη (η fixed) asso-
ciated to the principal nest (of k-th renormalization). It follows that at least one such
interval Jη intersects J4 in a positive measure set J5. For any λ1, λ2 ∈ Jη, there
is a homeomorphism h[λ1, λ2] : I → I such that h[λ1, λ2] ◦ fλ1|(I \ Iη+1[λ1]) =
fλ2 ◦ h[λ1, λ2]. Thus, there exists a positive measure subset J ⊂ J5 such that for
λ1, λ2 ∈ J , h[λ1, λ2] takes ξλ1 to ξλ2 . In other words, the combinatorics of ξλ does
not depend on λ ∈ J .

In order to get a contradiction and prove Theorem 2, we will show that for
almost every parameter in J ,

lim sup

∣∣∣∣
1
k

#
{
i ≤ k, f i

λ(0) ∈ ξλ
} − µfλ(ξ

λ)

∣∣∣∣ < ε.(5.85)

To simplify the notation, we will write ξ for ξλ. We will also write µ for µfλ . For
x ∈ I, and a measurable set Λ ⊂ I, let

Ψ(Λ, x, k) = 1
k

#{i ≤ k, f i(x) ∈ Λ}.(5.86)
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Notice that if Λ = ξ , and n > η then x �→ Ψ(Λ, x, k) is constant in each interval
I j

n for k ≤ rn(x), while for k ≤ ln(x), x �→ Ψ(Λ, x, k) is constant in each Cd
n . Those

quantities stay unchanged if we vary the parameter λ inside some Jn, if we keep the
combinatorics constant, that is, if we choose a varying point xλ inside I j

n[λ] or Cd
n[λ],

j or d fixed.

5.4.2. Computing µ in the principal nest. — For x ∈ I, let ςn(x) = inf{k, f k(x)
∈ In}, so that f ςn(x)(x) is the first landing of x in In.

For x ∈ In, ςn(x) = 0, and in general we have ςn+1(x) − ςn(x) = ln( f ςn(x)(x)).
Notice that Lemma 11 implies that

∣∣{x ∈ In, c−1/2
n < ln(x) < c−2

n

}∣∣
|In| ≥ 1 − c1/3

n .(5.87)

Since each branch of the first landing map from I to In has distortion bounded by
1 + O(cn−1) (see [ALM], Theorem 2.14), we obtain the estimate

∣∣{x ∈ I, c−1/2
n < ln( f ςn(x)(x)) < c−2

n

}∣∣
|I| ≥ 1 − 2c1/3

n .(5.88)

By Borel-Cantelli, for almost every x, for n sufficiently big,

c−1/2
n < ςn+1(x) − ςn(x) < c−2

n .(5.89)

In particular

lim
ςn+1(x)
ςn(x)

= ∞, for almost every x ∈ I.(5.90)

Thus, for all Λ ⊂ I measurable, for almost every x ∈ I,

lim Ψ(Λ, f ςn(x)(x), ςn+1(x) − ςn(x)) = µ(Λ).(5.91)

Given a measurable subset Λ ⊂ I, we let Ml(Λ, n, δ) ⊂ In be the set of all x
such that

|Ψ(Λ, x, ln(x)) − µ(Λ)| > δ.(5.92)

We let Mr(Λ, n, δ) ⊂ In be the set of all x such that

|Ψ(Λ, x, rn(x)) − µ(Λ)| > δ.(5.93)
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Lemma 19. — For any measurable set Λ ⊂ I, for any δ > 0,

lim
|Ml(Λ, n, δ)|

|In| = 0,(5.94)

lim
|Mr(Λ, n, δ)|

|In| = 0.(5.95)

Proof. — Let Hn be the set of x ∈ I, such that the first landing of x on In belongs
to Ml(Λ, n, δ). If (5.94) is not true, using the small distortion of the first landing map
we conclude that lim sup |Hn| > 0, so there exists a positive measure set of x which
belong to infinitely many Hn. But this is incompatible with (5.91). This shows that
(5.94) holds.

Let Tn ⊂ In be the union of I j
n with the following properties:

I j
n ⊂ Rn(In+1),(5.96)

dist
(
(Rn|In+1)

−1
∣∣I j

n

)
< 2,(5.97)

dist
(
Rn

∣∣I j
n

)
< 2,(5.98)

rn( j) < c−14
n−1 .(5.99)

It follows that

1 − |(Rn|In+1)
−1(Tn)|

|In+1| < c1/10
n−1 .(5.100)

Let

Yn+1 = {
x ∈ (Rn|In+1)

−1(Tn),(5.101)

R2
n(x) ∈ Ml(Λ, n, δ/2), and ln

(
R2

n(x)
)

> c−1/2
n

}
.

Then
|Yn+1|

|(Rn|In+1)
−1(Tn)| ≤ 4

( |Ml(Λ, n, δ/2)|
|In| + c1/3

n

)
,(5.102)

thus

1 − |Yn+1|
|In+1| ≤ 4

( |Ml(Λ, n, δ/2)|
|In| + c1/3

n + c1/10
n−1

)
,(5.103)

so that, by (5.94), lim |Yn+1|
|In+1| = 1. On the other hand, if x ∈ Yn+1,

|Ψ(Λ, x, rn+1(x)) − µ(Λ)| ≤ 1
rn+1(x)

(
δ

2
ln
(
R2

n(x)
) + rn+1(x) − ln

(
R2

n(x)
))

(5.104)

≤
(

δ

2
+ 2c−14

n−1

c−1/2
n

)
,

so that Yn+1 ⊂ Mr(Λ, n, δ) for n sufficiently big. This shows that (5.95) holds. ��
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5.4.3. Distribution of the critical orbit

Lemma 20. — Let S ⊂ In be a union of I j
n. For any C ≥ 1:

lim
γ→1

pγ,C(S|In) = p1,C(S|In).(5.105)

Proof. — If X ⊂ In is any finite union of intervals, by compactness of quasisym-
metric maps we get

lim
γ→1

pγ,C(X|In) = p1,C(X|In).(5.106)

It is clear that for any γ ≥ 1, pγ,C(S|In) ≥ p1,C(S|In). On the other hand, since
In \ ∪I j

n is a regular Cantor set,

lim
k→∞

p2,C

(
x ∈ I j

n, | j| > k|In

) = 0,(5.107)

since the qs-capacity of gaps of generation t decays exponentially with t (see Lem-
ma 6.1 of [AM1] for a related estimate).

Given δ > 0, we can fix a subset S′ ⊂ S which is a union of finitely many I j
n

such that

p2,C(S \ S′|In) < δ.(5.108)

Hence

lim sup
γ→1

pγ,C(S|In) ≤ lim sup
γ→1

pγ,C(S \ S′|In) + lim sup
γ→1

pγ,C(S′|In)(5.109)

≤ δ + p1,C(S′|In) ≤ δ + p1,C(S|In).

The result follows. ��
We now specify this discussion to Λ = ξ (the gap fixed at the beginning). We

are now in situation to apply the Large Deviations Estimate to obtain:

Proposition 3. — For all δ > 0, for all ns sufficiently big, there exists γ > 1 such that

pγ,10(Mr(ξ, ns, δ)|Ins) < c1/20
ns−1,(5.110)

Proof. — Let n0 be very big and δ′ > 0 be such that

4
(
δ′(1 − ln δ′) + c1/4

n0−1

)
<

δ

2
,(5.111)

and c1/3
n0

� δ.
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Let n > n0 be such that

|Mr(ξ, n, δ/3)|
|In| < δ′.(5.112)

Notice that Mr(ξ, n, δ/3) = IΘ
n for some set Θ ⊂ Z, and I(Θ, n) < δ′. Let F ⊂ Ω be

the set of d = ( j1, ..., jm) such that

1
ln(d )

∑

ji∈Θ

rn( ji) >
δ

2
> 4

(
δ′(1 − ln δ′) + c1/4

n−1

)
.(5.113)

Then, by the Large Deviation Estimate (Proposition 2) we get C(F, n) ≤ c1−3/n
n . Let

F′ = F ∪ (Ω \ LS(n)). It follows that C(F′, n) ≤ c2/7
n . Let E′ ⊂ Z be the set of j such

that Rn(I
j
n+1) ⊂ CF′

n . Then I(E′, n + 1) ≤ c2/35
n .

Notice that if x ∈ IZ\E′
n+1 and d = ( j1, ..., jm) is such that Rn(x) ∈ Cd

n , then

vn

rn+1(x)
< c1/3

n � δ.(5.114)

(since d ∈ LS(n) and rn+1(x) > |d|) so we can conclude

|Ψ(ξ, x, rn+1(x)) − µ(ξ)|(5.115)

≤ 1
rn+1(x)

(
vn +

∑

i≤m

rn( ji)
∣∣Ψ

(
ξ, Ri

n(x), rn( ji)
) − µ(ξ)

∣∣
)

≤ 1
rn+1(x)



vn +
∑

i≤m,

ji∈Θ

rn( ji) + δ

3

∑

i≤m,

ji /∈Θ

rn( ji)





≤ 1
rn+1(x)

(
vn +

(
δ

2
+ δ

3

)
ln(d )

)
< δ.

So IE′
n+1 ⊃ Mr(ξ, n + 1, δ). But I(E′, n + 1) ≤ c2/35

n implies that

p1,10

(
IE′

n+1

∣∣In+1

)
< c2/39

n ,(5.116)

so the result now follows by Lemma 20 with ns = n + 1. ��
Let us select δ = ε/3, and using the previous proposition we select ns very large

and such that c1/400
ns−1 < δ. Let T be such that IT

ns
= Mr(ξ, ns, δ). Using Lemma 12 we

get

pγ,Cn

(
IZ\VG(T,ns,n)

n

∣∣In

) ≤ c1/20
n−1 .(5.117)

Using PhPa2 we get:
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Lemma 21. — For almost every parameter in J , for all n sufficiently big, we have

τn ∈ VG(T, ns, n).

Using Lemma 15, we get, for n sufficiently big,

pγ,C̃n

(
CΩ\LC(T,ns,n)

n

∣∣Iτn
n

)
< c1/100

n−1 .(5.118)

Using PhPa1 we get:

Lemma 22. — For almost every parameter in J , for all n sufficiently big, Rn(0) ∈ Cd
n

with d ∈ LC(T, ns, n).

Let us now consider a parameter which satisfies the conclusion of the two pre-
vious lemmas. Let us show that for k big enough,

|Ψ(ξ, 0, k) − µ(ξ)| < 2δ < ε.(5.119)

Indeed, if vn + c−4/(n−1)

n−1 < k ≤ vn+1, by Proposition 1

|Ψ(ξ, f vn(0), k − vn) − µ(ξ)| < δ + 2c1/200
ns−1 ,(5.120)

in particular, for n big enough

|Ψ(ξ, 0, vn) − µ(ξ)| < 3δ/2.(5.121)

Notice that (5.120) and (5.121) imply (5.119) for n big enough and for vn + c−4/(n−1)

n−1 <
k ≤ vn+1. For vn ≤ k ≤ vn + c−4/(n−1)

n−1 , (5.119) follows from (5.121) since vn > c−1/2
n−1 �

δ−1c−4/(n−1)

n−1 for n big enough.
Thus, for almost every parameter in J , (5.119) holds, which contradicts (5.84)

and completes the proof of Theorem 2.

5.5. Proof of Corollary 1. — We want to show that

∫
ln |Df |dµ = lim

1
k

ln |Df k( f (0))| = lim
1
n

n∑

k=1

ln |Df ( f k(0))|.(5.122)

The fact that 0 belongs to the basin of µ means that for all continuous φ,

1
n

n∑

k=1

φ( f k(0)) =
∫

φdµ.(5.123)
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Since µ has no atoms, this formula still holds if φ is a bounded function with at most
finitely many discontinuities. Unfortunately, ln |Df | is not bounded, so we only have,
for every δ > 0 small

∫

I\(−δ,δ)

ln |Df |dµ = lim
n→∞

1
n

∑

1≤k≤n
f k(0)∈I\(−δ,δ)

ln |Df ( f k(0))|.(5.124)

Since

lim
δ→0

lim sup
n→∞

1
n

∑

1≤k≤n
f k(0)∈(−δ,δ)

ln |Df ( f k(0))| ≤ 0,(5.125)

we have to prove that for almost every non-regular parameter,

lim
δ→0

lim inf
n→∞

1
n

∑

1≤k≤n
f k(0)∈(−δ,δ)

ln |Df ( f k(0))| = 0.(5.126)

Condition (5.126) is called Weak Regularity by Tsujii. In [AM3], Theorem 10.2
(see also Remark 10.3 in that paper), it was shown that almost every non-regular pa-
rameter in non-trivial analytic families of unimodal maps satisfies (5.126), so, together
with Theorem 2, it implies Corollary 1.

6. Regularity of the physical measure

6.1. Outline. — Theorem 3 is a statement of regularity of µ. We can think of
dµK as a regularization of µ, designed to allow an understanding of the relation be-
tween ergodic and geometric properties of hyperbolic Cantor sets. Before tackling the
problem of studying the regularization of µ, it is important to understand the limita-
tions on the regularity of µ and identify the source of the difficulties.

According to Theorem 6, dµ is bounded from below on A (by some constant
C > 0). As a consequence, if T is an interval of radius ε centered on 0 then µ( f (T)) =
µ(T) ≥ 2Cε ≥ 2C

√| f (T)|. This shows that dµ has a “pole” at the critical value and,
due to invariance of µ, there are also poles all along the orbit of the critical value.

In particular, for a general measurable set contained in A, the (measure-theoret-
ical) quantity ln(µ(A)) only gives information about the (geometric) quantity ln |A|
up to a factor of 2 (for |A| small enough). This is the main reason why we have to
introduce the regularization procedure. We would not be able to prove Theorem 1
just with general information on µ.

This estimate on the non-regularity of µ is optimal: it implies that dµ /∈ L2(I),
but it is known that for maps satisfying the Collet-Eckmann condition dµ ∈ L p(I),
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p < 2, see [MS]. This is better explained by Benedicks and Carleson [BC], who, for
a smaller set of parameters (contained in the set of good Benedicks-Carleson parame-
ters) described dµ as a sum of a bounded distribution and infinitely many poles (called
square-root singularities by them) along the orbit of the critical value. Although this
was not proved in general, this is the picture to imagine as a guide.

Since the critical orbit is distributed according to µ, those poles are everywhere
(they are dense in the attractor). However, not all is lost:

1. The strength of the poles decreases exponentially fast along the critical orbit
(because of the Collet-Eckmann condition),

2. The regularized dµK averages over the gap, and dissipates the pole with
a strength proportional to the size of the gap.

Thus, a naive argument to prove Theorem 3 would be to obtain, with total
probability, some “quantitative transversality” of the critical orbit with respect to K
which would guarantee that strong poles are located in big gaps. For instance, we
could expect that the time of the first visit of the critical point to some gap of K is
inversely proportional to the size of the gap. Such a situation would imply that strong
poles fall in (very) big gaps and should help10 us to conclude that dµK ∈ L p(I) for
1 ≤ p < ∞.

This would be much easier to deal with if the location of the successive poles
was independent and uniformly distributed with respect to Lebesgue measure. How-
ever, there is quite a bit of interaction between different poles. In particular, new poles
tend to show up more frequently near earlier poles than elsewhere (since the critical
orbits distributes according to µ which in turn is more concentrated near the poles).

Our strategy will be to hierarchize the gaps according to the principal nest. To
estimate the measure of a given gap, we will study their frequency in return branches.
To estimate the possible increase in frequency between levels (caused by the distortion
originated on the poles), we introduce a transversality condition (which we call “Strong
poles fall in big gaps”), which means that Rn(0) falls transversely enough with respect
to the Cantor set of points that never land on In (the concept of transverse involves
the hierarchy). This analysis (which will be carried out in the next section) will allow
us to conclude the “Main estimate”, which gives bounds on the µ-measure of gaps.

In this section we state the “Strong poles fall in big gaps” condition, prove that
it is a total probability one, and conclude Theorem 3 assuming the Main estimate.

6.2. The “Strong poles fall in big gaps condition”. — We say that f satisfies the
“Strong poles fall in big gaps” condition if for all n sufficiently big we have

10 One also needs to guarantee that strong poles fall well inside a gap in order to control the effect on small
nearby gaps.
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(SP1) For all d ∈ Ω, |d| ≥ 1, the distance between Rn(0) and ∂Id
n is bounded by

|Id
n|

2n|d|2
,(6.1)

(SP2) Rn(0) ∈ Cd
n , where d = ( j1, ..., jm) satisfies

rn( ji) ≤ c−11
n−1 , 1 ≤ i ≤ m,(6.2)

I( ji, n) ≥ e−c−12
n−1 , 1 ≤ i ≤ m,(6.3)

(SP3) Rn(0) ∈ Cd
n, where d = ( j1, ..., jm), and for each 1 ≤ i ≤ ec−4

n−2 we have
Rn−1(I ji

n ) ⊂ Cdi
n−1 where di = ( j i

1, ..., j i
s(i)) and

rn−1( j i
k) ≤ c−11

n−2 , 1 ≤ k ≤ s(i),(6.4)

I( j i
k, n − 1) ≥ e−c−12

n−2 , 1 ≤ k ≤ s(i).(6.5)

Lemma 23. — Almost every non-regular parameter satisfies the “Strong poles fall in big

gaps” condition.

Proof. — Let γ be such that ε(γ) < δ0, in the notation of §4.4.2, with δ0 > 0
very small (say, 1/1000).

Let us first deal with SP1. We will consider two cases |d| = 1 and |d| > 1. Let
d(X, Y) denote the distance between X and Y.

In the first case, let An be the set of k such that

d
(
Ik

n, ∂I j
n

) ≤ |I j
n|

23n/4
, for some j 
= k.(6.6)

Then

pγ

(
IAn

n

∣∣In

)
< 2−n/2.(6.7)

Applying PhPa2, we see that with total probability, τn /∈ An for n large enough. This
implies that, with total probability, for n big, if

d
(
Rn(0), ∂I j

n

) ≤ |I j
n|

2n
(6.8)

then j = τn. Let Bn be the set of d such that Cd
n ⊂ Iτn

n and

d
(
Cd

n, ∂Iτn
n

) ≤ |Iτn
n |

23n/4
.(6.9)
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Then

pγ

(
CBn

n

∣∣Iτn
n

)
< 2−n/2,(6.10)

and by PhPa1 we see that Rn(0) /∈ CBn
n for n large enough. In particular, we conclude

the result for d = 1.
In the second case, let E(n) be the set of d such that there exists some d̃ with

|d̃| ≥ 2 and

d
(
Cd

n, ∂Id̃
n

) ≤ |Id̃
n|

|d̃|3/223n/4
.(6.11)

Let us show that

pγ

(
E(n)

∣∣Iτn
n

) ≤ 1
2n/2

∑

k≥2

k−4/3.(6.12)

Notice that if Id̃
n ⊂ I j

n with j 
= τn, then no Cd
n ⊂ Iτn

n satisfies (6.11), since

d
(
Cd

n, ∂Id̃
n

) ≥ d
(
Id̃

n, ∂I j
n

) � ∣∣Id̃
n

∣∣.(6.13)

On the other hand, for each Id̃
n ⊂ Iτn

n , the set E(d̃ ) of d satisfying (6.11) has the prop-
erty that, for any h γ -qs,

∣∣h
(
CE(d̃ )

n

)∣∣
∣∣h

(
Id̃

n
)∣∣

<
1

2n/2|d̃|4/3
,(6.14)

and since all Id̃
n with |d̃| = k are disjoint, letting E(k, n) = ∪|d̃|=kE(d̃ ), we get

pγ

(
CE(k,n)

n

∣∣Iτn
n

) ≤ 1
2n/2k4/3

.(6.15)

This implies (6.12).
Applying PhPa1, we see that with total probability, for n big enough, Rn(0) /∈

CE(n)
n , which gives SP1 for |d| > 1.

Let us consider SP2. Notice that rn( j) < c−11
n−1 implies I( j, n) > ec−12

n−1 for n big,
since the derivative of f is bounded. Let F(n) be the set of j satisfying rn( j) > c−11

n−1 ,
and F′(n) be the set of d with at least one entry in F(n). We get

pγ

(
IF(n)

n

∣∣In

) ≤ e−c−7
n−1,(6.16)
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which implies using PhPa2 that τn /∈ F(n) with total probability, and thus

pγ

(
CF′(n)

n

∣∣In

) ≤ e−c−7+δ
n−1 ,(6.17)

pγ

(
CF′(n)

n

∣∣Iτn
n

) ≤ e−c−7+δ
n−1 ,(6.18)

where δ goes to 0 when n grows. Using PhPa1 we get Rn(0) /∈ CF′(n)
n with total prob-

ability, which implies SP2.
Let us consider SP3. Keeping the notation of the previous discussion, let

G(n + 1) be the set of j such that Rn(I
j
n+1) ⊂ Cd

n with d ∈ F′(n). Let G′(n + 1) be
the set of d with at least one entry in G(n + 1) among its first e−c−4

n−1 entries. It follows
that

pγ

(
IG(n+1)

n+1

∣∣In+1

) ≤ e−c−7+δ
n−1 ,(6.19)

which by PhPa2 implies that τn+1 /∈ G(n + 1) with total probability and thus

pγ

(
CG′(n+1)

n+1

∣∣In+1

) ≤ e−c−7+δ
n−1 ,(6.20)

pγ

(
CG′(n+1)

n+1

∣∣Iτn+1
n+1

) ≤ e−c−7+δ
n−1 .(6.21)

This implies, using PhPa1, that Rn+1(0) /∈ CG′(n+1)
n+1 with total probability, which implies

SP3. ��

6.3. Main estimate

Theorem 9 (Main estimate). — Let f be a unimodal map with the following properties:

1. f is Collet-Eckmann and has an absolutely continuous invariant measure µ;

2. The several asymptotic limits and estimates described in §4.4 hold;

3. f satisfies the “Strong poles fall in big gaps” condition.

Then, there exists n0 > 0 such that for every δ > 0, and all n ≥ n0, there exists Cn such that for

any I j
n, µ(I j

n) < Cn|I j
n|1−δ.

It turns out that Theorem 3 implies that we can take n0 = 1 in the Main esti-
mate.

Remark. — We think that it is possible to refine the conditions of the Main es-
timate (keeping total probability) in order to obtain better estimates for µ(I j

n) (of the
type −C|I j

n| ln |I j
n| or even better). It is an interesting problem whether a bound of

the type C|I j
n| is valid with total probability. Such a bound is equivalent to obtaining

dµK
f ∈ L∞ in Theorem 3.
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6.4. Proof of Theorem 3 assuming the Main estimate. — By Lemma 23 and the
results of [AM1], we get that, with total probability, f satisfies the hypothesis of the
Main estimate. Let us now fix such an f .

If K is a hyperbolic set for f , then it avoids a neighborhood of the critical point.
On the other hand, if K ⊂ K′ and dµK′ ∈ L p, then necessarily dµK ∈ L p. So we just
have to consider the case of Kn, the maximal invariant of I \ In for n big. The gaps of
Kn are connected components of the domain of the first landing map from I to In.

We will use the following:

Lemma 24. — For all n > 0, there exists a finite partition of I \ In on intervals Mi, such

that for each Mi, f |Mi is a diffeomorphism onto the union of some Mi and, possibly, In. Moreover,

there exists constants C > 0 and t < 1 such that for any x such that x, ..., f k(x) ∈ I \ In, we can

associate an interval Mk(x) such that

1. f k : Mk(x) → I is a diffeomorphism over some Mi;

2. Two intervals Mk(x) and Mk( y) are either disjoint or coincide.

3. |Mk(x)| < Ctk;

4.
∑

k≥1 |Mk(x)| < C;

5. The distortion of f k|Mk(x) is bounded by C;

6. For each k, | ∪ Mk(x)| < Ctk.

Proof. — Let Q be the finite set consisting of all points in the forward orbit of
∂In. Let Mi be the connected components of I \ (Q ∪ In). It is clear that the image
of Mi consists of a union of Mj , possibly together with In. The Mi form a Markov
partition of I \ In, and so the first and second item follow. The third item follows from
hyperbolicity of f |I \ In (see Lemma 2), and the fourth follows from the third. The
fifth follows from the fourth by a classical argument (it is enough to use that ln |Df | is
Hölder in I\ In). Notice that for each i, there exists ji > 0 such that f ji(Mi) contains In.
This and the fifth item show that | ∪ Mk+j(x)| ≤ t| ∪ Mk(x)| for some t < 1 and for
j = max ji, and this gives the sixth item. ��

Corollary 3. — For all n > 0, there exists θn > 0 such that
∑

Λ gap of Kn

|Λ|1−θn < ∞.(6.22)

Proof. — Let us say that a gap Λ of Kn is of generation k if f k(Λ) = In. Let
k(Λ) be the generation of Λ. Notice that each Mk(x) contains at most one gap of
generation k + 1 (and no gaps of generation ≤ k). On the other hand, each gap Λ

of generation k + 1 is contained on some Mk(x), which we denote M(Λ). Notice that
since the derivative of f is bounded by some constant κ,

|Λ| ≥ |In|κ−k(Λ).(6.23)
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We can estimate
∑

Λ gap of Kn

|Λ|1−θn ≤
∑

k≥0

∑

k(Λ)=k

|M(Λ)|1−θn(6.24)

≤
∑

k≥0

∑

k(Λ)=k

|Λ|−θn|M(Λ)|

≤ |In|−θn

(
∑

k≥0

κθnk
∑

k(Λ)=k

|M(Λ)|
)

≤ C|In|−θn
∑

k≥0

κθnktk,

where C > 0, t < 1 comes from item (5) of Lemma 24. The result follows with θn > 0
such that κθn t < 1. ��

6.4.1. — Let Kr
n be the Cantor set In \∪I j

n, and let dµKr
n be the function which

takes, in each gap of Kr
n the average value of dµ in that gap, and let dµKr

n = 0 out-
side In.

Notice that by Corollary 3,
∑

j

∣∣I j
n

∣∣1−θn+1 ≤
∑

d

∣∣Cd
n

∣∣1−θn+1 ≤ C < ∞.(6.25)

Fix 1 ≤ p < ∞. Using the Main Estimate, let C′ be such that

µ
(
I j

n

)
< C′∣∣I j

n

∣∣1− θn+1
p .(6.26)

We estimate

∫

In

(dµKr
n)p =

∑∣∣I j
n

∣∣
(

µ
(
I j

n

)
∣∣I j

n
∣∣

)p

≤ C′p ∑∣∣I j
n

∣∣1−θn+1 < CC′p.(6.27)

In particular, dµKr
n ∈ L p.

6.4.2. — Given Λ ⊂ I \ In measurable, let Λ̂ ⊂ I be the set of x such that
min{k ≥ 1, f k(x) ∈ Λ} ≤ min{k ≥ 1, f k(x) ∈ In} (that is, the orbit of f (x) intersects Λ

before intersecting In). Let Λl = Λ̂ ∩ (I \ In) and Λr = Λ̂ ∩ In.
Notice that f −1(Λl ∪ Λ) = Λr ∪ Λl = Λ̂, thus

µ(Λ) = µ(Λr) provided Λl ∩ Λ = ∅.(6.28)
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Let Λ(k) ⊂ Λl be the set of points x with k = min{i > 0, f i(x) ∈ Λ}. Then,
by Lemma 24, Λ(k) is covered by disjoint intervals Mk( yi). By items 5 and 6 of
Lemma 24, there exists C > 0, t < 1 such that

|Λ(k)| < Ctk max
i

|Λ(k) ∩ Mk( yi)|
|Mk( yi)| < C′tk|Λ|,(6.29)

since the density of Λ(k) inside some Mk( yi) is comparable with the density of Λ in
f k(Mk( yi)) (by bounded distortion) which is at most maxj |Λ||Mj|−1. Thus, there exists
a constant C > 0 such that

|Λl | < C|Λ|(6.30)

independently of Λ.

6.4.3. — Let now Λ be a gap of Kn. Assume first that Λ is a gap of Kn which
does not intersect { f i(0), 0 ≤ i < vn}. In particular, Λ 
= In and Λr does not contain
the critical point. Since Λ is a connected component of the domain of the first landing
map from I to In, we have that Λl ∩ Λ = ∅, and thus (6.28) holds. By (6.30),

|Λr| ≤ 2|Λl| sup
x∈In\I0

n

|Df (x)|−1 ≤ C|Λ|(6.31)

for some constant C > 0 independent of Λ. Using the Hölder inequality we get

µ(Λ) = µ(Λr) ≤
(∫

Λr

(dµKr
n)p

) 1
p

|Λr|1− 1
p < Cp|Λr|1− 1

p ≤ C′
p|Λ|1− 1

p ,(6.32)

where C′
p depends on p but not on Λ.

The set of gaps Λ of Kn which intersect { f i(0), 0 ≤ i < vn} are in finite number,
so there exists C > 0 such that for any such Λ,

µ(Λ) ≤ C|Λ|.(6.33)

Putting together (6.32) and (6.33), and varying p, we see that for any δ > 0 there
exists a constant C(δ) such that for any Λ gap of Kn we have

µ(Λ) ≤ C(δ)|Λ|1−δ.(6.34)

By Corollary 3, for δ < θn/p we have

∫
(dµKn)p =

∑

Λ gap of Kn

|Λ|
(

µ(Λ)

|Λ|
)p

≤ C(δ)p
∑

|Λ|1−θn < CC(δ)p.(6.35)
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7. Proof of the Main Estimate

7.1. Outline. — Our problem is to analyze the asymptotics of the physical meas-
ure of I j

n as the Lebesgue measure of I j
n decreases, n fixed. Let us fix some advanced

level η. Fix a small interval Iι
η. To the end of this section, a = |Iι

η|. The critical step l
is defined as the unique number with

cl+1 ≤ a < cl.(7.1)

Since our estimate is only relevant if Iι
η is small, we can assume that l is very big.

The proof will be based on the analysis, for each level n ≥ η, of the frequency
of visits to Iι

η before a return to In. Those estimates can be passed from level to level
if one can control the distortion introduced by the critical orbit. The argument will
take distinct steps.

In the early stages (before l − 1), very few branches (measure of order a) pass at
all in Iι

η before returning. The critical orbit falls in big holes away from the hierarchic
structure of those branches and does not distort much the measure.

In the later stages (after l + 2) most branches have total time much bigger
then a−1, and they spend a proportion of time of order a in Iι

η. The exceptional
branches have measure much smaller than a, and we use the inductive estimate of §5.2
to show that they do not contribute much for the next levels.

In the intermediate stages, there is a delicate transition between those two situ-
ations. To complicate further, at this moment the position of the critical point could
introduce distortion of strength comparable with a. We will need to use the hierarch-
ical structure of the set of branches passing through Iι

η combined with our conditions
on the critical orbit to control the distortion of pullbacks.

In what follows, δ will denote several constants which go to 0 uniformly as the critical step

l goes to infinity.

7.2. Preliminaries. — Let us define

Xn( j) = #
{
k < rn( j), f k

(
I j

n

) ⊂ Iι
η

}
, n ≥ η,(7.2)

Xn(d ) = #
{
k < ln(d ), f k

(
Cd

n

) ⊂ Iι
η

}
, n ≥ η,(7.3)

so that

Xn(d ) =
m∑

i=1

Xn( ji), d = ( j1, ..., jm).(7.4)

Xn+1( j) = Xn(0) + Xn(d ), Rn

(
I j

n+1

) ⊂ Cd
n.(7.5)
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Define

xn(r) = I({Xn( j) ≥ r}, n), xn = xn(1),(7.6)

xn(r) = C({Xn(d ) ≥ r}, n), xn = xn(1).(7.7)

One immediately gets (see §7.5.1.1 for a derivation)

xn ≤ nc−1
n xn.(7.8)

Before getting into the more complicate intermediate steps, let us deal with the
initial steps and discuss our strategy for the later steps.

7.2.1. Initial steps. — Notice that if xn < cn then Xn(0) = 0, and if additionally
xn < c5

n+1 then we conclude that xn+1 < cn+1 and Xn+1(0) = 0 as well. In this case we
can estimate

xn+1 ≤ dist(Rn|(In+1 \ In+2))2nxn ≤ 22nc−1
n+1xn.(7.9)

Since Xη(0) = 0 and xη(0) = a, we conclude by induction that for η ≤ n ≤ l − 1 we
have

Xn(0) = 0, xn ≤ ac−1
n c−5/2

n−1 � a1−δ < cn, xn ≤ ac−9/4
n(7.10)

(using that ac−9/4
n < c5

n+1 for n ≤ l − 2). Thus we have, just before the critical time:

xl−1, xl−1 ≤ ac−5/2
l−1 � a1−δ, Xl−1(0) = 0.(7.11)

7.2.2. Later steps. — Let us fix, for the end of this section, some very small ε.
Our aim is to estimate

µ(Iι
η) ≤ a1−10ε1/2

.(7.12)

To attack this problem, we will need to compute µ(Iι
η) somehow. Using the idea

of §5.4.2, one sees that we only have to show that

lim
n→∞ I

({
j, Xn( j) ≤ a1−10ε1/2

rn( j)
}
, n

) = 1.(7.13)

This will be done in the following way. We will show that there exists n0 such
that, defining

T = {
j, Xn0( j) > a1−8ε1/2

rn0( j)
}
,(7.14)

we have

I(T, n0) < c1/20
n0−1.(7.15)
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Our actual choice of n0 will be n0 = l + 3 if a < cε
1/2

l+1 and n0 = l + 2 otherwise.
Notice that in both cases c1/200

n0−1 < a.
By the inductive estimate, see §5.2.2 (we only need the case γ = 1 correspond-

ing to Lebesgue measure), we get, for n ≥ n0,

I(Z \ VG(T, n0, n), n) � c1/20
n−1 ,(7.16)

and for j ∈ VG(T, n0, n)

Xn( j) ≤ (
a1−8ε1/2 + c1/200

n0−1

)
rn( j) < a1−10ε1/2

rn( j).(7.17)

Estimates (7.16) and (7.17) imply (7.13).

7.3. Transition from l − 1 to l. — The analysis of the transition from the l − 1
level to the l level is more complicated. We will need to consider a special sequence
Et of nested intervals in level Il−1 around the critical value Rl−1(0), where we can
analyze (using SP2) the density of the set of points visiting Iι

η. We then pullback this
information to a sequence Ft of nested intervals in level l around the critical point,
with a control of the distortion by SP1.

7.3.1. — Let d = ( j1, ..., js) be such that Rl−1(0) ∈ Cd
l−1 and for each 0 ≤ t

≤ s, let d(t) = ( j1, ..., jt). By condition SP2 we can estimate

I( ji, l − 1) > e−c−12
l−2 � aδ, 1 ≤ i ≤ s.(7.18)

Define

Et = Id(t)
l−1, 0 ≤ i ≤ s.(7.19)

From (7.18) we get
|Et+1|
|Et| > 2−l e−c−12

l−2 � aδ.(7.20)

Denote

Ft = (Rl−1|Il)
−1(Et).(7.21)

Notice that (7.18), (7.11) imply that Xl−1( ji) = 0. In particular,

C{Xl−1>0}
l−1 ∩ Et = (

Rt
l−1

∣∣Et

)−1
C{Xl−1>0}

l−1 .(7.22)

This forces the density estimate
∣∣C{Xl−1>0}

l−1 ∩ Et

∣∣
|Et| < ac−3

l−1 ≤ a1−δ.(7.23)

Moreover, since Xl−1(d ) = ∑s
i=1 Xl−1( ji) = 0 and Xl−1(0) = 0 (by 7.11), we

have that

Xl(0) = 0.(7.24)
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7.3.2. — Let us define at and bt by Et = (Rl−1(0) − at, Rl−1(0) + bt). Let
mt = min{at, bt} and Mt = max{at, bt}, so that |Et |

2 ≤ Mt < |Et|. By SP1, we have
mt > |Et |

2l−1(t+1)2 , so we have

Mt

mt+1
≤ |Et|

mt+1
≤ 2l−1(t + 2)2 |Et|

|Et+1| ≤ ec−14
l−2 ≤ a−δ.(7.25)

This allows us to estimate

dist(Rl−1|(Ft \ Ft+1)) ≤ ec−15
l−2 ≤ a−δ, 0 ≤ t < s.(7.26)

If 0 ≤ t ≤ s − 1, let E1
t , E2

t be the connected components of Et \ Et+1, and if
t = s, let E1

t and E2
t be the connected components of Id(s)

l−1 \Cd(s)
l−1, (recall that Es = Id(s)

l−1).
Using SP1 and (7.23) we see that

∣∣C{Xl−1>0}
l−1 ∩ Ei

t

∣∣
|Ei

t|
< ac−3

l−12l(t + 1)2 ≤ a1−δ, 0 ≤ t ≤ s, i = 1, 2.(7.27)

Using (7.26), (7.27) and SP1, we obtain,
∣∣(Ft \ Ft+1) ∩ I{Xl >0}

l

∣∣
|Ft| ≤ aec−16

l−2 � a1−δ, 0 ≤ t < s.(7.28)

Notice that Xl(0) = 0, so Fs ∩ I{Xl >0}
l = (Fs \ Il+1)∩ I{Xl >0}

l . Notice that Rl−1 takes
each component of Fs \ Il+1 to either E1

s or E2
s , and we have the obvious estimate

dist(Rl−1|(Fs \ Il+1)) < 2lc−1/2
l−1 . By (7.27)

∣∣Fs ∩ I{Xl >0}
l

∣∣
|Fs| ≤ a22lc−7/2

l−1 (s + 1)2 ≤ ae−c−16
l−2 � a1−δ,(7.29)

as well.
We have

Il = Fs ∪
s−1⋃

t=0

(Ft \ Ft+1),(7.30)

so, by (7.28) and (7.29),

xl ≤ aec−16
l−2 � a1−δ,(7.31)

and as a consequence,

xl ≤ a2lc−1
l ec−16

l−2 � a1−δc−1
l .(7.32)

7.4. The critical step. — We will consider two cases: a < e−c−20
l−1 (Case 1) and

a ≥ e−c−20
l−1 (Case 2).
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7.4.1. Case 1. — The first case can be dealt by an argument which is analo-
gous to the analysis in §7.3. We consider a sequence of nested intervals Et in level l
around Rl(0), and also their pullback Ft in level l + 1 (the definitions are the same
of §7.3 up to a shift in the indexes). Using SP2 we analyze the density of C{Xl >0}

l in Et,
which we bound by a1−δ (this only works in Case 1), and since a1−δ � cl (this only
works in Case 1 also) we conclude that Xl+1(0) = 0. We use SP1 to control the pull-
back to Ft . The reader can check the estimate

xl+1 < a1−δ, in Case 1.(7.33)

7.4.2. Case 2. — Let r = ec−4
l−2 and q = (ln a)2, so that q < r (since we are in

Case 2).
Let d = ( j1, ..., js) be such that Rl(0) ∈ Cd

l . For 1 ≤ u ≤ q, we let du be defined
by

I ju
l = (Rl−1|Il)

−1
(
Cdu

l−1

)
(7.34)

and we let du = ( ju
1, ..., ju

s(u)).
Notice that by SP2,

s(u) ≤ rl( ju) ≤ c−14
l−1 .(7.35)

For 1 ≤ u ≤ q and 0 ≤ v ≤ s(u), let us define a sequence of nested intervals Su,v

containing Cdu
l−1 by Su,v = I( ju1,...,j

u
v )

l−1 . Let us define nested intervals Tu,v containing I ju
l by

taking Tu,v as the connected component of (Rl−1|Il)
−1(Su,v) containing I ju

l . Let

Wu,v = (
Ru−1

l

∣∣I( j1,..., ju−1)

l

)−1
(Tu,v),(7.36)

which is some interval containing Rl(0). Notice that if (u1, v1) ≤ (u2, v2) in the lexico-
graphic order we have Wu1,v1 ⊃ Wu2,v2 .

Note also that |Wq,s(q)| < e−q|Il| < a10 so that

|(Rl|Il+1)
−1(Wq,s(q))|

|Il+1| � a.(7.37)

By our choice of q, we can apply SP3 and conclude

I( ju
v , l − 1) > e−c−12

l−2 > a1/2 > xl−1, 1 ≤ u ≤ q, v ≤ s(u).(7.38)

This gives

Xl−1( ju
v ) = 0, 1 ≤ u ≤ q, v ≤ s(u).(7.39)
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If Xl( ju) > 0 then there exists some v ≤ s(u) such that Xl−1( ju
v ) > 0 (since

Xl−1(0) = 0), so (7.39) implies

Xl( ju) = 0, 1 ≤ u ≤ q.(7.40)

Notice that (7.39), (7.40) imply

Su,v ∩ C{Xl−1>0}
l−1 = (

Rv
l−1

∣∣Su,v

)−1(
C{Xl−1>0}

l−1

)
,(7.41)

C{Xl >0}
l ∩ Wu,v = (

Ru−1
l

∣∣I( j1,...,ju−1)

l

)−1(
Tu,v ∩ C{Xl >0}

l

)
.(7.42)

In particular, (7.41) gives
∣∣Su,v ∩ C{Xl−1>0}

l−1

∣∣
|Su,v| < 2lxl−1 ≤ a1−δ.(7.43)

7.4.2.1. — Let us now show that

|Tu,v ∩ I{Xl >0}
l |

|Tu,v| ≤ a1−δ.(7.44)

There are two cases: Tu,v ⊃ Il+1 and otherwise.
In the first case, Tu,v ⊃ Il+1, we have Su,v = Ev and Tu,v = Fv in the notation

of §7.3, and (7.44) follows from (7.28) and (7.29).
In the second case, Tu,v 
⊃ Il+1, using SP1 and that v ≤ s(u) ≤ c−14

l−1 (see (7.35)),
we get

dist(Rl−1|Tu,v) < v22l−1 � c−50
l−1 ≤ a−δ.(7.45)

Since Xl−1(0) = 0, we have

Tu,v ∩ I{Xl >0}
l = (Rl−1|Tu,v)

−1
(
C{Xl−1>0}

l−1 ∩ Su,v

)
,(7.46)

and (7.44) follows from (7.43) and (7.45).

7.4.2.2. — Since Xl(0) = 0 (see (7.24)),

Tu,v ∩ C{Xl >0}
l = Tu,v ∩

(
I{Xl >0}

l ∪
⋃

I j
l ⊂Tu,v,

j 
=0

(
Rl

∣∣I j
l

)−1
C{Xl >0}

l

)
.(7.47)

And by (7.31), (7.32) and (7.44) we get
∣∣Tu,v ∩ C{Xl >0}

l

∣∣
|Tu,v| ≤ a1−δc−1

l .(7.48)

By (7.48) and (7.42) we get
∣∣C{Xl >0}

l ∩ Wu,v

∣∣
|Wu,v| < a1−δc−1

l , 1 ≤ u ≤ q, v ≤ s(u).(7.49)
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7.4.2.3. — Let Z0 ⊃ Z1 ⊃ ... ⊃ Zt be an enumeration of the Wu,v. Let us
show that

|Zk|
|Zk+1| � a−δ, 0 ≤ k ≤ t − 1.(7.50)

Notice that if v < s(u), and Tu,v+1 does not contain 0,

|Tu,v|
|Tu,v+1| ≤ 10

|Su,v|
|Su,v+1|(7.51)

(using that Rl−1|Il is almost purely quadratic11). So in this case,

|Wu,v|
|Wu,v+1| ≤ 2l |Tu,v|

|Tu,v+1| ≤ 22l |Su,v|
|Su,v+1| ≤ 24lI( ju

v+1, l − 1)−1 ≤ ec−14
l−2 � a−δ(7.52)

using (7.38) to estimate I( ju
v+1, l − 1).

Let us now assume that v < su but that Tu,v+1 contains 0 (in this case Tu,v+1 =
Fv+1, Tu,v = Fv, Su,v+1 = Ev+1, Su,v = Ev in the notation of §7.3). Notice that Rl−1(0) ∈
Su,v+1, so we can apply SP1 to see that

|Rl−1(Tu,v+1)| ≥ |Su,v+1|
2l(v + 1)2

.(7.53)

Thus,

|Wu,v|
|Wu,v+1| ≤ 2l |Tu,v|

|Tu,v+1| ≤ 2l · 10
(

Rl−1(Tu,v)

Rl−1(Tu,v+1)

)1/2

(7.54)

≤ 2l · 10
(

2l(v + 1)2|Su,v|
|Su,v+1|

)1/2

.

By (7.35), v + 1 ≤ c−14
l−1 , while SP2 implies that |Su,v+1| ≥ 2−l e−c−12

l−2 |Su,v| (this is the same
estimate as (7.20)), so we get

|Wu,v|
|Wu,v+1| ≤ 10 · 22lc−14

l−1 ec−12
l−2 /2 ≤ ec−14

l−2 � a−δ.(7.55)

Consider now the case of v = s(u). Notice that

Wu+1,0 = (
Ru−1

l

∣∣I( j1,...,ju−1)

l

)−1(
I ju

l

)
,(7.56)

11 This follows from the following estimate: if 0 ≤ a < b < c < d then 2 d2−a2

c2−b2 ≥ 2 d+a
c+b

d−a
c−b ≥ d−a

c−b . Thus the
quadratic part of the pullback can not decrease the relative size of Su,v+1 ⊂ Su,v by a factor worse than 2 if 0 /∈ Su,v,
or 4 if 0 ∈ Su,v \ Su,v+1.
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so

|Wu,s(u)|
|Wu+1,0| ≤ 2l |Tu,s(u)|

|I ju
l | .(7.57)

Moreover, I ju
l is a connected component of (Rl−1|Il)

−1(Cdu
l−1) and Tu,s(u) is a connected

component of (Rl−1|Il)
−1(Idu

l−1). Since Cdu
l−1 does not contain Rl−1(0) (since ju 
= 0), we

conclude

|Wu,s(u)|
|Wu+1,0| ≤ 2l |Tu,s(u)|∣∣I ju

l

∣∣ ≤ 22l

∣∣Idu
l−1

∣∣
∣∣Cdu

l−1

∣∣ ≤ c−2
l−1 � a−δ.(7.58)

7.4.2.4. — As in §7.3, define ai, bi > 0 by Zi = (Rl(0) − ai, Rl(0) + bi), and
let mi = min{ai, bi}, Mi = max{ai, bi}. Notice that for i < t we have mi > 2Mi+1 (both
components of Zi \ Zi+1 are much bigger than Zi+1). It follows that for i < t − 1, we
have (using (7.50))

Mi

mi+1
≤ Mi

Mi+1

Mi+1

Mi+2
≤ a−δ.(7.59)

Let Vi = (Rl|Il+1)
−1(Zi). Repeating the argument used to obtain (7.28) and

(7.29) we get
∣∣(Vi \ Vi+1) ∩ I{Xl+1>0}

l+1

∣∣
|Vi| ≤ a1−δc−1

l .(7.60)

On the other hand,

|Zt−2| � e−q|Il| � a10|Il|,(7.61)

so |Vt−2| � a|Il+1|. Repeating the argument of (7.31) and (7.32) we get

xl+1 ≤ a1−δc−1
l , in Case 2.(7.62)

Remark. — The above estimate from above could be bigger than one if a is
near cl . This means that Xl+1 could be supported on most branches of Rl+1.

7.5. Dealing with the later steps. — We are now in position to work out the
later steps, aiming at the estimates outlined in §7.2.2. Before doing so, let us present
a couple of tools that will be repeatedly used.

7.5.1. Useful estimates. — We will need several times the following easy esti-
mates.
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7.5.1.1. — Let T ⊂ Z and let q = I(T, n). Let T̂ be the set of d with at least
one entry in T. Then

C(T̂, n) ≤
∑

k≥1

I({d = ( j1, ..., jk), jk ∈ T}, n)(7.63)

≤ n1/2+δ
∑

k≥1

qI({|d| = k − 1}, n)

≤ n
∑

k≥1

qc−1
n C({|d| = k − 1}, n) = nc−1

n q.

7.5.1.2. — Let T ⊂ Z, let q = I(T, n), and assume nq < 1/2. Assume that
k > k0 > c−2

n−1 satisfy kk−1
0 cn > n2q. Let T̂ be the set of d with at least k entries in T.

Then

C(T̂, n) < e−k0/8.(7.64)

To see this, let T̂(m) be the set of d ∈ T̂ of length m. Then

C(T̂(m), n) ≤
m∑

j=k

(
m
j

)
(nq) j(1 − nq)m−j .(7.65)

Let m0 = c−1
n k0. For m ≤ m0,

C(T̂(m), n) ≤
m0∑

j=k

(
m0

j

)
(nq) j(1 − nq)m0−j .(7.66)

Notice that for j ≥ k,
(

m0

j

)
(nq) j(1 − nq)m0−j ≤

(
m0

k

)
(nq)k(1 − nq)m0−k(7.67)

so for k ≤ m ≤ m0 we have

C(T̂(m), n) ≤ m0

(
m0

k

)
(nq)k(1 − nq)m0−k(7.68)

≤ m0

( em0

k

)k
(nq)k(1 − nq)m0−k ≤ m0e−2k ≤ e−k,

since (m0k−1)nq � 1.
Thus

C(T̂, n) ≤ C({|d| > m0}, n) +
∑

m≤m0

C(T̂(m), n)(7.69)

≤ e−k0/4 + m0e−k ≤ e−k0/8.
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7.5.1.3. — Let T ⊂ Z and let q = I(T, n). Let q0 > n2q be such that q0 > c1/5
n .

Let T̂ be the set of d with |d| > c−1/2
n and with at least q0|d| entries in T. Then

C(T̂, n) ≤ e−c−1/4
n .(7.70)

Indeed, by similar considerations as in §7.5.1.2,

C(T̂, n) ≤
∑

m>c−1/2
n

m∑

j=q0m

(
m
j

)
(nq) j(1 − nq)m−j(7.71)

≤
∑

m>c−1/2
n

m∑

j=q0m

(
m

q0m

)
(nq)q0m(1 − nq)m−q0m

≤
∑

m>c−1/2
n

m
(

e
q0

)q0m

(nq)q0m(1 − nq)m−q0m

≤
∑

m>c−1/2
n

me−q0m ≤ e−c−1/4
n .

7.5.2. Standard landings. — We will need only a couple of properties of standard
landings (see §5.2.2) which we will put together here.

rn( ji) < c−14
n−1 , d = ( j1, ..., jm) ∈ LS(n),(7.72)

|d| > c−1/2
n , d ∈ LS(n),(7.73)

ln(d ) > c−1+ε/2
n−1 |d|, d ∈ LS(n),(7.74)

C(Ω \ LS(n), n) < c1/3
n .(7.75)

7.6. The l + 1 level. — Recall that ε was fixed in advance, so that δ � ε if l
is big.

Assume that Xl(d ) ≥ c−ε
l , with d = ( j1, ..., jm). Then d ∈ A ∪ B, where A is the

set of d with Xl( ji) > c−ε/2
l for some ji and B is the set of d with #{i|Xl( ji) > 0} ≥ c−ε/2

l .
Since I({rl( j) > c−ε/2

l }, l) < e−c−ε/3
l , the estimate of §7.5.1.1 gives

C(A, l) ≤ e−c−ε/4
l .(7.76)

Let k = c−ε/4
l , k0 = c−ε/5

l . Since kk−1
0 cl > l2c1−δ

l ≥ l2a1−δ ≥ l2xl , the estimate
of §7.5.1.2 gives

C(B, l) ≤ e−c−ε/8
l .(7.77)

We now conclude easily

xl

(
c−ε
l

) ≤ C(A ∪ B, l) < e−c−ε/4
l + e−c−ε/8

l ≤ e−c−ε/11
l ≤ cl3

l .(7.78)
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After pullback by Rl|Il+1 we get

xl+1

(
c−2ε
l

) ≤ xl+1

(
c−ε
l + vl

)
< e−c−ε/12

l ≤ cl3
l .(7.79)

7.7. Levels l + 2 and l + 3. — We will need to consider two cases according to
the size of a:

Case A cl+1 ≤ a < cε
1/2

l+1 ,(7.80)

Case B cε
1/2

l+1 ≤ a < cl.(7.81)

7.7.1. Case A. — Notice that xl+1 < a1−δ in this case.
Let us say that d is a BAD landing (of level l + 1) if

Xl+1(d ) > c−1+ε
l+1 a1−5ε1/2

, BAD landing in Case A.(7.82)

7.7.1.1. — Let us see that

C({d is BAD}, l + 1) ≤ e−c−ε/8
l+1 , in Case A.(7.83)

Indeed, if d is BAD and d = ( j1, ..., jm) then d ∈ A ∪ B where A is the set
of d with some ji with rl+1( ji) > c−ε/2

l+1 and B is the set of d with at least k entries in
{Xl+1( j) > 0} where k = c−1+3ε/2

l+1 a1−5ε1/2
.

As before, the estimate of §7.5.1.1 gives

C(A, l + 1) ≤ e−c−ε/4
l+1 .(7.84)

Let k0 = c−ε
l+1. Since

kk−1
0 cl+1 > c3ε

l+1a1−5ε1/2
> a1−2ε1/2

> (l + 1)2xl+1(7.85)

the estimate of §7.5.1.2 gives

C(B, l + 1) ≤ e−c−ε/4
l+1 ,(7.86)

and (7.83) follows.

7.7.1.2. — Define the set of BAD returns (of level l + 2) as the set of j such
that Rl+1(I

j
l+2) ⊂ Cd

l+1 where d is a BAD landing, so that I({ j is BAD}, l+2) < e−c−ε/11
l+1 .

Notice that a non BAD return j satisfies

Xl+2( j) ≤ c−1+ε
l+1 a1−5ε1/2 + vl+1, j is not a BAD return.(7.87)
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Let us define a set VB of landings (of level l + 2) as the set of d = ( j1, ..., jm)

which are either non-standard or such that

#{i, ji is a BAD return} > cl
l+1|d|.(7.88)

Notice that cl
l+1 > (l + 2)2I({ j is BAD}, l + 2), so using the estimate of §7.5.1.3 (with

q0 = cl
l+1 > c1/5

l+2), we conclude that

C(VB, l + 2) ≤ c2/7
l+2.(7.89)

If d /∈ VB, all returns have time at most rn( ji) < c−14
l+1 , so

Xl+2(d ) ≤ (
c−14
l+1 cl

l+1 + c−1+ε
l+1 a1−5ε1/2 + vl+1

)|d|(7.90)

≤ (
cl−14
l+1 + c−1+ε

l+1 a1−5ε1/2 + c−1−δ
l

)
c1−ε/2
l+1 ll+2(d )

≤ a1−5ε1/2
ll+2(d )

since ll+2(d ) > c−1+ε/2
l+1 |d| for a standard landing.

7.7.1.3. — Define a VB return as the set of returns of level l + 3 that fall
in VB landings. Then I(VB, l + 3) < c1/20

l+2 . Each non VB return satisfies (notice that
rl+3( j) ≥ c−1/2

l+2 when j is not a VB return)

Xl+3( j) ≤ a1−5ε1/2
rl+3( j) + vl+2 ≤ a1−7ε1/2

rl+3( j).(7.91)

By the estimate of §7.2.2, we conclude that µ(Iι
η) ≤ a1−10ε1/2

in Case A.

7.7.2. Case B. — Let GOOD denote the set of d ∈ LS(l + 1) such that d =
( j1, ..., jm), and

#{i, Xl+1( ji) ≥ 1} < a1−εc−1
l |d|, GOOD landing, Case B,(7.92)

#
{
i, Xl+1( ji) ≥ c−3ε1/2

l

}
< cl3

l |d|, GOOD landing, Case B.(7.93)

By (7.33), (7.62), and (7.79) we have that a1−εc−1
l ≥ (l + 1)2xl+1 and cl3

l ≥
(l + 1)2xl+1(c−3ε1/2

l ).

7.7.2.1. — Let D1 (respectively D2) be the set of d such that |d| > c−1/2
l+1 and

which do not satisfy (7.92) (respectively (7.93)). The argument of §7.5.1.3 with
q0 = a1−εc−1

l (respectively, q0 = cl3
l ) implies that (notice that in both cases q0 > c1/5

l+1)

C(D1, l + 1), C(D2, l + 1) < e−c−1/4
l+1 .(7.94)

We conclude

C({d is not GOOD}, l + 1) ≤ c2/7
l+1.(7.95)
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7.7.2.2. — Let us say that a return j of level l +2 is BAD if Rl+1(I
j
l+2) ⊂ Cd

l+1

where d is not GOOD. Notice that I({ j is BAD}, l + 2) < c1/20
l+1 .

If j is not BAD, with Rl+1(I
j
l+2) ⊂ Cd

l+1, let us consider two subcases. If cε
1/2

l+1 ≤
a < c

√
l

l , using (7.92) we get

Xl+2( j) ≤ (
c−14
l c−1

l a1−ε
)|d| + vl+1 ≤ a1−2ε|d| ≤ a1−2εrl+2( j).(7.96)

If c
√

l
l ≥ a > cl , a similar estimate can be obtained using (7.92) and (7.93)

Xl+2( j) ≤ (
cl3
l c−14

l + c−3ε1/2

l c−1
l a1−ε

)|d| + vl+1(7.97)

≤ (
cl3−14
l + c−1−3ε1/2

l a1−ε + c1/2−δ

l+1

)|d|

≤ (
c−1−5ε1/2

l a1−ε
)|d| ≤ a1−7ε1/2

ll+1(d ) ≤ a1−7ε1/2
rl+2( j).

Thus we have in both subcases

Xl+2( j) ≤ a1−7ε1/2
rl+2( j), j is not BAD, Case B.(7.98)

By the argument of §7.2.2, we conclude that µ(Iι
η) ≤ a1−10ε1/2

in Case B.
This concludes the proof of the main estimate.

8. Pathological laminations, formula for the Lyapunov exponent

8.1. Laminations in spaces of analytic unimodal maps

8.1.1. — Let F be a Banach space. A codimension-one holomorphic lamination L
on an open subset W ⊂ F is a family of disjoint codimension-one Banach subman-
ifolds of F, called the leaves of the lamination such that for any point p ∈ W , there
exists a holomorphic local chart Φ : W̃ → V ⊕ C, where W̃ ⊂ W is a neighbor-
hood of p and V is an open set in some complex Banach space E, such that for any
leaf L and any connected component L0 of L ∩ W , the image Φ(L0) is a graph of
a holomorphic function V → C.

The local theory of codimension-one holomorphic laminations coincide with the
theory of holomorphic motions (see [ALM], §2.5 and references therein). It follows
from the λ-Lemma that holonomy maps of holomorphic laminations have quasicon-
formal extensions.

8.1.2. — For a > 0, let Ωa ⊂ C be the set of z at distance at most a of I.
Let Ea be the space of even holomorphic maps f : Ωa → C, continuous up to Ωa.



STATISTICAL PROPERTIES OF UNIMODAL MAPS 63

We endow Ea with the sup norm. Let Aa = { f ∈ Ea, f (−1) = f (1) = 1} and let
A R

a = { f ∈ Aa, f (z) = f (z)}. Let Ua be the space of analytic quasiquadratic maps
which belong to A R

a .
One of the main results of [ALM] is that the partition of Ua on topological

conjugacy classes has the structure of a codimension-one analytic lamination “almost
everywhere”.

Theorem 10 (Theorem A of [ALM]). — Let f ∈ Ua be a Kupka-Smale quasiquadratic

map. There exists a neighborhood V ⊂ Aa of f endowed with a codimension-one holomorphic

lamination L (also called hybrid lamination) with the following properties:

(1) the lamination is real-symmetric;

(2) if g ∈ V ∩ A R
a is non-regular, then the intersection of the leaf through g with A R

a
coincides with the intersection of the topological conjugacy class of g with V ;

(3) Each g ∈ V ∩ A R
a belongs to some leaf of L .

(See also [AM3] for the non-quasiquadratic case.)
Notice that the set of non-Kupka-Smale maps is contained on a countable union

of codimension-one analytic submanifolds.
The lamination L has automatically quasisymmetric holonomy. Quasisymmet-

ric maps are not always absolutely continuous (even though quasiconformal maps are).
It turns out that L is very far from being absolutely continuous, at least at the set of
non-regular leaves (the lamination restricted to regular maps is not uniquely defined,
but can be chosen in a quite natural way to be locally analytic).

8.1.3. — Let L̂ be the lamination consisting of the non-isolated non-regular
leaves of L . If fλ is a one-dimensional family transversal to L̂ , it intersects L̂ in
a positive measure set12.

Let X ⊂ Ua be the set of Collet-Eckmann maps satisfying the conclusion of
Theorem 1. Then X intersects each leaf of L̂ in a set of maps which are analytically
conjugate in the attractor, and this is a set of infinite codimension (possibly empty):
just notice that we can vary the exponent of any finite number of periodic orbits in-
dependently.

Thus, L̂ exhibits the same pathology described by Milnor in [Mi]: a full meas-
ure set intersecting the leaves of a finite codimension lamination in tiny sets. (The
example described by Milnor is also an analytic codimension-one lamination, on two
dimensions, and the intersections of the leaves with the full measure set are points. In
this finite dimensional setting, this translates in the complete failure of Fubini’s Theo-
rem).

12 Since preperiodic combinatorics are dense in ˆL , and the generic unfolding of preperiodic combinatorics
generates a positive measure set of non-hyperbolic parameters (see for instance [T] for a proof of a more general
statement).



64 ARTUR AVILA, CARLOS GUSTAVO MOREIRA

8.1.4. — Although in our description we have to make use of transverse mea-
sures (since our setting is infinite-dimensional), one can interpret this pathology by tak-
ing finite dimensional sections as follows.

Let { fλ}λ∈Λ be a small analytic k-dimensional transverse section to L̂ . The lam-
ination L̂ induces a lamination L̂ Λ on Λ. Notice that L̂ Λ has positive k-dimensional
Lebesgue measure.

For λ1, λ2 ∈ Λ distinct, let P(λ1, λ2) be the number of periodic orbits of fλ1

which have the same exponent of a periodic orbit of fλ2 . A transversality argument
shows that, for most of those sections (actually the complement has infinite-codimen-
sion), P(λ1, λ2) < ∞ whenever λ1 
= λ2. For any family fλ with this property, we obtain
the same phenomena, but in k dimensions: the set of parameters XΛ which are Collet-
Eckmann and satisfy the conclusion of Theorem 1 intersects each leaf of L̂ Λ in at
most one point.

8.1.5. — We point out that the set of recurrent parameters which do not satisfy
the conclusion of Theorem 1 (or Theorem 2) has Hausdorff dimension one in any
one-dimensional transversal fλ to L̂ . Indeed, using the previous argument, we can se-
lect another transversal f̃ λ arbitrarily close to fλ, and such that for any λ1, λ2, the
number of periodic orbits of fλ1 which have the same exponent as some periodic orbit
of f̃ λ2

is finite. Let X̃ be the set of parameters satisfying the conclusion of Theorems 1
and 2 for f̃ λ. Let h be the holonomy map from fλ to f̃ λ. Then the quasisymmetric
constant of h (and thus the Hölder constant) is close to 1, provided f̃ λ is close to fλ
(by the λ-Lemma). Since X̃ has positive Lebesgue measure, h−1(X̃) has Hausdorff di-
mension close to one. But parameters λ in h−1(X̃) do not satisfy the conclusion of
Theorem 1 (or Theorem 2, using §8.1.6): otherwise each of the infinitely many peri-
odic orbits in the attractor of fλ would have the same exponent of the corresponding
(by the topological conjugacy) periodic orbit for f̃ h(λ).

Remark. — It is easy to see that the conclusions of Theorems 1, 2, and 3 fail
for all Misiurewicz (non-recurrent Collet-Eckmann) parameters. This set of parameters
has Hausdorff dimension one in any one-dimensional transversal to L̂ .

8.1.6. — By [MM], stochastic unimodal maps satisfying the conclusion of
Theorem 1 are geometrically rigid: two such maps are smoothly (and automatically
analytically) conjugate on the attractor. The same conclusion can be obtained for maps
satisfying the conclusion of Theorem 2. Indeed, the asymptotic distribution of the crit-
ical orbit, if it exists, is a topological invariant, and the validity of the conclusion of
Theorem 2 for two topologically conjugated maps implies that the conjugacy must be
absolutely continuous on the support of the invariant measure (the attractor). The con-
jugacy is then easily promoted to being smooth (and automatically analytic) by a well
known argument, see Exercise 3.1, Chapter V, page 375 in [MS].
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We should point out that this conjugacy is not, in general, analytic on the whole
interval I, as can be shown by a simple example.

Example 1. — Let us consider the families

fa(x) = ax(1 − x),(8.1)

ga(x) = 2
π

sin−1

(√
a

2
sin(πx)

)
.(8.2)

Then for fa and ga are analytic families of quasiquadratic maps on the interval
[0, 1] for 2 < a < 4. Notice that

ha ◦ ga = fa ◦ ha, h(x) = 1 − cos(πx)
2

,(8.3)

so fa and ga are analytically conjugate on (0, 1), and the holonomy map between both
families is trivial. Whenever fa is Collet-Eckmann and satisfies the conclusion of Theo-
rem 1, ga also does. However, fa and ga are not analytically conjugate on [0, 1]: indeed,
Dfa(0) = a and Dga(0) = √

a, so the exponent of the fixed point 0 is not preserved.

8.2. Formula for the exponent of µf . — In order to compute the Lyapunov ex-
ponent of µf combinatorially, one just has to find an expression for the Lyapunov
exponent of the critical value. There are several ways to proceed, for instance, one
can find convenient approximations of the critical orbit by periodic orbits and apply
Theorem 1. However, there exists a very simple expression using the combinatorics
of the principal nest, whose proof only involves Corollary 1 and the asymptotic limits
of §4.4.

Theorem 11. — Let ft be an analytic family of unimodal maps. For almost every non-regular

parameter, the Lyapunov exponent of µft (which is equal to the Lyapunov exponent of the critical

value) is given by an explicit combinatorial formula:

λ(µft ) = lim
n→∞

2 ln vn+1

vn
,(8.4)

where, as usual, vn is the return time of the critical point to the n-th level of the principal nest.

Proof. — Notice that

λ( f (0)) = lim
ln |Df vn−1( f (0))|

vn − 1
,(8.5)

and by Lemma 6,

lim
ln vn+1

ln c−1
n

= 1.(8.6)
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Thus, we only have to show that

lim
ln |Df vn−1( f (0))|

ln c−1
n

= 2.(8.7)

Notice that f vn−1 takes f (In+1) to Rn(In+1) with torrentially small distortion. By Lem-
ma 7, we have n−2|In| ≤ |Rn(In+1)| ≤ |In|. So we conclude

lim
ln |Df vn−1( f (0))|

ln c−1
n

= lim ln
( |In|

|In+1|2

)
1

ln c−1
n

(8.8)

= lim ln

(
1

|In|c2
n

)
1

ln c−1
n

= 2,

since |In| > c1+δ
n−1 for n big. ��
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Manuscrit reçu le 23 septembre 2003.


